On Validated Newton Type Method for Nonlinear Equations

Neli S. Dimitrova and Svetoslav M. Markov*

Considered is an iterative procedure of Newton type for a nonlinear equation $f(x)=0$ in a given interval X_{0}. Global quadratic convergence of the method is proved assuming that f^{\prime} is Lipschitzian. An algorithm with result verification is constructed using computer interval arithmetic and some numerical experiments are reported.

Метод ньютоновского типа с верификацией для нелинейных уравнений

Н. С. Димитрова, С. М. Марков

Рассматривается итерационная процедура ньютоновского типа для нелинейного уравнения $f(x)=0$ на заданном интервале X_{0}. Доказана глобальная квадратическая сходимость метода в предположении, что f^{\prime} липшицева. Построен алгоритм с верификацией результата, использующий компьютерную интервальную арифметику, и представлены результаты численных экспериментов.

[^0]
1 Introduction

Let X_{0} be a real compact interval and $f \in C^{1}\left[X_{0}\right]$. Denote by $x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}$ the set of all real zeroes of $f(x)$ in X_{0}, i.e. $x_{i}^{*} \in X_{0}, i=1,2, \ldots, p$, and let $X^{*} \subset X_{0}$ be the shortest interval enclosing the set of all real zeroes $x_{i}^{*}, i=1,2, \ldots, p$. R. Krawczyk [5] formulates the following Newton type method for finding X^{*} :

$$
\begin{align*}
& \bar{x}_{k+1}=\bar{x}_{k}-f\left(\bar{x}_{k}\right) / \bar{y}_{k}, \quad \bar{y}_{k}= \begin{cases}\sup _{x \in X_{k}}\left(f^{\prime}(x)\right) & \text { if } f\left(\bar{x}_{k}\right) \geq 0, \\
\inf _{x \in X_{k}}\left(f^{\prime}(x)\right) & \text { if } f\left(\bar{x}_{k}\right)<0 ;\end{cases} \\
& \underline{x}_{k+1}=\underline{x}_{k}-f\left(\underline{x}_{k}\right) / \underline{y}_{k}, \underline{y}_{k}= \begin{cases}\inf _{x \in X_{k}}\left(f^{\prime}(x)\right) & \text { if } f\left(\underline{x}_{k}\right) \geq 0, \\
\sup _{x \in X_{k}}\left(f^{\prime}(x)\right) & \text { if } f\left(\underline{x}_{k}\right)<0\end{cases} \tag{1}
\end{align*}
$$

where $k=0,1,2, \ldots$. The iteration process terminates if for some integer $k=m$ one of the following five conditions is fulfilled:

$$
\begin{align*}
& \text { (i) } f\left(\bar{x}_{m}\right)>0 \text { and } \bar{y}_{m} \leq 0 \text {; } \\
& \text { (ii) } f\left(\bar{x}_{m}\right)<0 \text { and } \bar{y}_{m} \geq 0 \text {; } \\
& \text { (iii) } f\left(\underline{x}_{m}\right)>0 \text { and } \underline{y}_{m} \geq 0 \text {; } \tag{2}\\
& \text { (iv) } f\left(\underline{x}_{m}\right)<0 \text { and } \underline{y}_{m} \leq 0 \text {; } \\
& \text { (v) } \quad \underline{x}_{m} \leq \bar{x}_{m} \quad \text { and } \underline{x}_{m+1}>\bar{x}_{m+1} \text {. }
\end{align*}
$$

The first four conditions $(i)-(i v)$ mean that f is monotone on X_{m} and the range $f\left(X_{m}\right)=\left\{f(x): x \in X_{m}\right\}$ of f on X_{m} does not contain zero.

The iteration scheme (1) will be further briefly denoted by $X_{k+1}=\mathbf{n}\left(X_{k}\right)$ and the interval operator \mathbf{n} will be refered as Newton-Krawczyk operator. The iterations (1) generate a (finite or infinite) interval sequence $\left\{X_{k}\right\}$ which is inclusion isotone $X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \cdots$. If the process terminates according to (2) after m steps, then the delivered interval X_{m} (and therefore X_{0}) does not contain any zero of $f(x)$. In the case when (1) generates an infinite sequence of intervals $\left\{X_{k}\right\}$, the latter converges to the interval $X^{*}=$ $\left[\underline{x}^{*}, \bar{x}^{*}\right]$ such that $x_{i}^{*} \in X^{*}, i=1,2, \ldots, p$, and $\underline{x}^{*}=\min _{k} x_{k}^{*}, \bar{x}^{*}=\max _{k} x_{k}^{*}$. Krawczyk notices also that in the case of one simple zero $x^{*} \in X_{0}$ the convergence toward x^{*} is quadratic whenever $f^{\prime \prime}$ exists and is bounded in X_{0}. A correspondimg algorithm with result verification has been formulated in Triplex-ALGOL 60 form (see [5], pp. 361-362).

In this work we further investigate method (1) and the Newton-Krawczyk operator \mathbf{n}. We show that in the case when f is monotone the operator $\mathbf{n}(X)$ can be presented in extended interval arithmetic (see [4, 8]) by the simple expression $\mathbf{n}(X)=X-^{-} f(X) /^{-} f^{\prime}(X)$, wherein $-^{-}, /^{-}$are the alternative (nonstandard) interval operations for subtraction and division. We show various properties of the operator $\mathbf{n}(X)$ keeping in our investigations much to interval algebraic notations and computations. It is shown in [8] that under certain conditions on f and f^{\prime} the interval operator $\mathbf{n}(X)$ is the range of the real Newton's operator $\mathbf{n}(x)=x-f(x) / f^{\prime}(x)$ for $x \in X$, i.e. $\mathbf{n}(X)=\{\mathbf{n}(x): x \in X\}$. This presentation clearly shows that method (1) does not involve intersection as most interval Newton-like methods do (see e.g. [1]). In Section 2 we consider some properties of the NewtonKrawczyk operator for monotone functions. In Section 3 a new method (10) for enclosing the set of all real zeroes of the equation $f(x)=0$ in a given interval is proposed, which is a modification of Krawczyk's method (1). On the other side our method (10) is a generalization of a method of the form $X_{k+1}=\mathbf{n}\left(X_{k}\right)$ which has been studied in [3, 8]. Global convergence of (10) is proved and global quadratic convergence of (10) in the sense of [2] is shown in the special case when f is monotone and f^{\prime} is Lipschitzian. In Section 4 we formulate an algorithm with result verification for enlosing the set of all real zeroes in an initial interval, using computer arithmetic operations. Some numerical experiments are given in Section 5.

2 The Newton-Krawczyk operator for monotone functions

Let $f: D \rightarrow R$, be a real valued function defined in $D \subseteq R$. Denote $I D=\{X: X \in I R, X \subseteq D\}$. The function f generates an interval function $f_{R}: I D \rightarrow I R$, defined for $X \in I D$ by $f_{R}(X)=\{f(x): x \in X\}$, called the range of f. If no confusion occurs f_{R} will be again denoted by f.
Definition [10]. An interval function $F: I D \rightarrow I R$ is called an (inclusion isotone) interval extension of f if $f(x)=F([x, x])$ for $x \in X, X \in I D$ and $F(X) \subseteq F(Y)$ whenever $X \subseteq Y, X, Y \in I D$.

It follows from the inclusion isotonicity of F that $f(X) \subseteq F(X)$ for $X \in I D$ (see [10]).

Throughout this section we assume that f possesses a continuous derivative f^{\prime} in D which has a constant sign in D, i.e. $f^{\prime}(x) \neq 0$ for all $x \in D$. Since f is assumed monotone on D, we have $f(X)=[f(\underline{x}) \vee f(\bar{x})]$ for $X=[\underline{x}, \bar{x}]$. Similarly, $f^{\prime}(X)=\left\{f^{\prime}(x): x \in X\right\}$ will denote the range of the derivative f^{\prime} on X. Denote by $\mathbf{n}: I D \rightarrow I R$ the interval-arithmetic operator [8]

$$
\begin{equation*}
\mathbf{n}(X)=X-^{-} f(X) /^{-} f^{\prime}(X) \tag{3}
\end{equation*}
$$

Theorem 1. If f is monotone then (3) is equivalent to the NewtonKrawczyk operator defined by (1).

The proof follows from the definitions of the nonstandard interval-arithmetic operation - $^{-}$and $/^{-}$(see Appendix).

In what follows we make use of the functionals ω and χ as usually defined in interval analysis $[1,8,10,12]$ (see also Appendix). We also make use of five simple Propositions (Proposition 1 to Proposition 5) given in the Appendix.

Lemma 1. If $0 \in f(X)$ then $\omega(X) \geq \omega\left(f(X) /{ }^{-} F^{\prime}(X)\right)$ holds true, where F^{\prime} is an interval extension of f^{\prime} satisfying

$$
\begin{equation*}
0 \notin F^{\prime}(X) \text { for } X \in I D \tag{4}
\end{equation*}
$$

Proof. From the definition of the nonstandard division /- we obtain

$$
\begin{aligned}
f(X) /^{-} F^{\prime}(X) & =[f(\underline{x}) \vee f(\bar{x})] /-\left[F^{\prime+0}(X) \vee F^{\prime-0}(X)\right] \\
& =\left[f(\underline{x}) / F^{\prime-0}(X), f(\bar{x}) / F^{\prime-0}(X)\right], \\
\omega\left(f(X) /^{-} F^{\prime}(X)\right) & =|f(\bar{x})-f(\underline{x})| /\left|F^{\prime-0}(X)\right| \\
& =\left(\left|f^{\prime}(\xi)\right| /\left|F^{\prime-0}(X)\right|\right) \omega(X) \text { for } \xi \in(\underline{x}, \bar{x}) .
\end{aligned}
$$

Since $f^{\prime}(\xi) \in F^{\prime}(X),\left|f^{\prime}(\xi)\right| \leq\left|F^{\prime-0}(X)\right|$ holds true and the above relation implies $\omega\left(f(X) /^{-} F^{\prime}(X)\right) \leq \omega(X)$ which completes the proof.

Let F^{\prime} be any interval extension of f^{\prime}, satisfying (4) and let $\mathcal{N}: I D \rightarrow$ $I R$ be the interval-arithmetic operator

$$
\begin{equation*}
\mathcal{N}(X)=X-^{-} f(X) /^{-} F^{\prime}(X) \tag{5}
\end{equation*}
$$

Corollary 1. For $X \in I D$ the following inclusions hold:
(a) $\mathcal{N}(X) \supseteq \mathbf{n}(X)$ if $\chi(f(X)) \leq \min \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\}, \omega(X) \geq \omega\left(f(X) /^{-} f^{\prime}(X)\right)$
or $\chi(f(X)) \geq \max \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\}, \omega(X) \leq \omega\left(f(X) /^{-} f^{\prime}(X)\right)$;
(b) $\mathcal{N}(X) \subseteq \mathbf{n}(X)$ if
$\chi(f(X)) \leq \min \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\}, \omega(X) \leq \omega\left(f(X) /^{-} f^{\prime}(X)\right)$
or $\chi(f(X)) \geq \max \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\}, \omega(X) \geq \omega\left(f(X) /^{-} f^{\prime}(X)\right)$.
Proof. Using Proposition 2 (for all Propositions referred below see Appendix) we obtain

$$
\begin{aligned}
f(X) /^{-} f^{\prime}(X) \subseteq & f(X) /{ }^{-} F^{\prime}(X) \\
& \text { if } \chi(f(X)) \geq \max \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\}, \\
f(X) /^{-} f^{\prime}(X) \supseteq & f(X) /^{-} F^{\prime}(X) \\
& \text { if } \chi(f(X)) \leq \min \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\} .
\end{aligned}
$$

From Proposition 1 we obtain the proof. In particular when $0 \in f(X)$, $\chi(f(X)) \leq 0<\min \left\{\chi\left(f^{\prime}(X)\right), \chi\left(F^{\prime}(X)\right)\right\}$ holds, Lemma 1 implies $\omega(X) \geq$ $\omega\left(f(X) /{ }^{-} F^{\prime}(X)\right)$ thus we have in this case $\mathbf{n}(X) \subseteq \mathcal{N}(X)$.

Theorem 2. Let $f: D \rightarrow R, D \subseteq R$, be a continuously differentiable function on D. Let $f(X)$ be the range of f on X and F^{\prime} be an interval extension of the derivative f^{\prime}, which satisfies (4). Then for any $X \in I D$ the relation $\mathcal{N}(X) \not \supset X$ holds.

Proof. Let $X \in I D$ be such that $0 \in f(X)$. From the definitions of the operations $-^{-}, /^{-}$, and Lemma 1 we obtain

$$
\begin{aligned}
\mathcal{N}(X) & =X-^{-} f(X) /^{-} F^{\prime}(X) \\
& =[\underline{x}, \bar{x}]-^{-}\left[f(\underline{x}) / F^{\prime-0}(X), f(\bar{x}) / F^{\prime-0}(X)\right] \\
& =\left[\underline{x}-f(\underline{x}) / F^{\prime-0}(X), \bar{x}-f(\bar{x}) / F^{\prime-0}(X)\right] .
\end{aligned}
$$

Since $0 \in f(X)$ then $0 \in f(X) /^{-} F^{\prime}(X)$, i.e. $f(\underline{x}) / F^{\prime-0}(X) \leq 0$, $f(\bar{x}) / F^{\prime-0}(X) \geq 0$ which implies $\mathcal{N}(X) \subseteq X$.

Let $X \in I D$ be such that $0 \notin f(X)$. Applying Proposition 5 (c) with $A=X, B=f(X) /{ }^{-} F^{\prime}(X)$ we obtain $\mathcal{N}(X)=X-^{-} f(X) /{ }^{-} F^{\prime}(X) \notin$ X, wherein $A \nsucc B$ means either $A \nsubseteq B$ or $A \nsupseteq B$.

Theorem 3. Let the assumptions of Theorem 2 be fulfilled. Then $\mathcal{N}(X) \subseteq$ X is a necessary and sufficient condition for existence of an unique solution of $f(x)=0$ in the interval X, i.e. $N(X) \subseteq X$ is equivalent to $0 \in f(X)$.

Proof. If $0 \in f(X)$ then the inclusion $N(X) \subseteq X$ follows from the proof of Theorem 2.

Let $\mathcal{N}(X) \subseteq X$. Using Proposition 5 (a) with $A:=X$ and $B:=f(X) /^{-}$ $F^{\prime}(X)$ we obtain $0 \in f(X) /^{-} F^{\prime}(X)$, i.e. $0 \in f(X)$.
Corollary 2. Under the assumptions of Theorem $2 \mathcal{N}(X) \nsubseteq X$ is a necessary and sufficient condition for nonexistence of a solution of $f(x)=0$ in the interval X, i.e. $\mathcal{N}(X) \nsubseteq X$ is equivalent to $0 \notin f(X)$.

Proof. It follows from the proof of Theorem 2 that $0 \notin f(X)$ implies $\mathcal{N}(X) \nsubseteq X$.

Let $\mathcal{N}(X) \nsubseteq X$ (or equivalently $0 \notin \mathcal{N}(X)$ - $^{-} X=\left(X-^{-} f(X) /^{-}\right.$ $\left.\left.F^{\prime}(X)\right)-^{-} X\right)$. According to Proposition $5(\mathrm{~d})$ with $A=X, B=f(X) /{ }^{-}$ $F^{\prime}(X)$ we have either $0 \notin f(X)$ or $\left(0 \in f(X)\right.$ and $\omega(X)<\omega(f(X))^{-}$ $\left.F^{\prime}(X)\right)$). If we assume $0 \in f(X)$ from Lemma 1 we obtain $\omega(X) \geq$ $\omega\left(f(X) /^{-} F^{\prime}(X)\right)$. This contradiction implies $0 \notin f(X)$.

Theorem 4. Let the assumptions of Theorem 2 hold true.
(a) If $f\left(x^{*}\right)=0$ and $x^{*} \in X$ then $x^{*} \in \mathcal{N}(X)$;
(b) If $f\left(x^{*}\right)=0$ and $x^{*} \in X$ then $\mathcal{N}(\mathcal{N}(X)) \subseteq \mathcal{N}(X)$;
(c) $\mathcal{N}(X)=X$ iff $X=\left[x^{*}, x^{*}\right]=x^{*}$ and $f\left(x^{*}\right)=0$.

Proof. (a) Let $f\left(x^{*}\right)=0$ and $x^{*} \in X$, that is $0 \in f(X)$; Lemma 1 implies $\omega(X) \geq \omega\left(f(X) /^{-} F^{\prime}(X)\right)$. Furthermore

$$
\begin{aligned}
\mathcal{N}(X) & =X-{ }^{-} f(X) /{ }^{-} F^{\prime}(X) \\
& =\left[\underline{x}-f(\underline{x}) / F^{\prime-0}(X), \bar{x}-f(\bar{x}) / F^{\prime-0}(X)\right] \\
& =[\underline{\mathcal{N}}(X), \overline{\mathcal{N}}(X)] .
\end{aligned}
$$

We have

$$
\begin{aligned}
\underline{\mathcal{N}}(X)-x^{*} & =\underline{x}-x^{*}-\left(f(\underline{x})-f\left(x^{*}\right)\right) / F^{\prime-0}(X) \\
& =\left(\underline{x}-x^{*}\right)-\left(\underline{x}-x^{*}\right) f^{\prime}(\xi) / F^{\prime-0}(X) \\
& =\left(\underline{x}-x^{*}\right)\left(1-f^{\prime}(\xi) / F^{\prime-0}(X)\right)
\end{aligned}
$$

wherein $\xi \in(\underline{x}, \bar{x})$. The inequalities $\underline{x} \leq x^{*}$ and $1-f^{\prime}(\xi) / F^{\prime-0}(X) \geq 0$ imply $\underline{\mathcal{N}}(X) \leq x^{*}$. Similarly, the inequality $\overline{\mathcal{N}}(X) \geq x^{*}$ can be proved. Therefore $x^{*} \in \mathcal{N}(X)$.
(b) Theorem 2 implies $\mathcal{N}(X) \subseteq X$. According to (a) we have $x^{*} \in$ $\mathcal{N}(X)$, i.e. $0 \in f(\mathcal{N}(X))$. Theorem 2 implies again $\mathcal{N}(\mathcal{N}(X)) \subseteq \mathcal{N}(X)$.
(c) Let $X=\left[x^{*}, x^{*}\right]=x^{*}$. We have $\mathcal{N}(X)=\mathcal{N}\left(x^{*}\right)=x^{*}-$ $f\left(x^{*}\right) / f^{\prime}\left(x^{*}\right)=x^{*}=X$. Suppose that $\mathcal{N}(X)=X$, i.e. $\mathcal{N}(X)-^{-} X=$ 0 . Proposition 4 implies $0=\mathcal{N}(X)-^{-} X=-f(X) /^{-} F^{\prime}(X)$, i.e. $f(X) /{ }^{-} F^{\prime}(X)=[0,0]=0, \omega\left(f(X) /{ }^{-} F^{\prime}(X)\right)=0$, which means $\omega(X)=0$ and $X=\left[x^{*}, x^{*}\right]=x^{*}$.

3 A method for enclosing real zeroes

Let $f: D \rightarrow R, D \subseteq R$, be a continuously differentiable function. Denote by F^{\prime} an interval extension of f^{\prime} on D. In this section we first consider the method $X_{n+1}=\mathcal{N}\left(X_{n}\right)$ for enclosing one simple zero x^{*} in a given interval X_{0}. Global quadratic convergence toward x^{*} of the latter is proved in Theorem 5. Using the end-point presentation of $X_{n+1}=\mathcal{N}\left(X_{n}\right)$ we formulate a method (see (10)) for enclosing the set X^{*} of all zeroes in X_{0}. Global onvergence toward X^{*} of the last one is proved in Theorem 6.

Assume first that the derivative f^{\prime} has a constant sign in D. Denote by $f(X)$ and $f^{\prime}(X)$ the ranges of f and f^{\prime} resp. Let the interval extension F^{\prime} satisfies (4).

As Theorem 1 shows under the above assumptions method (1) can be written as

$$
\left\{\begin{array}{l}
X_{0} \in I D \tag{6}\\
X_{n+1}=\mathbf{n}\left(X_{n}\right), \quad n=0,1, \ldots
\end{array}\right.
$$

wherein $\mathbf{n}(X)=X-^{-} f(X) /^{-} f^{\prime}(X)$. Method (6) has been studied in some detail in [3] and $[8]$ and will not be discussed here.

Using the interval-arithmetic operator \mathcal{N} defined by (5) we formulate the following generalization of (6):

$$
\left\{\begin{array}{l}
X_{0} \in I D \tag{7}\\
X_{n+1}=\mathcal{N}\left(X_{n}\right), \quad n=0,1, \ldots
\end{array}\right.
$$

Theorem 5. Let $f: D \rightarrow R, D \subseteq R$, be a continuously differentiable function on D, whose derivative f^{\prime} has an interval extension F^{\prime} satisfying (4). Then:
(a) If $\mathcal{N}\left(X_{0}\right) \nsubseteq X_{0}$, the equation does not possess any solution in X_{0} and the iteration procedure (7) terminates after the first step;
(b) If $\mathcal{N}\left(X_{0}\right) \subseteq X_{0}$, the iteration procedure (7) produces a sequence of intervals $\left\{X_{n}\right\}$ with the following properties:
(i) $\quad X_{0} \supseteq X_{1} \supseteq \cdots \supseteq X_{n} \supseteq X_{n+1} \supseteq \cdots ;$
(ii) $\quad x^{*} \in X_{n}$ for $n=1,2, \ldots$ and $\lim _{n \rightarrow \infty} X_{n}=x^{*}$;
(iii) If F^{\prime} satisfies a Lipschitz condition in the sense of [10] with a constant $L>0$, that is $\omega\left(F^{\prime}(X)\right) \leq L \omega(X)$ for all $X \in I D$ then $\omega\left(X_{n+1}\right) \leq$ $c \omega^{2}\left(X_{n}\right), c>0$ holds.
Proof. As mentioned above the first part (a) of our statement follows from Corollary 2.
(b) Assume now that $\mathcal{N}\left(X_{0}\right) \subseteq X_{0}$, i.e. there is a solution $x^{*} \in X_{0}$ of $f(x)=0$. We shall prove simultaneously (i) and the first part of (ii) by induction. By assumption $x^{*} \in X_{0}$. Theorem 3 implies $X_{1}=\mathcal{N}\left(X_{0}\right) \subseteq X_{0}$. From Theorem $4(a)$ it follows that $x^{*} \in \mathcal{N}\left(X_{0}\right)=X_{1}$.

Supposing $X_{0} \supseteq X_{1} \supseteq \cdots \supseteq X_{k}$ and $x^{*} \in X_{k}$, we shall show that $X_{k} \supseteq X_{k+1}$ and $x^{*} \in X_{k+1}$. Since $X_{k+1}=\mathcal{N}\left(X_{k}\right)$ and $x^{*} \in X_{k}$, it follows from Theorem $4(a) x^{*} \in X_{k+1}$. By assumption $X_{k-1} \supseteq X_{k}=\mathcal{N}\left(X_{k-1}\right)$. From Theorem $4(b)$ it follows that $\mathcal{N}\left(\mathcal{N}\left(X_{k-1}\right)\right) \subseteq \mathcal{N}\left(X_{k-1}\right)$, which is equivalent to $X_{k+1} \subseteq X_{k}$.

We have further

$$
\begin{align*}
\omega\left(X_{n+1}\right) & =\omega\left(X_{n}\right)-\omega\left(f\left(X_{n}\right) /{ }^{-} F^{\prime}\left(X_{n}\right)\right) \\
& =\omega\left(X_{n}\right)-\left|f\left(\underline{x}_{n}\right)-f\left(\bar{x}_{n}\right)\right| /\left|F^{\prime-0}\left(X_{n}\right)\right| \\
& =\omega\left(X_{n}\right)-\left(\left|f^{\prime}(\xi)\right| /\left|F^{\prime-0}\left(X_{n}\right)\right|\right) \omega\left(X_{n}\right) \\
& =\omega\left(X_{n}\right)\left(1-\left|f^{\prime}(\xi)\right| /\left|F^{\prime-0}\left(X_{n}\right)\right|\right) \tag{8}
\end{align*}
$$

wherein $\underline{x}_{0} \leq \underline{x}_{n}<\xi<\bar{x}_{n} \leq \bar{x}_{0}$. Since $X_{n} \subseteq X_{0}$ and $F^{\prime}\left(X_{n}\right) \subseteq F^{\prime}\left(X_{0}\right)$ we have $\left|F^{\prime-0}\left(X_{n}\right)\right| \leq\left|F^{\prime-0}\left(X_{0}\right)\right|$ and $\left|f^{\prime}(\xi)\right| \geq\left|F^{\prime+0}\left(X_{0}\right)\right|$. It follows from (8)

$$
\begin{align*}
\omega\left(X_{n+1}\right) & \leq\left(1-\left|F^{\prime+0}\left(X_{0}\right)\right| /\left|F^{\prime-0}\left(X_{0}\right)\right|\right) \omega\left(X_{n}\right) \tag{9}\\
& =q \omega\left(X_{n}\right)
\end{align*}
$$

where $q=1-\left|F^{\prime+0}\left(X_{0}\right)\right| /\left|F^{\prime-0}\left(X_{0}\right)\right|, 0<q<1$. The inequality $\omega\left(X_{n+1}\right) \leq$ $q \omega\left(X_{n}\right)$ means $\lim _{n \rightarrow \infty} X_{n}=x^{*}$.
(iii) The quadratic convergence of the sequence $\left\{X_{n}\right\}$ remains to be shown. We have from (9)

$$
\begin{aligned}
\omega\left(X_{n+1}\right) & \leq \omega\left(X_{n}\right)\left(1-\left|F^{\prime+0}\left(X_{n}\right)\right| /\left|F^{\prime-0}\left(X_{n}\right)\right|\right) \\
& =\omega\left(X_{n}\right)\left(\left|F^{\prime-0}\left(X_{n}\right)\right|-\left|F^{\prime+0}\left(X_{n}\right)\right|\right) /\left|F^{\prime-0}\left(X_{n}\right)\right| .
\end{aligned}
$$

Since $0 \notin F^{\prime}\left(X_{n}\right)$ it follows $\omega\left(F^{\prime}\left(X_{n}\right)\right)=\left|F^{\prime-0}\left(X_{n}\right)\right|-\left|F^{\prime+0}\left(X_{n}\right)\right|$ and therefore $\omega\left(X_{n+1}\right) \leq \omega\left(X_{n}\right) \omega\left(F^{\prime}\left(X_{n}\right)\right) /\left|F^{\prime-0}\left(X_{n}\right)\right|$. According to our assumption, there is a constant $L>0$, independent on n, such that $\omega\left(F^{\prime}\left(X_{n}\right)\right)<$ $L \omega\left(X_{n}\right)$ and

$$
\begin{aligned}
\omega\left(X_{n+1}\right) & \leq\left(L /\left|F^{\prime-0}\left(X_{n}\right)\right|\right) \omega^{2}\left(X_{n}\right) \\
& \leq\left(L /\left|F^{\prime+0}\left(X_{0}\right)\right|\right) \omega^{2}\left(X_{n}\right) \\
& =c \omega^{2}\left(X_{n}\right)
\end{aligned}
$$

wherein $c=L /\left|F^{\prime+0}\left(X_{0}\right)\right|>0$.
Assuming that the computational costs for $f(X)$ and $F^{\prime}(X)$ are about the same, we obtain for the efficiency index of (7) in the sense of Ostrowski [11] eff $\{(7)\}=\sqrt{2} \approx 1.42$.

Under the above assumption on f and in the situation when $0 \in f\left(X_{0}\right)$, method (7) can be written end-point wise in the following manner:

$$
\left\{\begin{array}{l}
X_{0}=\left[\underline{x}_{0}, \bar{x}_{0}\right] \in I D \\
\underline{x}_{n+1}=\underline{x}_{n}-f\left(\underline{x}_{n}\right) / F^{\prime-0}\left(X_{n}\right), \\
\bar{x}_{n+1}=\bar{x}_{n}-f\left(\bar{x}_{n}\right) / F^{\prime-0}\left(X_{n}\right) \\
n=0,1, \ldots
\end{array}\right.
$$

or equivalently $\left(\right.$ since $\left.f\left(\underline{x}_{n}\right) f\left(\bar{x}_{n}\right) \leq 0\right)$

$$
\left\{\begin{array}{l}
X_{0}=\left[\underline{x}_{0}, \bar{x}_{0}\right] \in I D \tag{10}\\
\underline{x}_{n+1}=\underline{x}_{n}+\left|f\left(\underline{x}_{n}\right)\right| /\left|F^{\prime}\left(X_{n}\right)\right|, \\
\bar{x}_{n+1}=\bar{x}_{n}-\left|f\left(\bar{x}_{n}\right)\right| /\left|F^{\prime}\left(X_{n}\right)\right| \\
n=0,1, \ldots
\end{array}\right.
$$

Formulae (10) are defined independently on the sign of the product $f\left(\underline{x}_{n}\right) f\left(\bar{x}_{n}\right)$; they are also defined even if the condition $0 \notin F^{\prime}\left(X_{0}\right)$ is violated. The process (10) is not defined if and only if $F^{\prime}\left(X_{0}\right)=[0,0]$ holds.

Obviously, (10) generates a sequence of intervals $\left\{X_{n}\right\}$ with $X_{0} \supseteq X_{1} \supseteq$ $X_{2} \supseteq \cdots$. Let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}$ be the real zeroes of $f(x)=0$ in the initial interval X_{0}. W.l.g. we can assume that $x_{1}^{*}<x_{2}^{*}<\cdots<x_{p}^{*}$. Denote $X^{*}=\left[x_{1}^{*}, x_{p}^{*}\right]$. The iteration sheme (10) can be considered as a generalization of (7) and also as a modification of method (1) for enclosing the set X^{*}.
Theorem 6. Let $f: D \rightarrow R, D \subseteq R$, be a continuously differentable function in D and F^{\prime} be an interval extension of f^{\prime}. Let $X_{0} \in I D$. Then:
(a) If $f(x)=0$ has (at least one) solution in the initial interval X_{0}, the iteration procedure (10) generates an infinite interval sequence $\left\{X_{n}\right\}$ with $X_{0} \supseteq X_{1} \supseteq \cdots \supseteq X_{n} \supseteq \cdots ; X^{*} \subseteq X_{n}$ for all $n=1,2, \ldots$ and $\lim _{n \rightarrow \infty} X_{n}=$ X^{*}.
(b) If there is an index m such that $\underline{x}_{m} \leq \bar{x}_{m}$ but $\underline{x}_{m+1}>\bar{x}_{m+1}$ holds then the equation $f(x)=0$ does not possess any solution in X_{0}.

Proof. (a) We shall show that $X^{*} \subseteq X_{n}$ for all $n=1,2, \ldots$. Using the mean value theorem we have for $\xi \in\left(\underline{x}_{0}, \bar{x}_{0}\right)$

$$
\begin{aligned}
\underline{x}_{1} & =\underline{x}_{0}+\left|f\left(\underline{x}_{0}\right)\right| /\left|F^{\prime}\left(X_{0}\right)\right| \\
& =\underline{x}_{0}+\left|f\left(\underline{x}_{0}\right)-f\left(x_{1}^{*}\right)\right| /\left|F^{\prime}\left(X_{0}\right)\right| \\
& =\underline{x}_{0}+\left(\left|f^{\prime}(\xi)\right| /\left|F^{\prime}\left(X_{0}\right)\right|\right)\left|\underline{x}_{0}-x_{1}^{*}\right| \\
& \leq \underline{x}_{0}+\left|\underline{x}_{0}-x_{1}^{*}\right| \\
& =\underline{x}_{0}-\underline{x}_{0}+x_{1}^{*}=x_{1}^{*} .
\end{aligned}
$$

Similarly, $\bar{x}_{1} \geq x_{p}^{*}$ can be proved. By induction we prove that $X^{*} \subseteq X_{n}$ for all $n=1,2, \ldots$. Obviously, the interval sequence $\left\{X_{n}\right\}$ converges to the interval X^{*}.
(b) Let there is an index m such that $\underline{x}_{m} \leq \bar{x}_{m}$ but $\underline{x}_{m+1}>\bar{x}_{m+1}$ holds. From (10) for $n=m$ we obtain

$$
0<\underline{x}_{m+1}-\bar{x}_{m+1}=-\omega\left(X_{m}\right)+\left(\left|f\left(\underline{x}_{m}\right)\right|+\left|f\left(\bar{x}_{m}\right)\right|\right) /\left|F^{\prime}\left(X_{m}\right)\right|
$$

or equivalently

$$
\omega\left(X_{m}\right)<\left(\left|f\left(\underline{x}_{m}\right)\right|+\left|f\left(\bar{x}_{m}\right)\right|\right) /\left|F^{\prime}\left(X_{m}\right)\right| .
$$

Suppose that there is an $x^{*} \in X_{0}$ such that $f\left(x^{*}\right)=0$; then $x^{*} \in X_{m}$ and

$$
\omega\left(X_{m}\right)<\left(\left|f\left(\underline{x}_{m}\right)-f\left(x^{*}\right)\right|+\left|f\left(\bar{x}_{m}\right)-f\left(x^{*}\right)\right|\right) /\left|F^{\prime}\left(X_{m}\right)\right|
$$

$$
\begin{aligned}
& =\left(\left|f^{\prime}\left(\xi_{1}\right)\right|\left(x^{*}-\underline{x}_{m}\right)+\left|f \prime\left(\xi_{2}\right)\right|\left(\bar{x}_{m}-x^{*}\right)\right) /\left|F^{\prime}\left(X_{m}\right)\right| \\
& \leq\left(\max \left\{\left|f^{\prime}\left(\xi_{1}\right)\right|,\left|f^{\prime}\left(\xi_{2}\right)\right|\right\} /\left|F^{\prime}\left(X_{m}\right)\right|\right) \omega\left(X_{m}\right) \\
& \leq \omega\left(X_{m}\right)
\end{aligned}
$$

wherein $\xi_{1} \in\left(\underline{x}_{m}, x^{*}\right), \xi_{2} \in\left(x^{*}, \bar{x}_{m}\right)$. The obtained contradiction proves the theorem.

A computer implementation of the iteration procedure (10) will be considered in the next section.

4 An algorithm with result verification for enclosing the set of all real zeroes in a given interval

Let $f: D \rightarrow R, D \subseteq R$, be a continuously differentiable function on D and F^{\prime} is an interval extension of f^{\prime} on $I D$.

Let D_{S} be the set of all machine numbers contained in the domain D of f. Denote by $I D_{S}=\left\{I \in I S: I \subseteq D_{S}\right\}$ the set of all computer intervals, contained in $I D$. For $x \in D_{S}$ let $\diamond f(x)=[\nabla f(x), \triangle f(x)]$ be the interval obtained by the computation of $f(x)$. For the sake of brevity we shall use the notation $\diamond f(x)=\left[f^{+0}(x) \vee f^{-0}(x)\right]$. For $X \in I D_{S}$ let $\diamond F^{\prime}(X)$ be the computed interval for $F^{\prime}(X)$.

Consider the following computer arithmetic procedure based on (10):

$$
\left\{\begin{array}{l}
X_{0}=\left[\underline{x}_{0}, \bar{x}_{0}\right] \in I D_{S} ; \tag{11}\\
\underline{x}_{n+1}=\underline{x}_{n} \forall\left(\left|f^{+0}\left(\underline{x}_{n}\right)\right| \nabla\left|\diamond F^{\prime}\left(X_{n}\right)\right|\right), \\
\bar{x}_{n+1}=\bar{x}_{n} \triangle\left(\left|f^{+0}\left(\bar{x}_{n}\right)\right| \nabla\left|\diamond F^{\prime}\left(X_{n}\right)\right|\right) ; \\
n=0,1,2, \ldots \text { until }\left(\underline{x}_{n+1}>\bar{x}_{n+1} \text { or } X_{n+1}=\left[\underline{x}_{n+1}, \bar{x}_{n+1}\right] \not \subset X_{n}\right) .
\end{array}\right.
$$

Assume now that f is monotone on $X \in I D_{S}, X=[\underline{x}, \bar{x}]$. Let $f(X)=$ $\{f(x): x \in X\}=[f(\underline{x}) \vee f(\bar{x})]=[f, \bar{f}]$ be the range of f on X. According to the definitions of \diamond and \bigcirc (see Appendix) we have:

$$
\diamond f(X)=[\nabla \underline{f}, \triangle \bar{f}] ; \quad \bigcirc f(X)= \begin{cases}{[\triangle \underline{f}, \nabla \bar{f}]} & \text { if } \triangle \underline{f} \leq \nabla \bar{f} \\ \emptyset & \text { otherwise }\end{cases}
$$

Obviously $\bigcirc f(X) \subseteq f(X) \subseteq \diamond f(X), X \in I D_{S}$, holds true. Also the presentation $\diamond f(X)=[\diamond f(\underline{x}) \vee \diamond f(\bar{x})], \bigcirc f(X)=[\diamond f(\underline{x}) \wedge \diamond f(\bar{x})]$ is valid.

To the real interval-arithmetic operator \mathcal{N} we connect a computer intervalarithmetic operator $\hat{\mathcal{N}}: I D_{S} \rightarrow I S$, defined by

$$
\hat{\mathcal{N}}(X)=X\left\langle-^{-}\right\rangle\left(\bigcirc f(X)\left(/^{-}\right) \diamond F^{\prime}(X)\right) .
$$

According to relations (13) (see Appendix) the inclusion $\mathcal{N}(X) \subseteq \hat{\mathcal{N}}(X)$ holds for $X \in I D_{S}$. Using $\hat{\mathcal{N}}$ we formulate the following computer intervalarithmetic iteration method related to (7) for enclosing an unique real zero in X_{0} :

$$
\left\{\begin{array}{l}
X_{0} \in I D_{S} ; \tag{12}\\
X_{n+1}=\hat{\mathcal{N}}\left(X_{n}\right), \\
n=0,1,2, \ldots \text { until } X_{n+1} \not \subset X_{n} .
\end{array}\right.
$$

Due to the finite convergence principle [10] the iteration procedure (11) or (12) produces a finite sequence $\left\{X_{n}\right\}$, such that for some $k, X_{k}=X_{k+l}$, $l=1,2, \ldots$, and $X_{k} \supset X^{*}$ holds.

The algorithm with result verification for enclosing the set of all real zeroes in a given interval X_{0} based on (11) and (12) is presented below in a PASCAL-like form.

Algorithm ManyZeroes1

begin

Compute $\diamond F^{\prime}\left(X_{0}\right)$;
If $0 \notin \diamond F^{\prime}\left(X_{0}\right)$ then goto $\operatorname{OneZero}\left(X_{0}\right)$;
else goto MoreZeroes;
OneZero(X):
Compute $\bigcirc f(X)=[\diamond f(\underline{x}) \wedge \diamond f(\bar{x})]$;
If $0 \notin \bigcirc f(X)$ then
write(Message) and stop;
else
$X_{1}:=X\left\langle-^{-}\right\rangle \bigcirc f(X)\left(/{ }^{-}\right) \diamond F^{\prime}(X) ;$
repeat

$$
X:=X_{1}
$$

```
    Compute }\bigcircf(X)\mathrm{ and }\diamond\mp@subsup{F}{}{\prime}(X)\mathrm{ ;
    X1 := X\langle\mp@subsup{-}{}{-}\rangle\bigcircf(X)(/-)\diamond\mp@subsup{F}{}{\prime}(X);
    until X }\mp@subsup{X}{1}{}\not\subsetX
    write(X) and stop;
MoreZeroes:
    Compute }\diamondf(\mp@subsup{\underline{x}}{0}{}),\diamondf(\mp@subsup{\overline{x}}{0}{})
    \underline { x } _ { 1 } : = \underline { x } _ { 0 } \nabla ( \| f ^ { + 0 } ( \underline { x } _ { 0 } ) \| \nabla \| \ F ^ { \prime } ( X _ { 0 } ) \| ) ,
    \mp@subsup{x}{1}{}}:=\mp@subsup{\overline{x}}{0}{}\triangle(|\mp@subsup{f}{}{+0}(\mp@subsup{\overline{x}}{0}{})|\nabla|\diamond\mp@subsup{F}{}{\prime}(\mp@subsup{X}{0}{})|)
    If \mp@subsup{\underline{x}}{1}{}>\mp@subsup{\overline{x}}{1}{}\mathrm{ then write(Message) and stop;}
    else
        X1:=[\mp@subsup{\underline{x}}{1}{},\mp@subsup{\overline{x}}{1}{}];
        repeat
            X:= X ;
            Compute }\diamond\mp@subsup{F}{}{\prime}(X)
            If 0}\not\Leftarrow\diamond\mp@subsup{F}{}{\prime}(X)\mathrm{ then goto OneZero(X);
            else
            Compute }\diamondf(\underline{x}),\diamondf(\overline{x})
            \mp@subsup{x}{1}{}}:=\underline{x}\nabla(|\mp@subsup{f}{}{+0}(\underline{x})|\nabla|\mp@subsup{F}{}{\prime}(X)|)
            \mp@subsup{\overline{x}}{1}{}:=\overline{x}\Delta(|\mp@subsup{f}{}{+0}(\overline{x})|\nabla|\mp@subsup{F}{}{\prime}(X)|);
            If \mp@subsup{\underline{x}}{1}{}>\mp@subsup{\overline{x}}{1}{}\mathrm{ then write (Message) and stop;}
            else }\mp@subsup{X}{1}{}:=[\mp@subsup{\underline{x}}{1}{},\mp@subsup{\overline{x}}{1}{}]
        until }\mp@subsup{X}{1}{}\not\subsetX
    write(X);
end.
```

$\{$ The resulting interval for the solution set is X.
Message $=$ 'The equation has no solution in the initial interval'.

The interval with optimal roundings $\diamond f(x)=[\nabla f(x), \Delta f(x)], x \in$ D_{S}, is difficult to be computed in practice. With a slight modification the algorithm ManyZeroes1 works with any (rough) roundings ∇, \triangle. In what follows by ∇a resp. $\triangle a$ we mean any two numbers such that $\nabla a \leq a$ resp. $\triangle a \geq a$. We now have to do several checks. First we have to check whether $0 \in \diamond f\left(\underline{x}_{0}\right), 0 \in \diamond f\left(\bar{x}_{0}\right)$ hold. If both relations are obtained, then the algorithm can not determine existence/nonexistence of a solution in the initial interval. If both relations are obtained on some step n, then X_{n} is displayed as a resulting interval, containing the solution set. If at step n one of the above relations is valid, say $0 \in f\left(\underline{x}_{n}\right)$, but $0 \notin f\left(\bar{x}_{n}\right)$ holds, then we can expect improvement only at the endpoint \bar{x}_{n} of the current iteration X_{n}
or maybe after several steps $\bar{x}_{n+m}>\underline{x}_{n+m}$ happens, i.e. the equation does not possess solutions in the initial interval.

For monotone functions the situation $0 \in \diamond f(\underline{x})$ and/or $0 \in \diamond f(\bar{x})$ is equivalent to $0 \notin \bigcirc f(X)$ or $\bigcirc f(X)=\emptyset$. If X is the initial interval, i.e. $X=X_{0}$, this does not necessarily mean that $f(x)=0$ has no solution in X_{0}. The equation possesses no solution in X_{0} if $0 \notin \diamond f\left(X_{0}\right)$ and it has an unique root in X_{0} if $0 \in \bigcirc f\left(X_{0}\right)$ holds. But if $0 \notin \bigcirc f\left(X_{0}\right)$ and $0 \in \diamond f\left(X_{0}\right)$ are simultaneously true then one can not claim existence/nonexistence of a solution in the initial interval X_{0}. In this situation either another X_{0} should be chosen or we should compute using higher precision. The same situation may occur on some step n, that is $0 \notin \bigcirc f\left(X_{n}\right)$ or $\bigcirc f\left(X_{n}\right)=\emptyset$. Further iterations are then useless even if X_{n} is not sufficiently small.

Using the "rough" roundings $\nabla a \leq a, \triangle a \geq a$ we obtain a modified algorithm with result verification, presented below under the name ManyZeroes2.

Algorithm ManyZeroes2

begin

Compute $\diamond F^{\prime}\left(X_{0}\right), \diamond f\left(\underline{x}_{0}\right), \diamond f\left(\bar{x}_{0}\right)$;
If $0 \notin \diamond F^{\prime}\left(X_{0}\right)$ then goto OneZeroInitTest;
If $0 \in \diamond F^{\prime}\left(X_{0}\right)$ then
If $0 \in \diamond f\left(\underline{x}_{0}\right), 0 \in \diamond f\left(\bar{x}_{0}\right)$ then write(message 3) and stop;
If $0 \in \diamond f\left(\underline{x}_{0}\right), 0 \notin \diamond f\left(\bar{x}_{0}\right)$ then goto $\operatorname{RightEP}\left(X_{0}\right)$;
If $0 \notin \diamond f\left(\underline{x}_{0}\right), 0 \in \diamond f\left(\bar{x}_{0}\right)$ then goto $\operatorname{LeftEP}\left(X_{0}\right)$;
If $0 \notin \diamond f\left(\underline{x}_{0}\right), 0 \notin \diamond f\left(\bar{x}_{0}\right)$ then goto $\operatorname{LeftRightEP}\left(X_{0}\right)$;

OneZeroInitTest:

Compose $\bigcirc f\left(X_{0}\right), \diamond f\left(X_{0}\right)$;
If $\bigcirc f\left(X_{0}\right)=\emptyset$ then write (message 1) and stop;
If $0 \notin \diamond f\left(X_{0}\right)$ then
write (message 2) and stop;
else
If $0 \notin \bigcirc f\left(X_{0}\right)$ then write (message 3) and stop;
else goto $\operatorname{OneZero}\left(X_{0}\right)$;
OneZero (X) :
$X_{1}:=X\left\langle-^{-}\right\rangle\left(\bigcirc f(X)\left(/{ }^{-}\right) \diamond F^{\prime}(X)\right) ;$
repeat

$$
X:=X_{1}
$$

Compute $\bigcirc f(X)$;
If $\bigcirc f(X)=\emptyset$ or $0 \notin \bigcirc f(X)$ then
write $(X+$ message 4$)$ and stop;
else
Compute $\diamond F^{\prime}(X)$;
$X_{1}:=X\left\langle-^{-}\right\rangle\left(\bigcirc f(X)\left(/{ }^{-}\right) \diamond F^{\prime}(X)\right) ;$
until $X_{1} \not \subset X$;
write (X) and stop;
RightEP (X) :
$\bar{x}_{1}:=\bar{x} \triangle\left(\left|f^{+0}(\bar{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;$
If $\bar{x}_{1}<\underline{x}$ then write (message 2) and stop;
else
repeat
$X:=\left[\underline{x}, \bar{x}_{1}\right] ;$
Compute $\diamond F^{\prime}(X), \diamond f(\bar{x})$;
If $0 \in \diamond f(\bar{x})$ then write $(X+$ message 4$)$ and stop; else

$$
\bar{x}_{1}:=\bar{x} \triangle\left(\left|f^{+0}(\bar{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;
$$

If $\bar{x}_{1}<\underline{x}$ then write(message 2) and stop;
until $\bar{x}_{1} \geq \bar{x} ;$
write $(X+$ message 4$)$ and stop;
LeftEP (X) :
$\underline{x}_{1}:=\underline{x} \nabla\left(\left|f^{+0}(\underline{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;$
If $\underline{x}_{1}>\bar{x}$ then write (message 2) and stop;
else
repeat
$X:=\left[\underline{x}_{1}, \bar{x}\right] ;$
Compute $\diamond F^{\prime}(X), \diamond f(\underline{x})$;
If $0 \in \diamond f(\underline{x})$ then write $(X+$ message 4) and stop;
else

$$
\underline{x}_{1}:=\underline{x} \underset{\nabla}{\nabla}\left(\left|f^{+0}(\underline{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;
$$

If $\underline{x}_{1}>\bar{x}$ then write(message 2) and stop;
until $\underline{x}_{1} \leq \underline{x}$.
write $(X+$ message 4$)$ and stop;
LeftRightEP (X) :
$\underline{x}_{1}:=\underline{x} \nabla\left(\left|f^{+0}(\underline{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;$
$\bar{x}_{1}:=\bar{x} \triangle\left(\left|f^{+0}(\bar{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;$

If $\underline{x}_{1}>\bar{x}_{1}$ then write (message 2) and stop;
else
repeat
$X:=\left[\underline{x}_{1}, \bar{x}_{1}\right] ;$
Compute $\diamond F^{\prime}(X), \diamond f(\underline{x}), \diamond f(\bar{x})$;
If $0 \notin \diamond F^{\prime}(X)$ then
Compose $\bigcirc f(X)$;
If $\bigcirc f(X)=\emptyset$ or $0 \notin \bigcirc f(X)$ then
write $(X+$ message 4$)$ and stop;
else goto OneZero (X);
else
If $0 \in \diamond f(\underline{x})$ and $0 \notin \diamond f(\bar{x})$ then goto $\operatorname{RightEP}(X)$;
If $0 \notin \diamond f(\underline{x})$ and $0 \in \diamond f(\bar{x})$ then goto $\operatorname{LeftEP}(X)$;
If $0 \notin \diamond f(\underline{x})$ and $0 \notin \diamond f(\bar{x})$ then
$\underline{x}_{1}:=\underline{x} \nabla\left(\left|f^{+0}(\underline{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;$
$\bar{x}_{1}:=\bar{x} \triangle\left(\left|f^{+0}(\bar{x})\right| \nabla\left|\diamond F^{\prime}(X)\right|\right) ;$
If $\underline{x}_{1}>\bar{x}_{1}$ then write(message 2) and stop;
else $X_{1}:=\left[\underline{x}_{1}, \bar{x}_{1}\right] ;$
until $X_{1} \not \subset X$;
write (X);
end.
$\{$ The resulting interval for the solution set is X.

Messages:

message $1=` \bigcirc f\left(X_{0}\right)=\emptyset$.
The algorithm can not determine existence/nonexistence of a solution in the initial interval. Restart the algorithm with another initial interval.'
message $2=$ 'The equation has no solution in the initial interval.'
message $3=$ 'The algorithm can not determine existence/nonexistence of a solution in the initial interval. Restart the algorithm with another initial interval.'
message $4=$ 'The enclosing interval can not be made smaller in this precision.'

5 Numerical experiments

The algorithm ManyZeroes $\mathbf{2}$ was applied to an example communicated to us by Prof. G. Corliss. A program was written in PASCAL-SC, where the operations of the extended interval arithmtic were simulated using the operator concept facilities of the language.
Example:

$$
f(x)=a-x e^{x}
$$

where a is a real parameter. For $a<-1 / e$ the equation $f(x)=0$ has no solution; for $a=-1 / e$ it possesses one solution; if $-1 / e<a<0$ the equation has two solutions and it possesses one solution if $a \geq 0$.

Since the computations in PASCAL-SC are performed with 12 decimal digits we take the following interval for the constant $-1 / e$:

$$
-1 / e \in[-0.367879441172,-0.367879441171]
$$

(i) $a=-0.36 ; X_{0}=[-2,-0.6]$.

The program displays

$$
\begin{aligned}
\diamond F^{\prime}\left(X_{0}\right) & =[-2.19524654438 E-01,5.48811636095 E-01] \\
\diamond f\left(\underline{x}_{0}\right) & =[-8.93294335280 E-02,-8.93294335260 E-02], \\
\diamond f\left(\bar{x}_{0}\right) & =[-3.07130183436 E-02,-3.07130183430 E-02]
\end{aligned}
$$

and further

$$
\begin{aligned}
& X_{1}=[-1.83723115975 E+00,-6.55962768139 E-01], \\
& \ldots \\
& X_{18}=[-1.22277035031 E+00,-8.06084315968 E-01] .
\end{aligned}
$$

On this iteration we obtain

$$
\begin{aligned}
& \diamond f\left(\underline{x}_{18}\right)=[-1.41888687880 E-08,-1.41876460176 E-08], \\
& \diamond f\left(\bar{x}_{18}\right)=[-5.23274694912 E-13,2.82809621056 E-13] .
\end{aligned}
$$

Since $0 \in \diamond f\left(\bar{x}_{18}\right)$, improvements only at the left end-point on the next steps are expected, thus

$$
X_{19}=[-1.22277020771 E+00,-8.06084315968 E-01] .
$$

The final result is

$$
X_{28}=[-1.22277013399 E+00,-8.06084315968 E-01]
$$

with the message that it can not be made smaller in this precision.

$$
\text { (ii) } a=-0.36 ; X_{0}=[-0.9,-0.6] \text {. }
$$

On the initial interval we obtain

$$
\diamond F^{\prime}\left(X_{0}\right)=[-2.19524654438 E-01,-4.0656969740 E-02]
$$

which means that the equation has at most one zero in X_{0}. Further,

$$
\bigcirc f\left(X_{0}\right)=[-3.07130183430 E-02,5.91269376600 E-03]
$$

that is $0 \in \bigcirc f\left(X_{0}\right)$ and therefore the equation possesses an unique root in the initial interval. After five iterations we obtain

$$
X_{5}=[-8.06084328220 E-01,-8.06084315964 E-01] .
$$

On this iterate,

$$
\bigcirc f\left(X_{5}\right)=[1.08564634116 E-13,1.06036819586 E-09]
$$

i.e. it does not contain zero. The final result is then X_{5} with the message that it can not be made smaller in this precision.

$$
(i i i) a=-0.36 ; X_{0}=[-2,-1.1] .
$$

The following results are displayed:

$$
\begin{aligned}
& \diamond F^{\prime}\left(X_{0}\right)=[3.32871083699 E-02,1.353352283236 E-02] ; \\
& \bigcirc f\left(X_{0}\right)=[-8.93294335260 E-02,6.15819206760 E-03]
\end{aligned}
$$

which means that the equation has an unique root in the initial interval. The enclosing interval for the solution is

$$
X_{6}=[-1.22277013398 E+00,1.22277013397 E+00] .
$$

$$
\text { (iv) } a=-0.4 ; X_{0}=[-2,0] .
$$

For this initial interval we obtain

$$
\begin{aligned}
& \diamond F^{\prime}\left(X_{0}\right)=[-1.00000000000 E+00,1.00000000000 E+00], \\
& \ldots \\
& X_{4} \\
& \diamond F^{\prime}\left(X_{4}\right)=[-1.14077776185 E+00,-1.00935558364 E+00], \\
& \diamond f\left(X_{4}\right)=[-3.544122222973 E-03,4.49884022148 E-02], \\
& \hline
\end{aligned}
$$

which means that the equation possesses no solutions in the initial interval.
(v) $a=-0.36787944117 ; X_{0}=[-1.1,-0.9]$.

We obtain

$$
\diamond F^{\prime}\left(X_{0}\right)=[-4.06569659741 E-02,4.06569659741 E-02]
$$

and further

$$
X_{17}=[-1.00000299962 E+00,-9.99996688607 E-01] .
$$

On this iteration the following intervals are delivered:

$$
\begin{aligned}
& \diamond f\left(\underline{x}_{17}\right)=[-7.80746316120 E-13,2.19256683500 E-13], \\
& \diamond f\left(\bar{x}_{17}\right)=[-1.440259955684 E-12,-4.40263268231 E-13] .
\end{aligned}
$$

Since $0 \in \diamond f\left(\underline{x}_{17}\right)$, after two steps we obtain

$$
\begin{array}{ll}
X_{19} & =[-1.00000299962,-9.99997175387 E-01], \\
\diamond f\left(\underline{x}_{19}\right) & =[-7.80746316120 E-13,2.19256683500 E-13] \\
\diamond f\left(\bar{x}_{19}\right) & =[-9.87070553157 E-13,1.29262223000 E-13]
\end{array}
$$

i.e. $0 \in \diamond f\left(\underline{x}_{19}\right), 0 \in \diamond f\left(\bar{x}_{19}\right)$, so that the final result is X_{19}. It can not be done better in this precision.

$$
\text { (vi) } a=-0.367879441171 ; X_{0}=[-1.1,-1.0000000001] .
$$

For this initial interval we obtain

$$
\begin{aligned}
& \diamond F^{\prime}\left(X_{0}\right)=[3.67879441135 E-11,3.32871083698 E-02] ; \\
& \bigcirc f\left(X_{0}\right)=[-1.72124910210 E-03,-2.12055886600 E-13] ; \\
& \diamond f\left(X_{0}\right)=[-1.72124910320 E-03,7.87944113500 E-13]
\end{aligned}
$$

and the message

The algorithm can not determine existence/nonexistence of a solution in the initial interval. Restart the algorithm with another initial interval.
(vii) $a=-0.367879441172, X_{0}=[-2,2]$.

We obtain

$$
\begin{aligned}
& X_{28}=[-1.00000111092 E+00,-9.99999105122 E-01], \\
& \diamond f\left(\underline{x}_{28}\right)=[-8.25229541960 E-13,1.74771568960 E-13] \ni 0, \\
& X_{29}=[-1.00000111092 E+00,-1.00000036075+00]
\end{aligned}
$$

but $\bar{x}_{30}=-1.00000168077 E+00, \underline{x}_{30}=-1.00000111092 E+00$, that is $\underline{x}_{30}>\bar{x}_{30}$, and the equation possesses no solutions in the initial interval.
(viii) $a=3 ; X_{0}=[-2,2]$.

We obtain

$$
\diamond F^{\prime}\left(X_{0}\right)=[-2.21671682969 E+01,7.38905609894 E+00] .
$$

On the 4th step the following result is delivered:

$$
\begin{aligned}
& X_{4}=[-4.89264623342 E-01,1.04995072006 E+00], \\
& \diamond F^{\prime}\left(X_{4}\right)=[-5.85775529022 E+00,-3.13120148789 E-01], \\
& \bigcirc f\left(X_{4}\right)=[-2.44993546531 E-04,3.29995692223 E+00]
\end{aligned}
$$

This information means that the equation possesses one simple zero in the initial interval; the enclosing interval for the solution is

$$
X_{11}=[1.04990889496 E+00,1.04990889497 E+00] .
$$

Appendix. Basic concepts of extended interval arithmetic

Let $I R$ be the set of all compact intervals on the real line R. Denote by \underline{x} and $\bar{x}, \underline{x} \leq \bar{x}$, the end-points of $X \in I R$, i.e. $X=[\underline{x}, \bar{x}]$. The width of X is defined by $\omega(X)=\bar{x}-\underline{x}$. The interval X with end-points x_{1} and x_{2} will be written as $X=\left[x_{1} \vee x_{2}\right]=\left\{\left[x_{1}, x_{2}\right]\right.$ if $x_{1} \leq x_{2} ;\left[x_{2}, x_{1}\right]$ if $\left.x_{1} \geq x_{2}\right\}$. The
notation $\left[x_{1} \vee x_{2}\right]$ does not necessary require $x_{1} \leq x_{2}$. By x^{-0} and x^{+0} we denote the end-points

$$
\begin{aligned}
& x^{+0}=\{\underline{x}, \text { if }|\underline{x}| \leq|\bar{x}| ; \bar{x}, \text { otherwise }\} ; \\
& x^{-0}=\{\bar{x}, \text { if }|\underline{x}| \leq|\bar{x}| ; \underline{x}, \text { otherwise }\}
\end{aligned}
$$

which satisfy $\left|x^{+0}\right| \leq\left|x^{-0}\right|$. For $X=\left[x^{-0} \vee x^{+0}\right]$ the functional $\chi: I R \backslash$ $[0,0] \rightarrow[-1,1]$ is defined as $\chi(X)=x^{+0} / x^{-0}($ see [12]). For $X, Y \in I R$, $X=[\underline{x}, \bar{x}], Y=[\underline{y}, \bar{y}]$ define the intervals

$$
\begin{array}{ll}
X \vee Y & =[\min \{\underline{x}, \underline{y}\}, \max \{\bar{x}, \bar{y}\}] ; \\
X \wedge Y & = \begin{cases}{[\min \{\bar{x}, \bar{y}\}, \max \{\underline{x}, \underline{y}\}]} & \text { if } X \bigcap Y=\emptyset, \\
\emptyset & \text { otherwise }\end{cases}
\end{array}
$$

The interval-arithmetic operations in $I R$ will be denoted by,,$+- \times, /$, $+^{-},-^{-}, \times^{-}, /^{-}$, where the first four operations are the conventional ones $[1,2,10]$ and the last four are the extended interval-arithmetic operations [3, $4,7-9]$. For $X, Y \in I R, X=[\underline{x}, \bar{x}]=\left[x^{+0} \vee x^{-0}\right], Y=[\underline{y}, \bar{y}]=\left[y^{+0} \vee y^{-0}\right]$ we define:

$$
\begin{aligned}
& X+Y=[\underline{x}+\underline{y}, \bar{x}+\bar{y}] ; \\
& X-Y=[\underline{x}-\bar{y}, \bar{x}-\underline{y}] ; \\
& X \times Y= \begin{cases}{\left[x^{+0} y^{+0} \vee x^{-0} y^{-0}\right]} & \text { if } 0 \notin X, Y, \\
y^{-0} X=\left[y^{-0} \underline{x} \vee y^{-0} \bar{x}\right] & \text { if } 0 \in X, 0 \notin Y ;\end{cases} \\
& X / Y= \begin{cases}{\left[x^{+0} / y^{-0} \vee x^{-0} / y^{+0}\right]} & \text { if } 0 \notin X, Y, \\
X / y^{+0}=\left[\underline{x} / y^{+0} \vee \bar{x} / y^{+0}\right] & \text { if } 0 \in X, 0 \notin Y ;\end{cases} \\
&= \begin{cases}{[\underline{x}+\bar{y}, \bar{x}+\underline{y}]} & \text { if } \omega(X) \geq \omega(Y), \\
{[\bar{x}+\underline{y}, \underline{x}+\bar{y}]} & \text { if } \omega(X)<\omega(Y) ;\end{cases} \\
& X+^{-} Y=[\underline{x}-\underline{x} \vee \bar{x}-\bar{y}] \\
&X-\bar{x}-\bar{y}) \text { if } \omega(X) \geq \omega(Y), \\
& X \times^{-} Y= \begin{cases}{[\underline{x}-\underline{y}, \bar{x}-\bar{y}]} \\
{[\bar{x}-\bar{y}, \underline{x}-\underline{y}]} & \text { if } \omega(X)<\omega(Y) ; \\
\left.x^{-0} y^{+0} \vee x^{+0} y^{-0}\right] & \text { if } 0 \notin X, Y,\end{cases} \\
& X /^{-} Y= \begin{cases}{\left[y^{+0} \underline{x} \vee y^{+0} \bar{x}\right]} & \text { if } 0 \in X, 0 \notin Y ; \\
X / y^{-0}=\left[\underline{x} / x^{-0} \vee \bar{x} / y^{-0}\right] & \text { if } 0 \in X, 0 \notin Y .\end{cases}
\end{aligned}
$$

The conventional interval-arithmetic operations,,$+- \times, /([1,10])$ are inclusion monotone in the sense that $X_{1} \subseteq X, Y_{1} \subseteq Y$ imply $X_{1} * Y_{1} \subseteq X * Y$ for any operation $* \in\{+,-, \times, /\}$. The nonstandard interval-arithmetic operations $+^{-},-^{-}, \times^{-}, /^{-}$are quasi-inclusion monotone in the sense of the following two propositions.

Proposition 1. Let $X, X_{1}, Y, Y_{1} \in I R, X \supseteq X_{1}, Y \subseteq Y_{1}, * \in$ $\left\{+^{-},-^{-}\right\}$. Then
(a) max $\left\{\omega(X), \omega\left(X_{1}\right)\right\} \leq \min \left\{\omega(Y), \omega\left(Y_{1}\right)\right\}$ implies $X * Y \subseteq X_{1} * Y_{1}$;
(b) $\min \left\{\omega(X), \omega\left(X_{1}\right)\right\} \geq \max \left\{\omega(Y), \omega\left(Y_{1}\right)\right\}$ implies $X * Y \supseteq X_{1} * Y_{1}$.

Proposition 2. Let $X, X_{1}, Y, Y_{1} \in I R, 0 \notin Y, Y_{1}, X \supseteq X_{1}, Y \subseteq Y_{1}$, $* \in\left\{x^{-}, /^{-}\right\}$. Then
(a) min $\left\{\chi(X), \chi\left(X_{1}\right)\right\} \geq \max \left\{\chi(Y), \chi\left(Y_{1}\right)\right\}$ implies $X * Y \subseteq X_{1} * Y_{1}$;
(b) $\max \left\{\chi(X), \chi\left(X_{1}\right)\right\} \leq \min \left\{\chi(Y), \chi\left(Y_{1}\right)\right\}$ implies $X * Y \supseteq X_{1} * Y_{1}$.

We omit the straightforward verification of the above two propositions.
Proposition 3 [9]. For $A, B, C, D \in I R$,
$\left(A-^{-} B\right)-^{-}\left(C-^{-} D\right)= \begin{cases}\left(A-^{-} C\right)-^{-}\left(B-^{-} D\right) & \text { if } m_{2} \geq 0, m_{1} \geq 0 ; \\ \left(A-^{-} C\right)-\left(B-^{-} D\right) & \text { if } m_{2} \geq 0, m_{1}<0 ; \\ (A-C)-^{-}(B-D) & \text { if } m_{2}<0\end{cases}$
where $m_{1}=(\omega(A)-\omega(C))(\omega(B)-\omega(D)), m_{2}=(\omega(A)-\omega(B))(\omega(C)-$ $\omega(D))$.

For $A, B \in I R$ we write $A \asymp B$ if $A \subseteq B$ or $B \subseteq A$ holds true. In the opposite situation we shall write $A \not \neq B$. The following two propositions show the connection between \asymp and $-^{-}$. (Note that $0 \in A, 0 \notin A$ are equivalent to $0 \asymp A, 0 \nsucc A$ resp.)
Proposition 4. For $A, B \in I R, A-{ }^{-} B \asymp 0$ if and only if $A \asymp B$. Alternatevely $0 \not \not \neq A-^{-} B$ iff $A \nsucc B$.
Proposition 5. Let $A, B \in I R$.
(a) $A-{ }^{-} B \asymp A$ implies $0 \in B$;
(b) If $0 \in B$ and $\omega(A) \geq \omega(B)$ then $A-{ }^{-} B \asymp A$ holds;
(c) $0 \notin B$ implies $A-^{-} B \not \not A$;
(d) If $A-{ }^{-} B \not \not \not A$ then either $0 \notin B$ or $(0 \in B$ and $\omega(A)<\omega(B))$ is fulfilled.
Proof. According to Proposition $4 A-^{-} B \asymp A$ is equivalent to $0 \in\left(A-^{-}\right.$ $B)-^{-} A$. Applying Proposition 3 to the difference $\left(A-^{-} B\right)-^{-} A$ with

$$
\begin{aligned}
& m_{1}=(\omega(A)-\omega(A)) \omega(B)=0 \text { and } m_{2}=(\omega(A)-\omega(B)) \omega(A) \text { we obtain } \\
&\left(A-{ }^{-} B\right)-{ }^{-} A= \begin{cases}\left(A-{ }^{-} A\right)-{ }^{-} B & \text { if } m_{2} \geq 0, \\
(A-A)-{ }^{-} B & \text { otherwise; }\end{cases} \\
&= \begin{cases}-B & \text { if } \omega(A) \geq \omega(B), \\
{[-\omega(A), \omega(A)]-{ }^{-} B} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Let be first $\omega(A) \geq \omega(B)$. Then $0 \in\left(A-^{-} B\right)-^{-} A$ is equivalent to $0 \in B$ and $0 \notin B$ is equivalent to $0 \notin\left(A-^{-} B\right)-^{-} A$, that is $\left(A-^{-} B\right) \not \nLeftarrow A$, which proves (b).

Consider the case $\omega(A)<\omega(B)$. Then $\left(A-^{-} B\right) \asymp A$ is equivalent to $0 \in\left(A-^{-} B\right)-^{-} A=[-\omega(A), \omega(A)]{ }^{-} B$, that is to $[-\omega(A), \omega(A)] \asymp B$. There are two possibilities: $(i)[-\omega(A), \omega(A)] \subseteq B$, which leads to $0 \in B$; (ii) $[-\omega(A), \omega(A)] \supseteq B$, which together with the inequality $\omega(A)<\omega(B)$ implies $0 \in B$. This proves (a). Assume now that $0 \notin B=[\underline{b}, \bar{b}]$. This means $\underline{b} \bar{b}>0$. We shall show that the product of the end-points of the interval $[-\omega(A), \omega(A)]-^{-} B=[(-\omega(A)-\underline{b}) \vee(\omega(A)-\bar{b})]$ is positive. Indeed,

$$
\begin{aligned}
(-\omega(A)-\underline{b})(\omega(A)-\bar{b}) & =-\omega^{2}(A)+\omega(A) \omega(B)+\underline{b} \bar{b} \\
& =\omega(A)(\omega(B)-\omega(A))+\underline{b} \bar{b}>0
\end{aligned}
$$

since $\omega(A)<\omega(B)$. The last inequality means $0 \notin[-\omega(A), \omega(A)]{ }^{-} B$, i.e. $0 \notin\left(A-^{-} B\right)-^{-} A$, which proves (c). Let $0 \notin\left(A-^{-} B\right)-^{-} A$. It follows then $[-\omega(A), \omega(A)] \not \not B$, which can mean $0 \in B$ or $0 \notin B$.

Let S be a floating-point system [6] and $I S$ be the set of intervals with end-points over S. The computer realization of algorithms written in interval-arithmetic form and using the operations of the extended interval arithmetic is discussed in detail in [3]. Two kinds of monotone roundings $\diamond, \bigcirc: I R \rightarrow I S$ of intervals are used:

$$
\diamond A=[\nabla \underline{a}, \triangle \bar{a}] ; \bigcirc A= \begin{cases}{[\triangle \underline{a}, \nabla \bar{a}]} & \text { if } \triangle \underline{a} \leq \nabla \bar{a}, \\ \emptyset & \text { otherwise }\end{cases}
$$

where $\nabla a=\max \{x \in S: x \leq a\}, \Delta a=\min \{x \in S: x \geq a\}$. They generate the computer interval-arithmetic operations

$$
A\langle *\rangle B=\diamond(A * B), \quad A(*) B=\bigcirc(A * B)
$$

where "*" can be any one of the interval-arithmetic operations defined above.
Using the quasi-inclusion properties of the operations $+^{-},-^{-}, \times^{-}$and $/^{-}$(Propositions 1-2) we obtain the following inclusions for $A, B \in I R$ (see [3], Section 2):

$$
\left\{\begin{array}{llll}
\bigcirc A\left(+^{-}\right) \diamond B & \subseteq A+^{-} B & \subseteq \diamond A\left\langle+^{-}\right\rangle \bigcirc B & \text { if } \omega(A) \geq \omega(B), \tag{13}\\
\diamond A\left(+^{-}\right) \bigcirc B & \subseteq A+^{-} B & \subseteq \bigcirc A\left\langle+^{-}\right\rangle \diamond B & \text { if } \omega(A)<\omega(B) ; \\
\bigcirc A\left(-^{-}\right) \diamond B & \subseteq A-^{-} B & \subseteq \diamond A\left\langle-^{-}\right\rangle \bigcirc B & \text { if } \omega(A) \geq \omega(B), \\
\diamond A\left(-^{-}\right) \bigcirc B & \subseteq A-^{-} B & \subseteq \bigcirc A\left\langle--^{-}\right\rangle \diamond B & \text { if } \omega(A)<\omega(B) ; \\
\bigcirc A\left(x^{-}\right) \diamond B & \subseteq A x^{-} B & \subseteq A\left\langle\times^{-}\right\rangle \bigcirc B & \text { if } \chi(A) \leq \chi(B), \\
\diamond A\left(x^{-}\right) \bigcirc B & \subseteq A x^{-} B & \subseteq A\left\langle\times^{-}\right\rangle \diamond B & \text { if } \chi(A)>\chi(B) ; \\
\bigcirc A\left(/^{-}\right) \diamond B & \subseteq A /^{-} B & \subseteq \diamond A\left\langle/^{-}\right\rangle \bigcirc B & \text { if } \chi(A) \leq \chi(B), \\
\diamond A\left(/^{-}\right) \bigcirc B & \subseteq A /^{-} B & \subseteq \bigcirc A\left\langle/^{-}\right\rangle \diamond B & \text { if } \chi(A)>\chi(B) .
\end{array}\right.
$$

Aknowledgements

We are indepted to the referee who wanted us to discuss the relation between the Newton-Krawczyk operator defined by (1) and the operator (3). This relation is given by Theorem 1 .

References

[1] Alefeld, G. and Herzberger, J. Introduction to interval computations. Academic Press, New York, 1983.
[2] Alefeld, G. and Potra, F. A new class of interval methods with higher order of convergence. Computing 42 (1989), pp. 69-80.
[3] Dimitrova, N. and Markov, S. M. Interval methods of Newton type for nonlinear equations. Pliska stud. math. bulg. 5 (1983), pp. 105-117.
[4] Dimitrova, N. S., Markov, S. M., and Popova, E. D. Extended interval arithmetics: new results and applications. In: Atanassova, L. and Herzberger, J. (eds) "Computer arithmetic and enclosure methods", North-Holland, Amsterdam (1992), pp. 225-232.
[5] Krawczyk, R. Einschließung von Nullstellen mit Hilfe einer Intervallarithmetik. Computing 5 (1970), pp. 356-370.
[6] Kulisch, U. and Miranker, W. Computer arithmetic in theory and practice. Academic Press, 1980.
[7] Markov, S. M. Extended interval arithmetic. Comptes rendus l'Academie bulgare des Sciences 30 (9) (1977).
[8] Markov, S. Some applications of extended interval arithmetic to interval iterations. Computing, Suppl. 2 (1980), pp. 69-84.
[9] Markov, S. and Dimitrova, N. Rechengesetze der erweiterten Intervallarithmetik. Freiburger Intervall-Berichte 79 (10) (1979), pp. 1-20.
[10] Moore, R. E. Interval analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966.
[11] Ostrowski, A. M. Solution of equations and systems of equations. Academic Press, New York, 1960.
[12] Ratschek, H. Teilbarkeitskriterien der Intervallarithmetik. J. Reine Angew. Math. 252 (1972), pp. 128-138.

Received: November 20, 1992
Revised version: June 21, 1994

Division for Mathematical Modelling Institute of Biophysics Bulgarian Academy of Sciences Acad. G. Bonchev str., bldg. 21
BG-1113 Sofia, Bulgaria

[^0]: *This work has been partially supported by the Ministry of Education and Sciences - National Science Fund under contract No. MM-10/91.
 (C) N. S. Dimitrova, S. M. Markov, 1994

