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1 Introduction

When using a mathematical model of a control object, the natural question,
“to what degree do the model properties correspond to those of the object
described by this model?" arises. Since any mathematical model describes
its object in an approximate way, only those model properties which hold
under variations of its parameters within some limits can be of interest,
because only in this case can we expect the object properties to coincide
with those of the model. Varying the model parameters is necessary to
take into account the features of the physical components of the control
law applied, as well as to accomodate the changes in the object’s physical
parameters due to its aging.

If a property of the model motion is preserved under variations of the
model parameters, then this property is called robust. It is known that
asymptotic stability and instability properties are robust.

One of the most widespread mathematical models is the characteristic
polynomial, which is called a Hurwitz polynomial if its roots are located in
the left half of the plane of complex variable S. A Hurwitz polynomial is
endowed with an asymptotic stability property that is robust.

The quantitative robustness analysis of the asymptotic stability property
of the Hurwitz polynomial

d(S) = Sn +
n∑

i=1

αi ∗ Sn−i, αi ∈ Rn (1.1)

is connected with constructing the Hurwitz interval polynomial that accom-
panies the given polynomial (1.1)

D(S) = Sn +
n∑

i=1

[αi, αi] ∗ Sn−i (1.2)

i.e. the polynomial with coefficients that satisfy the inequality αi < αi < αi,
i = 1, n.

The interval polynomial (1.2) provides an answer for the question: what
are the variations of coefficients under which (1.1) is still a Hurwitz polyno-
mial?

The history of this problem is discussed in detail in [1], where a method
for its solution by Hermite-Biler polynomials was introduced. That method
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is based on an alternative formulation of V. L. Kharitonov’s [2] necessary
and sufficient conditions for the Hurwitzness of an interval polynomial (1.2)
in the form of the Hurwitzness of the following four polynomials:

d1(S) = αn + αn−1S + αn−2S
2 + αn−3S

3 + αn−4S
4 + . . . , (1.1.3)

d2(S) = αn + αn−1S + αn−2S
2 + αn−3S

3 + αn−4S
4 + . . . ,

d3(S) = αn + αn−1S + αn−2S
2 + αn−3S

3 + αn−4S
4 + . . . ,

d4(S) = αn + αn−1S + αn−2S
2 + αn−3S

3 + αn−4S
4 + . . .

To clarify the essence of the proposed method, we will present this for-
mulation as in [1, 3].

Hermite-Biler polynomials are related to the polynomial (1.1) by the
equality

d(S) = G(αn, αn−2, αn−4, . . .) + S ∗H(αn−1, αn−3, αn−5, . . .) (1.4)

where the following symbols are introduced (z = S2):

G(αn, αn−2, αn−4, . . .) = αn + αn−2S
2 + αn−4S

4 + · · · (1.1.5)

= G(z) = α
n−2[n2 ]
1 ∗ ϕG(z), m =

[n
2

]
,

ϕG(z) =
m∏
i=1

(z − µi) = zm + βG
1 z

m−1 + βG
2 z

m−2 + βG
3 z

m−3 + βG
4 z

m−4 + · · · ,

H(αn−1, αn−3, αn−5, . . .) = αn−1 + αn−3S
2 + αn−5S

4 + · · ·

= H(z) = α
n−1−2[n−1

2 ]
1 ∗ ϕH(z), l =

[
n− 1

2

]
,

ϕH(z) =
l∏

i=1

(z − ηi) = zl + βH
1 z

l−1 + βH
2 z

l−2 + βH
3 z

l−3 + βH
4 z

l−4 + · · ·

where [. . .] denotes the operation of extracting the integer part of a real num-
ber, and ϕG, ϕH are the reduced polynomials that accompany the Hermite-
Biler polynomials G and H.
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In terms of Hermite-Biler polynomials, Hurwitzness of the polynomial
d(S) with α1 > 0 means that the roots of the corresponding reduced
Hermite-Biler polynomials ϕG, ϕH are negative, real, and intermittent, i.e.
they satisfy the inequalities

0 > µ1 > η1 > µ2 > η2 > · · · > µi > ηi > · · · (1.6)

The reduced Hermite-Biler polynomials that satisfy the inequalities (1.6)
are said to form a positive pair. In this case a positive pair is also formed
by the initial Hermite-Biler polynomials G and H.

The technique of Hermite-Biler polynomials allows computation of the
roots of the corresponding positive pair of the reduced Hermite-Biler poly-
nomials ϕG and ϕH from the characteristic Hurwitz polynomial (1.1), such
that the roots satisfy the inequality (1.6). The negative semiaxis of the real
axis is then split into non-intersecting intervals of possible variations of these
roots according to the inequality:

0 > µ1 > µ1 > µ
1
> η1 > η1 > η

1
> · · · > µi > µi > µ

i
> ηi > ηi > η

i
> · · ·
(1.7)

where µi, µi, ηi, ηi are negative real numbers, to be determined, that rep-
resent the boundaries of the possible root variations of the positive pair
ϕG, ϕH . These boundaries are the roots of the Hurwitz polynomials (1.3)
which correspond to Hermite-Biler polynomials, and can be described by
introducing the corresponding symbols:

d1(S) = G1(αn, αn−2, αn−4, . . .) + S ∗H1(αn−1, αn−3, αn−5, . . .),(1.1.8)
d2(S) = G1(αn, αn−2, αn−4, . . .) + S ∗H2(αn−1, αn−3, αn−5, . . .),

d3(S) = G2(αn, αn−2, αn−4, . . .) + S ∗H2(αn−1, αn−3, αn−5, . . .),

d4(S) = G2(αn, αn−2, αn−4, . . .) + S ∗H1(αn−1, αn−3, αn−5, . . .).

If we denote the reduced polynomials corresponding to the polynomials
Gi, Hj (i, j = 1, 2) by

ΦG1(z) = zm + β
G

1 z
m−1 + βG

2
zm−2 + β

G

3 z
m−3 + βG

4
zm−4 + · · ·(1.1.9)

= (z − µ
m

)(z − µm−1)(z − µm−2)(z − µm−3) . . . ,

ΦG2(z) = zm + βG
1
zm−1 + β

G

2 z
m−2 + βG

3
zm−3 + β

G

4 z
m−4 + · · ·

= (z − µm)(z − µ
m−1)(z − µm−2)(z − µm−3) . . . ,
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ΦH1(z) = zl + β
H

1 z
l−1 + βH

2
zl−2 + β

H

3 z
l−3 + βH

4
zl−4 + · · ·

= (z − η
l
)(z − ηl−1)(z − ηl−2)(z − ηl−3) . . . ,

ΦH2(z) = zl + βH
1
zl−1 + β

H

2 z
l−2 + βH

3
zl−3 + β

H

4 z
l−4 + · · ·

= (z − ηl)(z − ηl−1)(z − ηl−2)(z − ηl−3) . . .

The necessary and sufficient conditions for Hurwitzness of the polynomial
(1.2) (equivalent to V. L. Kharitonov’s conditions) can be formulated as
a requirement that the polynomials Gi, Hj (i, j = 1, 2) defined by the
expressions

for odd n
G1(z) = α1 ∗ ΦG1(z), G2(z) = α1 ∗ ΦG2(z),
H1(z) = ΦH1(z), H2(z) = ΦH2(z),

for even n
G1(z) = ΦG1(z), G2(z) = ΦG2(z),
H1(z) = α1 ∗ ΦH1(z), H2(z) = α1 ∗ ΦH2(z)

(1.10)

constitute positive pairs.
The accompanying polynomial pair of the polynomial ϕG(ϕH), that is

ΦG1, ΦG2 (ΦH1, ΦH2), whose coefficients, according to (1.9), are intermittent
and satisfy the inequality

βG
i
< βG

i < β
G

i (i = 1,m), βH
j
< βH

j < β
H

j (j = 1, l) (1.11)

was called a Lobachevsky pair in [1].
Thus, Hermite-Biler polynomials allow construction of the following al-

gorithm to solve the problem being discussed:

1) Form the Hermite-Biler polynomials G and H associated with the
given characteristic Hurwitz polynomial d(S);

2) Form the reduced Hermite-Biler polynomials ϕG, ϕH associated with
the polynomials G and H;

3) Find the roots of the reduced Hermite-Biler polynomials ϕG, ϕH ;

4) Split the negative semiaxis of the real axis into non-intersecting inter-
vals of possible variations of the roots computed in Step 3 according
to the inequalities:
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for odd n (l = m)

0 > µ1 > µ1 > µ
1
> η1 > η1 > η

1
> · · · (1.1.12)

> µi > µi > µ
i
> ηi > ηi > η

i
> · · ·

> µm > µm > µ
m
> ηm > ηm > η

m
,

for even n (l = m− 1)

0 > µ1 > µ1 > µ
1
> η1 > η1 > η

1
> · · · (1.1.13)

> µi > µi > µ
i
> ηi > ηi > η

i
> · · ·

> µi+1 > µi+1 > µ
i+1

> · · ·
> ηm−1 > ηm−1 > η

m−1 > µm > µm > µ
m

under the condition that the reduced Hermite-Biler polynomials ΦG1,
ΦG2, ΦH1, ΦH2 associated with the polynomials ϕG, ϕH constitute
Lobachevsky pairs satisfying the inequalities (1.11);

5) Choose upper and lower bounds of the coefficient α1 to try to satisfy
the conditions following from (1.10):

for odd n

α1 < min [α1, α5/β
G
2
, α9/β

G
4
, α13/β

G
6
, . . . ], (1.1.14)

α1 > max [α3/β
G

1 , α7/β
G

3 , α11/β
G

5 , . . . ],

α1 > max [α1, α5/β
G

2 , α9/β
G

4 , α13/β
G

6 , . . . ],

α1 < min [α3/β
G
1
, α7/β

G
3
, α11/β

G
5
, . . . ],

for even n

α1 < min [α1, α5/β
H
2
, α9/β

H
4
, α13/β

H
6
, . . . ], (1.1.15)

α1 > max [α3/β
H

1 , α7/β
H

3 , α11/β
H

5 , . . . ],

α1 > max [α1, α5/β
H

2 , α9/β
H

4 , α13/β
H

6 , . . . ],

α1 < min [α3/β
H
1
, α7/β

H
3
, α11/β

H
5
, . . . ]

6) Form the Hurwitz interval polynomial (1.2) according to (1.10).
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Step 4 of the above algorithm (i.e. splitting the negative semiaxis into
non-intersecting intervals of possible variations of the reduced Hermite-Biler
polynomial roots and constructing the Lobachevsky pairs associated with
these polynomials from the bounds so obtained) is not formalized. Un-
fortunately, the recursive procedure proposed for this task in [3] is very
time-consuming; its nature is similar to mere exhaustive search.

Thus, formalization of the procedure of constructing Lobachevsky pairs
by arbitrary splitting of the negative semiaxis into intervals of possible root
variations is the main purpose of this paper.

This work is supported by the Russian Foundation of Fundamental In-
vestigations, and was first reported in [4].

2 The vector-matrix form of the Viète
formulae and the main result

We propose an analytical method of constructing Hurwitz interval polyno-
mials based on the following special representation of the vector-matrix form
of the Viète formulae.

It is well known that for the polynomial

f(s) = sm + a1s
m−1 + a2s

m−2 + · · ·+ am−1s+ am =
m∏
i=1

(s− xi) (2.1)

these formulae which relate its roots to its coefficients can be written as:

a1 = −x1 − x2 − x3 − x4 − · · · − xm−1 − xm = −
m∑
i=1

xi, (2.2.2)

a2 = x1(x2 + x3 + x4 + · · ·+ xm−1 + xm) + x2(x3 + x4 + · · ·
+xm−1 + xm) + · · ·+ xm−2(xm−1 + xm) + xm−1xm

=
m∑

i1=1
i2=1
i1<i2

xi1xi2,

a3 = −x1x2(x3 + x4 + · · ·+ xm−1 + xm)− x1x3(x4 + x5 + · · ·
+xm−1 + xm)− · · · − x1xm−1xm − x2x3(x4 + x5 + · · ·
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+xm−1 + xm)− · · · − x2xm−1xm − · · · − xm−2xm−1xm

= −
m∑

i1=1
i2=2
i3=3

i1<i2<i3

xi1xi2xi3,

. . .

am−1 = (−1)m−1[x1(x2x3 . . . xm−2xm−1 + x2x3 · · ·xm−2xm)

+x2(x3x4 . . . xm)]

= (−1)m−1
m∑

i1=1
...

im−1=m−1
i1<···<im−1

xi1xi2 . . . xim−1
,

am = (−1)mx1[x2x3 . . . xm−1xm].

Hence, introducing the symbols

a = colon[a1, a2, . . . , am], (2.3)

x = colon[x1, x2, . . . , xm],

W =

∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 −1 · · · −1 −1
w21 w22 w23 w24 · · · w2,m−1 0
w31 w32 w33 w34 · · · 0 0
... ... ... ... . . . ... ...

wm−i,1 wm−i,2 0 0 · · · 0 0
wm,1 0 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

wij = (−1)i
m∑

i1=j+1
...

ii−1=i
i1<···<ii−1

xi1 . . . xii−1
, (i, j = 2,m− 1),

. . .

wm,1 = (−1)mx2 . . . xm

we get
a = W (x2, . . . , xm)x. (2.4)

We can see from (2.3) that the matrix W does not depend on the root x1,
and provided that there are no zero roots it is always invertible, i.e.,

x = W−1a. (2.5)
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Let us demonstrate use of the formula obtained in constructing the Lo-
bachevsky pair associated with the polymonial ϕG. As shown in [1], the
relationship between the coefficients and the roots of this pair is expressed
by the inequalities:

βG
i

(µm, µm−1, µm−2, µm−3, . . .) < βG
i (2.2.6)

< β
G

i (µ
m
, µm−1, µm−2, µm−3, . . .)

(i = 1, 3, 5, . . .),

−βG

j (µm, µm−1, µm−2, µm−3, . . .) < −βG
j

< −βG
j

(µ
m
, µm−1, µm−2, µm−3, . . .)

(j = 2, 4, 6, . . .).

Using (2.4), we can write the inequalities (2.6) that define the Lobachevsky
pair in a vector-matrix form. For this purpose we introduce the following
symbols:

BG = colon[βG
1 ,−βG

2 , β
G
3 ,−βG

4 , . . .], (2.2.7)

B
∗
G = colon[β

G

1 ,−βG
2
, β

G

3 ,−βG
4
, . . .],

B∗G = colon[βG
1
,−βG

2 , β
G
3
,−βG

4 , . . .],

X = colon[. . . , µm−3, µm−2, µm−1, µm],

X = colon[. . . , µ
m−3, µm−2, µm−1, µm],

X = colon[. . . , µm−3, µm−2, µm−1, µm],

W ∗ =

∣∣∣∣∣∣∣∣∣∣
−1 −1 −1 −1 · · · −1 −1
−w21 −w22 −w23 −w24 · · · −w2,m−1 0
w31 w32 w33 w34 · · · 0 0
−w41 −w42 −w43 −w44 · · · 0 0

... ... ... ... . . . ... ...

∣∣∣∣∣∣∣∣∣∣
.

We can then write:

B∗G = W ∗(X)X < BG = W ∗(X)X < B
∗
G = W ∗(X)X. (2.8)

The inequality (2.8) allows finding, from arbitrary bounds of possible
root variations µi (i = 2,m), the bounds of possible variations of the root
µ1, i.e. µ1, µ1, within which the polynomials ΦG1,ΦG2 form a Lobachevsky
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pair. Moreover, to find these bounds, only the lower line of the scalar form
(2.8) is needed, which is the main result of the paper.

Provided the initial characteristic polynomial (1.1) has an even degree n,
we can assume the bounds of possible root variations ηi (i = 1, l = m− 1)
to be arbitrarily close (but not equal) to the respective root bounds µi
(i = 1,m), and then construct the second Lobachevsky pair from (2.8).

3 The algorithm for an odd power of the poly-
nomial (1.1)

If the initial characteristic polynomial (1.1) has an odd degree n, the con-
struction of the Lobachevsky pair ΦG1,ΦG2 is performed as described in
Section 2 of this paper. It is obvious from the inequality (1.12) that if the
bounds of possible root variations ηi (i = 1,m) are arbitrarily close to the
corresponding bounds of possible root variations µi(i = 1,m), we have to
choose only the root ηm.

The analytical choice of this root requires that vector-matrix form of
Viète formulae that allows the matrix (2.4) to be independent of the root
xm. This form is attained by introducing the following symbols:

a = colon[a1, a2, . . . , am], (3.1)

x = colon[x1, x2, . . . , xm],

F =

∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 −1 · · · −1 −1
0 f22 f23 f24 · · · f2,m−1 f2,m
0 0 f33 f34 · · · f3,m−1 f3,m
... ... ... ... . . . ... ...
0 0 0 0 · · · fm−1,m−1 fm−1,m
0 0 0 0 · · · 0 fm,m

∣∣∣∣∣∣∣∣∣∣∣∣
,

fij = (−1)i
j−1∑
i1=1
...

ii−1=i−1
i1<···<ii−1

xi1 . . . xii−1
, (i, j = 2,m− 1),

. . .

fm,m = (−1)mx1 . . . xm−1.
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Thus we can write:
a = F (x1, . . . , xm−1)x. (3.2)

Analogously to the previous section of the paper, we introduce the sym-
bols

BH = colon[βH
1 ,−βH

2 , β
H
3 ,−βH

4 , . . .], (3.3.3)

B
∗
H = colon[β

H

1 ,−βH
2
, β

H

3 ,−βH
4
, . . .],

B∗H = colon[βH
1
,−βH

2 , β
H
3
,−βH

4 , . . .],

X = colon[. . . , ηm−3, ηm−2, ηm−1, ηm],

X = colon[. . . , η
m−3, ηm−2, ηm−1, ηm],

X = colon[. . . , ηm−3, ηm−2, ηm−1, ηm],

F ∗ =

∣∣∣∣∣∣∣∣
−1 −1 −1 −1 · · · −1 −1
0 −f22 −f23 −f24 · · · −f2,m−1 −f2,m
0 0 f33 f34 · · · f3,m−1 f3,m
... ... ... ... . . . ... ...

∣∣∣∣∣∣∣∣ .
for the Lobachevsky pair ΦH1, ΦH2 from (3.2). Thus we get an inequality
for determining the root to be found and the coefficients of the Lobachevsky
pair being constructed:

B∗H = F ∗(X)X < BH = F ∗(X)X < B
∗
H = F ∗(X)X. (3.4)

As in the previous section of the paper, we use the lower line of the scalar
form to find the bounds of this root.

4 Example

Let us demonstrate the efficiency of the method presented by the following
example:

d(S) = S5 + 2S4 + 10S3 + 12S2 + 16S + 10.

From (1.4) we obtain

d(S) = G(S) + SH(S)
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where G(S) = 2S4+12S2+10 and H(S) = S4+10S2+16 are the Hermite-
Biler polynomials. Substituting S2 = Z, we get

G(Z) = 2Z2 + 12Z + 10, H(Z) = Z2 + 10Z + 16

and the accompanying reduced polynomials are

ϕG(Z) = Z2 + 6Z + 5, ϕH(Z) = H(Z) = Z2 + 10Z + 16.

The polynomial roots are as follows: for ϕG(Z), the roots are µ1 = −1,
µ2 = −5; for ϕH(Z), the roots are η1 = −2, η2 = −8.

Thus, the roots satisfy the inequality (1.7).
Now we can determine the upper and lower root bounds for µ1 and µ2,

i.e. µ1, µ1, µ2, µ2.
Assuming that µ

2
= −6.5, µ2 = −3.1, we construct the inequality (2.8).

In our case it looks like this:∣∣∣∣ βG
1

−βG

2

∣∣∣∣ =

∣∣∣∣ −1 −1
−w21(µ2) 0

∣∣∣∣ ∣∣∣∣µ1µ2
∣∣∣∣ =

∣∣∣∣−1 −1
3.1 0

∣∣∣∣ ∣∣∣∣ µ
1

−3.1

∣∣∣∣ (4.4.1)

<

∣∣∣∣ βG
1

−βG
2

∣∣∣∣ =

∣∣∣∣ −1 −1
−w21(µ2) 0

∣∣∣∣ ∣∣∣∣µ1µ2
∣∣∣∣ =

∣∣∣∣−1 −1
5 0

∣∣∣∣ ∣∣∣∣−1
−5

∣∣∣∣ =

∣∣∣∣ 6
−5

∣∣∣∣
<

∣∣∣∣ βG

1

−βG
2

∣∣∣∣ =

∣∣∣∣ −1 −1
−w21(µ2) 0

∣∣∣∣ ∣∣∣∣µ1µ
2

∣∣∣∣ =

∣∣∣∣−1 −1
6.5 0

∣∣∣∣ ∣∣∣∣ µ1
−6.5

∣∣∣∣ .
To find the desired bounds, let us write out the lower line of the inequality:

3.1µ
1
< −5 < 6.5µ1

and hence

µ1 > −5/6.5 = −0.7692307, µ
1
< −5/3.1 = −1.6129032.

Thus, we can assume µ1 = −0.1, µ
1

= −1.7, which on the basis of (4.1)
allows determination of the Lobachevsky pair coefficients ΦG1, ΦG2 by the
equalities

β
G

1 = 6.6; βG
1

= 4.8; β
G

2 = 5.27; βG
2

= 0.65.

Since the power of the characteristic polynomial d(S) n = 5 is odd, we
will use the results of Section 3 to construct the Lobachevsky pair.
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Let us assume η1 = −1.701, η
1

= −3.099, η2 = −6.501, i.e. close to the
corresponding roots µi with an accuracy of 0.001 (which according to [1] is
the “unimprovability” interval of the polynomial constructed). Let us write
down the inequality (3.4) for our case:∣∣∣∣ βH

1

−βH

2

∣∣∣∣ =

∣∣∣∣−1 −1
0 −f22(η1)

∣∣∣∣ ∣∣∣∣ η1η2
∣∣∣∣ =

∣∣∣∣−1 1
0 3.099

∣∣∣∣ ∣∣∣∣−3.099
η2

∣∣∣∣ (4.4.2)
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∣∣∣∣ βH
1

−βH
2

∣∣∣∣ =

∣∣∣∣−1 −1
0 −f22(η1)

∣∣∣∣ ∣∣∣∣ η1η2
∣∣∣∣ =

∣∣∣∣−1 −1
0 2

∣∣∣∣ ∣∣∣∣−2
−8

∣∣∣∣ =

∣∣∣∣ 10
−16

∣∣∣∣
<

∣∣∣∣ βH

1

−βH
2

∣∣∣∣ =

∣∣∣∣−1 −1
0 −f22(η1)

∣∣∣∣ ∣∣∣∣ η1η
2

∣∣∣∣ =

∣∣∣∣−1 −1
0 1.751

∣∣∣∣ ∣∣∣∣−1.701
η
2

∣∣∣∣ .
To find the desired bounds, we write down the lower line of the inequality

3.099η2 < −16 < 1.701η
2

and hence

η2 < −16/3.099 = −5.162956, η
2
> −16/1.701 = −9.4062

i.e., the chosen value η2 = −6.501 < −5.162956. Let us assume that
η
2

= −9.4 > −9.4062. Then, from (4.2), we get

βH
1

= 9.6; β
H

1 = 11.101; βH
2

= 15.9894; β
H

2 = 20.1466.

We then choose the bounds of the coefficient α1 according to (1.14):

α1 < min[α1, α5/β
G
2

] = min[2; 10/0.65 = 15.384615] = 2,

α1 > α3/β
G

1 = 12/6.6 = 1.8181818,

α1 > max[α1, α5/β
G

2 ] = max[2; 10/5.27 = 1.8975332] = 2,

α1 < α3/β
G
1

= 12/4.8 = 2.5

assuming α1 = 1.82; α1 = 2.49.
The final interval polynomial will be as follows:

D(S) = S5 + [1.82; 2.49]S4 + [9.6; 11.101]S3 + [11.952; 12.0012]S2

+ [15.9894; 20, 1466]S + [5.915; 13.1223].
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5 Discussion of the results

Summarizing the above, we can conclude that the analytical method pro-
posed allows construction, for any given Hurwitz characteristic polynomial
(1.1), the associated Hurwitz interval polynomial (1.2). In the process of
solving this problem, we cannot arbitrarily choose the following root bounds
of Hermite-Biler polynomials:

• µ
1
, µ1 for an even power of (1.1);

• µ
1
, µ1, ηm for an odd power of (1.1);

• α1 in both above cases.

It should be noted that the visual geometrical interpretion of the arbi-
trary rule for choosing the bounds of possible variations of the other Hermite-
Biler polynomial roots is an important feature of this method. Besides, as
emphasized in [1], the bounds of possible variations of the coefficients of
the Hurwitz polynomial (1.1) that are found from the bounds of possible
root variations are “unimprovable” with respect to the distances between
the bounds of possible variations of neighbour roots, chosen to satisfy the
condition that roots should be intermittent:

ε1i = |ηi − µi| (i = 1,m), ε2i = |µi+1 − ηi| (i = 1,m− 1) (5.1)

and thus can be chosen infinitesimal.
A large number of works concerning the subject of this paper (see, e.g.,

[5–7]) are dedicated to estimating the stability radius in the space of coeffi-
cients of the polynomial (1.1) for different norms, assuming that in addition
to the coefficients of (1.1) the scales of possible errors for each coefficient are
given. It is easy to see that the “greatest” interval polynomial which is ob-
tained in this way may prove “improvable” with respect to the distances (5.1)
because of the arbitrarily chosen scales of possible errors for each coefficient
of (1.1).

In our method, the distances (5.1) may be infinitesimal, which is an
advantage in comparison with other methods. However, our method does
not reject the above approach since it allows applying reasonable scales for
the given errors, but in this case the concept of a radius of robust stability
loses its sense.



66 V. A. Podchukayev, I. M. Svetlov

A problem which is closer to the subject of this paper was considered
in [8], namely the problem of finding the greatest deviation for each given
coefficient of the polynomial (1.1) that does not break Hurwitzness of the
accompanying interval polynomial (1.2). However, in our opinion, express-
ing this problem in terms of Hermite-Biler polynomial roots instead of the
given Hurwitz characteristic polynomial coefficients has an advantage of vi-
sual geometrical interpretion provided by the inequalities (1.12), (1.13) and
equalities (5.1).

In conclusion it should be noted that the algorithm described here is
easily implemented on personal computers.
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