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Solving the Tolerance Problem
for Interval Linear Systems

Sergey P. Shary∗

For the interval linear system Ax = b, we consider the linear tolerance prob-
lem, requiring inner evaluation of the tolerable solution set Σ∀∃(A,b) = {x∈
Rn|(∀A∈A)(Ax∈b)} formed by all point vectors x such that the product Ax
remains within b for all possible A∈A. We develop solvability theory for the
linear tolerance problem that not only settles whether Σ∀∃ is empty or not, but
also enables modification of the problem to ensure its desired properties. The
paper concludes with a survey of new methods for construction of an interval
solution to the linear tolerance problem around a given center.

Решение задачи о допусках для
интервальных линейных систем

С. П. Шарый

Для интервальной линейной системы Ax = b в работе рассматривается
линейная задача о допусках, требующая внутреннего оценивания допусти-
мого множестваа решений Σ∀∃(A,b) = {x∈Rn|(∀A∈A)(Ax∈b)} — мно-
жества всех таких точек x, что произведение Ax попадает в b при любых
возможных A∈A. Мы развиваем теорию разрешимости линейной зада-
чи о допусках, которая не только решает вопрос о пустоте или непустоте
Σ∀∃, но и позволяет скорректировать постановку так, чтобы обеспечить
ее желаемые свойства. Работа завершается обзором новых методов для
построения интервального решения линейной задачи о допусках вокруг
известного центра.
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1 Introduction

Let the interval system of linear algebraic equations

Ax = b (1)

be given with an interval m×n-matrix A and an interval right-hand side
m-vector b. The solution set to (1) has been defined in a variety of ways:
aside from the (united) solution set

Σ∃∃( A, b) = {x ∈ Rn | (∃A ∈ A)(∃ b ∈ b)(Ax = b) }

commonly used in applications, there exists, for example, the controlled
solution set

Σ∃∀( A,b) = {x ∈ Rn | (∀ b ∈ b)(∃A ∈ A)(Ax = b) }

(see [17]) among many others. But the subject matter of our paper will
be the tolerable solution set, formed by all point vectors x such that the
product Ax falls into b for any A ∈ A, i.e., the set

Σ∀∃(A,b) = {x ∈ Rn | (∀A ∈ A)(∃ b ∈ b)(Ax = b)} (2)

or, to put it otherwise, the set

Σ∀∃(A,b) = {x ∈ Rn | A · x ⊆ b }

where “ · ” is the common interval martix multiplication.
Neumaier introduced the term restricted solution set in [7, 8], and other

authors followed; they denote the set by Σ0(A,b). Some researchers speak
of “inner solutions,” but I prefer a more explicit term, tolerable, the one used
in Russian works. The history of the set (2) and of some related problems
was described comprehensively in the papers by Neumaier [7] and by Kelling
and Oelschlägel [4].

It is very instructive to consider the practical interpretation of the tol-
erable solution set. Let “the black box” be given with the input subjection
vector x ∈ Rn and the output response vector y ∈ Rm, where the input-
output relationship is linear, i.e., y = Ax with a real m×n-matrix A.
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y = Ax

Suppose that the parameters of the black box are not precisely known,
but are given only by intervals aij, aij ∈ aij. For example, these parameters
may vary in an unpredictable way (drift) within aij, or interval uncertainty
may be intrinsic to the very description of the mathematical model. Also
assume that the set of the black box output states is specified as an interval
vector y and we must ensure that we can arrive at y irrespective of the
specific values of aij from aij. Our interest is in finding input signals x̃
such that for any values of the parameters aij from aij we always get an
output response within the required tolerances y. The tolerable solution
set Σ∀∃(A,y) is precisely the set of all such x̃’s. The above general scheme
is known to be successfully applied to concrete problems in mathematical
economics by Rohn [12], in automatic control by Khlebalin [5] and so on.

In general, Σ∀∃(A,b) is easily proved (in Section 3, for instance) to
be a convex polyhedral set in Rn. Nevertheless, if the dimension of the
interval system is large, then the direct description of its tolerable solution
set becomes laborious and practically useless (its complexity is proportional
to m ·2n). For this reason it is expedient to confine ourselves to finding some
simple subsets Π ⊆ Σ∀∃(A,b), since for any x ∈ Π the condition

(∀A ∈ A)(Ax ∈ b)

remains valid. In other words, we replace Σ∀∃(A,b) by its inner approxi-
mation, usually formulating the problem to be solved in the following form:

Find an interval vector that is contained in the tolerable
solution set (if nonempty) of the interval linear system. (3)

This linear tolerance problem is the subject of the present paper.
Notice that the tolerable solution set may turn out to be empty even for

“good” interval data, as, for instance, it does in the one-dimensional case
A = [2, 3], b = [1, 2]. The two-dimensional system(

[1, 2] [−1, 1]

[−1, 1] [1, 2]

)
x =

(
[1, 3]

[1, 3]

)
(4)
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gives a more complex example with an empty tolerable solution set. In such
cases we shall say that the linear tolerance problem is unsolvable (incompat-
ible).

The main mathematical results of our work are new techniques for the
investigation of solvability of the linear tolerance problem as well as methods
for inner approximation of the tolerable solution set. We designate intervals
and other interval objects by bold typeface, int X means topological interior
of the set X and in other respects our notation follows that of Neumaier
[8]. Also, throughout this paper, all arithmetic operations with intervals
and interval objects are those of the classical interval arithmetic (see e.g.
[1, 3, 8]).

2 Rough solvability examination

First, note that if the i-th row of A contains only zero elements, it is nec-
essary that bi = 0 for the tolerable solution set to be nonempty. If this
condition holds, then the property of Σ∀∃(A,b) being empty or nonempty
depends upon the other, not the i-th, rows of A and components of b. Thus,
without loss of generality, we may assume in general (and in the rest of this
paper) that A does not have zero rows.

To characterize “relative narrowness” of nonzero intervals, Ratschek [9]
introduced the functional

χ(p) =

{
p/p, if |p| ≤ |p|,
p/p, otherwise.

Clearly, −1 ≤ χ(p) ≤ 1, and χ(p) = 1 if and only if p ∈ R. Moreover, it
is proved in [9] that

χ(p) = χ(q) if and only if p = tq, t ∈ R, t 6= 0, (5)

if p+q 6= 0, then χ(p+q) ≤ max{χ(p), χ(q) }, (6)

if p ⊇ q and χ(q) ≥ 0, then χ(p) ≤ χ(q). (7)

Now we are able to formulate and prove

Theorem 1 [15]. Let the interval m×n-matrix A and interval m-vector b
be such that for some k ∈ {1, 2, . . . ,m} the following conditions hold:
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(i) 0 /∈ bk ,

(ii) max{ χ(akj) | 1 ≤ j ≤ n, akj 6= 0 } < χ(bk).

Then the tolerable solution set Σ∀∃(A,b) is empty.

For example, using this criterion, one can verify that the above mentioned
one-dimensional system with A = [2, 3], b = [1, 2] has empty tolerable
solution set.
Proof of the Theorem will be conducted ad absurdum employing a technique
similar to that developed in [10]. Let us assume that the tolerance problem
nonetheless has a solution t ∈ Σ∀∃(A,b) 6= ∅, that is, At ⊆ b, the condition
(i) making it impossible for the interval (At)k to equal zero. Then the
following inequalities are true:

χ
(

(At)k
)

= χ

(
n∑
j=1

akjtj

)

≤ max{ χ(akjtj) | 1 ≤ j ≤ n, akjtj 6= 0 } by (6)

= max{ χ(akj) | 1 ≤ j ≤ n, akjtj 6= 0 } by (5)

≤ max{ χ(akj) | 1 ≤ j ≤ n, akj 6= 0 }.

We have found

χ
(

(At)k
)
≤ max{χ(akj) | 1 ≤ j ≤ n, akj 6= 0 }. (8)

On the other hand, by virtue of our assumption, (At)k ⊆ bk which
because of (7) implies χ

(
(At)k

)
≥ χ(bk). Combining this with (8) now

gives
max{ χ(akj) | 1 ≤ j ≤ n, akj 6= 0 } ≥ χ(bk)

which is contrary to (ii). 2

The importance of all the conditions of the Theorem 1 may be exhib-
ited on the one-dimensional example with A = [−1, 2], b = [−2, 6]. Here
Σ∀∃(A,b) = [−1, 2] 6= ∅, though χ(A) = −1

2 < −
1
3 = χ(b). At the same

time, if the conditions of the Theorem 1 fail, this does not necessarily mean
compatibility of the linear tolerance problem. For instance, (ii) is not true
for the system (4), but even so its tolerable solution set is empty.
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3 Detailed examination of solvability

The basis of the solvability theory developed below for the linear tolerance
problem is a new analytical characterization of the tolerable solution set.
Along these lines, the most important result was obtained by Rohn, who
has shown in [13] that x ∈ Σ∀∃(A,b) is equivalent to

| mid A · x−mid b | ≤ rad b− rad A · |x|

(analogue of the Oettli-Prager criterion for the united solution set). But the
starting point of our considerations is

Lemma 1. Let an interval m×n-matrix A and an interval right-hand side
m-vector b be given, so the expression

Tol (x) = Tol (x; A,b) = min
1≤i≤m

{
rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
}

defines a functional Tol : Rn → R. Then the inclusion x ∈ Σ∀∃(A,b)
is equivalent to Tol (x; A,b) ≥ 0, i.e., the tolerable solution set of the
relevant interval system is the Lebesgue set {x∈Rn | Tol (x; A,b)≥ 0 } of
the functional Tol.

Proof: x ∈ Σ∀∃(A,b) is equivalent to Ax ⊆ b. We rewrite the latter in the
following form

mid bi −
n∑
j=1

aijxj ⊆ [−rad bi, rad bi ], i = 1, 2, . . . ,m

which is equivalent to∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣ ≤ rad bi, i = 1, 2, . . . ,m.

Therefore, x actually belongs to Σ∀∃(A,b) if and only if

Tol (x; A,b) = min
1≤i≤m

{
rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
}
≥ 0. 2
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Lemma 2. The functional Tol (x) is concave.

Proof: The functional Tol (x) is the lower envelope of the functionals

ξi(x) = rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
and we need only to establish the concavity of each ξi(x).

Let x, y ∈ Rn, λ ∈ [0, 1]. The subdistributivity of the interval arithmetic
then implies

mid bi −
n∑
j=1

aij
(
λxj + (1−λ)yj

)
⊆ λ

(
mid bi −

n∑
j=1

aijxj

)
+ (1−λ)

(
mid bi −

n∑
j=1

aijyj

)
.

The magnitude | · | is isotonic with respect to the inclusion ordering of
intervals and the standard linear order on R [8]. Hence,∣∣∣∣∣ mid bi −

n∑
j=1

aij
(
λxj + (1−λ)yj

) ∣∣∣∣∣
≤

∣∣∣∣∣λ
(

mid bi −
n∑
j=1

aijxj

)
+ (1−λ)

(
mid bi −

n∑
j=1

aijyj

)∣∣∣∣∣
≤ λ

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣+ (1−λ)

∣∣∣∣∣ mid bi −
n∑
j=1

aijyj

∣∣∣∣∣
and the assertion of the Lemma follows. 2

Thus, the ordinate set

hyp Tol = { (x, z) ∈ Rn+1 | x ∈ Rn, z ∈ R, Tol (x) ≤ z }

of the map Tol : Rn → R is a convex set. We shall show that hyp Tol is
intersection of finite number of the half-spaces of Rn+1, i.e., it is a convex
polyhedral set according to the terminology by Rockafellar [11]. Indeed,
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expressing the absolute value in terms of maximum, we get for each i =
1, 2, . . . ,m

rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
= rad bi −max

âij

∣∣∣∣∣ mid bi −
n∑
j=1

âijxj

∣∣∣∣∣
= rad bi −max

âij

{
max

{
mid bi −

n∑
j=1

âijxj,
n∑
j=1

âijxj −mid bi

}}

= min
âij

{
min

{
rad bi −mid bi +

n∑
j=1

âijxj, rad bi + mid bi −
n∑
j=1

âijxj

}}

where the n-tuple ( âi1, âi2, . . . , âin) runs over the finite set vert(ai1, ai2, . . . ,
ain), that is, over all vertices of the ith row of the interval matrix A. Owing
to this, the functional Tol is the lower envelope of at most m · 2n+1 affine
functionals of the form

rad bi ±

(
mid bi −

n∑
j=1

âijxj

)
, i = 1, 2, . . . ,m

the set hyp Tol being intersection of these functionals’ ordinate sets.
As a consequence we get the following well known result: tolerable solu-

tion set is a convex polyhedral set.

Lemma 3. The functional Tol (x) attains a finite maximum on all of Rn.

Proof: Being a convex polyhedral set, the ordinate set hyp Tol is the convex
hull of a finite set of points (ck, γk), k = 1, 2, . . . , p, and directions (ck, γk),
k = p+ 1, . . . , q, of Rn+1 (excluding the direction (0, . . . , 0, 1) since Tol (x)
is defined everywhere) [11]. More precisely,

hyp Tol =

{
q∑

k=1

λk(ck, γk)
∣∣∣ ck∈Rn, γk, λk∈R, λk ≥ 0,

p∑
k=1

λk = 1

}
.
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Insofar as Tol (x) ≤ min1≤i≤m rad bi we have γk ≤ 0, k = p + 1, . . . , q,
since otherwise the functional Tol would be unbounded from above. For
this reason,

sup
x∈Rn

Tol (x) = sup{ z | (x, z) ∈ hyp Tol , x ∈ Rn, z ∈ R }

= sup

{
q∑

k=1

λkγk

∣∣∣ λk ≥ 0,

p∑
k=1

λk = 1

}

= sup

{
p∑

k=1

λkγk

∣∣∣ λk ≥ 0,

p∑
k=1

λk = 1

}
= max

1≤k≤p
γk. 2

Lemma 4. If the interval matrix A does not have zero rows, then y ∈
int Σ∀∃(A,b) implies Tol (y; A,b) > 0.

Proof: Let Σ∀∃(A,b) 6= ∅, and assume max Tol (x) is reached at some
point m ∈ Σ∀∃. If y ∈ int Σ∀∃, then y is an interior point of some segment
[m, z] ⊂ Σ∀∃, i.e. y = λm+ (1−λ)z for some λ ∈ (0, 1), z ∈ Σ∀∃. Therefore

Tol (y) ≥ λTol (m) + (1−λ)Tol (z)

because the functional Tol is concave.
Suppose Tol (y) = 0. Then the above inequality holds only when

Tol (m) = Tol (z) = 0 and the functional Tol must equal zero on the entire
set Σ∀∃(A,b). Furthermore, let

Rn =
⋃

1≤i≤m
Ξi

with

Tol (x) = rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
for x ∈ Ξi. It is fairly simple to see that

Σ∀∃ =
⋃

1≤i≤m
(Σ∀∃∩ Ξi)
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all the sets Σ∀∃∩Ξi, i = 1, 2, . . . ,m, being closed. Hence, int (Σ∀∃∩Ξk) 6= ∅
for at least one k ∈ {1, 2, . . . ,m} and we have

rad bk −

∣∣∣∣∣ mid bk −
n∑
j=1

akjxj

∣∣∣∣∣ = 0 = const

for all x ∈ int (Σ∀∃ ∩ Ξk). The latter may occur only when all ak1, . . . , akn
are zeros, which contradicts the assertion of the Lemma. 2

Lemma 5. If Tol (y; A,b) > 0, then y ∈ int Σ∀∃(A,b) 6= ∅.

Proof: The map Tol : Rn → R is continuous, so the set Z = { z ∈ Rn |
Tol (z) > 0 } is open. Also, it is nonempty: y ∈ Z ⊆ Σ∀∃. Hence int Σ∀∃ 6=
∅ and y ∈ int Σ∀∃(A,b). 2

To summarize, we come to the following technique to investigate solv-
ability of the linear tolerance problem, i.e., to the criterion for the tolerable
solution set to be nonempty.

Solve the unconstrained maximization problem for the functional

Tol (x) = min
1≤i≤m

{
rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
}
.

Let T = maxx∈Rn Tol (x; A,b), and let T be reached at a point
t. We have

• if T ≥ 0, then t ∈ Σ∀∃(A,b) 6= ∅, i.e., the linear
tolerance problem is compatible, and if T > 0, then
t ∈ int Σ∀∃(A,b) 6= ∅;
• if T < 0, then Σ∀∃(A,b) = ∅, i.e., the linear tolerance

problem is incompatible.

It is worth noting that the Lemmae 1–4 as well as the above solvabil-
ity criterion would remain valid if the functional Tol was defined by the
expression

min
1≤i≤m

{
ηi

(
rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
)}
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where ηi, i = 1, 2, . . . ,m, are positive reals. Below are some examples in
which such functionals naturally come into existence and then are employed
fruitfully.

Maximization of nonsmooth concave functions has been much studied
during the last few decades. A good many numerical methods have been
proposed to solve this problem (see [6, 18] et al.) and this is reason to hope
that the solvability criterion developed above is quite practical.

4 Correction of the linear tolerance problem

Imagine solving an actual practical problem. Usually, the effort does not
terminate even after we reach the conclusion that the problem has no so-
lutions (unsolvable). A client is very likely to be interested in information
about

• how unsolvable the problem is,

• how one must change the input data to make the problem solvable,

• and so on.

Alternately, if the original problem proves to be solvable, then, frequently,
the region of variations of input data within which the problem remains
solvable is to be outlined. We are able to give quite expanded answers to
some of these questions.

If A and mid b are unchanged, increasing the radii of all the components
of b by the same value K is easily seen to lead to adding the constant K to
the functional Tol (x). Therefore,

max
x∈Rn

Tol (x; A,b +Ke) = K + max
x∈Rn

Tol (x; A,b)

where e = ([−1, 1], . . . , [−1, 1])>. If the linear tolerance problem is unsolv-
able and

max
x∈Rn

Tol (x; A,b) = T < 0

we can make it solvable with the same matrix A by widening the right-
hand vector by Ke, K ≥ 0, and the points t ∈ Arg max Tol (x; A,b) will
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certainly belong to the nonempty set Σ∀∃(A,b +Ke). Conversely, if

max
x∈Rn

Tol (x; A,b) = T ≥ 0

that is, the linear tolerance problem is solvable, it will remain so even after
we decrease the radii of all right-hand side components by K, K ≤ T .

Sometimes, such uniform widening of all the components of b may prove
unacceptable in practice. So, let us assume that a vector (v1, v2, . . . , vm),
vi ≥ 0, is given such that the increase of the width of bi is to be proportional
to vi. Now, calculate

Tv = max
x∈Rn

Tolv(x; A,b)

where

Tolv(x) = min
1≤i≤m

{
vi
−1

(
rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
)}

. (9)

If, for instance, initially, the linear tolerance problem with the matrix A
and the right-hand side vector b had no solutions, then the problem with
the same matrix A and the expanded vector (bi + Kvi[−1, 1])mi=1 in the
right-hand side becomes solvable for K ≥ |Tv|.

The most important particular case of the above construction is that
of ensuring equal relative (proportional to the absolute values) increases of
the radii of the right-hand side components, when vi = |bi| for nonzero bi,
i = 1, 2, . . . ,m. Denote

Tol0(x) = min
1≤i≤m

{
|bi|−1

(
rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijxj

∣∣∣∣∣
)}

and let
T0 = max

x∈Rn
Tol0(x; A,b).

The magnitude of T0 is a quantitative characteristic of compatibility of the
linear tolerance problem. Judging by the absolute value of T0, one can
precisely estimate the degree of unsolvability in the case T0 < 0 and the
reserve of solvability (stability of the solvable state) in the case T0 ≥ 0.
Naturally, all this is attained at the price of more laborious computation.

We have demonstrated some capabilities to correct the linear tolerance
problem by modification of only the right-hand side vector b. In fact, the
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linear tolerance problem can also be corrected by varying the elements of
the matrix A as well, but these results fall outside the scope of the present
short paper.

5 Construction of an interval solution

Once the compatibility of the linear tolerance problem is established and
a point of the tolerable solution set has been found, we may turn to the
actual construction of the interval solution. To do so, we follow the so-
called “center” approach adopted by Khlebalin [5], Neumaier [8], Shaidurov
[3] and others, in which the point of the tolerable solution set found earlier
is taken to be the center of the interval solution under construction.

In applications, the statement of the linear tolerance problem is often
more rigid than (3). In addition to (3), we take the ratio of the tolerances of
the separate components of the solution to be determined by a real vector
w = (w1, w2, . . . , wn), wi > 0, so that

rad Ui/rad Uj = wi/wj.

Through scaling by the diagonal matrix diag{w1, w2, . . . , wn}, all such cases
are easily reduced to a standard one, when w = (1, 1, . . . , 1), and we are
to inscribe a hypercube in the properly modified set Σ∀∃(A,b). Indeed,
we introduce matrices D = diag{w1, w2, . . . , wn} and Ã = AD. Let the
interval vector Ũ, rad Ui = const, be a solution to the linear tolerance
problem with the matrix A and the right-hand side vector b. Then U = DŨ
is a solution to the original problem, since

{ Ax | x ∈ U } = { ADD−1x | x ∈ U } = { Ãx̃ | x̃ ∈ Ũ } ⊆ b

and moreover rad Ui/rad Uj = wi/wj as required. That is why from now
on the linear tolerance problem will be refered to as a problem of finding an
interval vector U with components of equal width and such that {Ax | x ∈
U } ⊆ b. The expedient described above (introducing weighting coefficients
for tolerances) is due to Shaidurov [3, 14]. He is also the author of the
fundamental Theorem 2, but here we have substantially reworked its proof,
compared with the proof presented in [3, 14].
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Theorem 2. If t ∈ Σ∀∃(A,b) then for

h = min
1≤i≤m

min
A∈A


rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijtj

∣∣∣∣∣
n∑
i=1

| aij|


(10)

the interval vector U = (t+ he) is also entirely contained in Σ∀∃(A,b).

Proof: First assume that in the linear tolerance problem the matrix A is
thin, i.e., A = A. We represent each x ∈ U in the form x = t + y, where
max1≤k≤n | yk| ≤ hA and

hA = min
1≤i≤m


rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijtj

∣∣∣∣∣
n∑
i=1

| aij|


(11)

so that the following holds for i = 1, 2, . . . ,m:

| (Ay)i| =

∣∣∣∣∣
n∑
j=1

aijyj

∣∣∣∣∣ ≤
n∑
j=1

| aij| | yj|

≤ hA ·
n∑
j=1

| aij|

≤ rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijtj

∣∣∣∣∣ .
Therefore, since Ax = At+ Ay, we obtain

(At)i − rad bi + | mid bi − (At)i |

≤ (Ax)i ≤

(At)i + rad bi − | mid bi − (At)i |
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or, equivalently,

bi − (mid bi − (At)i) + | mid bi − (At)i |

≤ (Ax)i ≤ (12)

bi − (mid bi − (At)i)− | mid bi − (At)i |.

By virtue of the fact that

−z + |z| ≥ 0 and − z − |z| ≤ 0

for any real z, the inequality (12) implies

bi ≤ (Ax)i ≤ bi

that is, Ax ∈ b as was expected.
Now, let the matrix A of the problem be a thick interval matrix, and let

t ∈ Σ∀∃(A,b) 6= ∅. We consider the totality of all linear tolerance problems
for systems Ax = b with A ∈ A. It is clear that

Σ∀∃(A,b) =
⋂
A∈A

Σ∀∃(A,b)

and if for each A ∈ A the corresponding interval solution vector is UA,
UA ⊆ Σ∀∃(A,b), then

U =
⋂
A∈A

UA ⊆ Σ∀∃(A,b).

In particular, when all UA have the common center t and their radii are
defined by formula (11), we have

U = t+ he

where

h = min
A∈A

rA = min
1≤i≤m

min
A∈A


rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijtj

∣∣∣∣∣
n∑
i=1

| aij|


.
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The Theorem is completely proved. 2

Thus, for known t ∈ Σ∀∃(A,b), construction of an interval solution to
the linear tolerance problem amounts to finding the value (10) or an estimate
for it from below. Since taking the minimum on i ∈ {1, 2, . . . ,m} involves
no difficulties, the central problem is the computation of minA∈A. The
simplest way to estimate this minimum is to take the left endpoint of the
natural interval extension of the expression in the braces of (10), as in the
following algorithm of Shaidurov [3, 14]:

For a given t ∈ Σ∀∃(A,b) calculate the intervals

hi =

rad bi −

∣∣∣∣∣ mid bi −
n∑
j=1

aijtj

∣∣∣∣∣
n∑
i=1

| aij|
(13)

i = 1, 2, . . . ,m, and then put h = min1≤i≤m hi. The interval
vector (t+ he) is a solution to the linear tolerance problem.

The other important result on the linear tolerance problem is due to
Neumaier [7], who has proposed the following simple method to construct
an interval solution of the linear tolerance problem around a given center.
If t ∈ Σ∀∃(A,b), we find the largest nonnegative η such that

η ·Ae ⊆ b	At (14)

where “	” is the endwise interval subtraction

[ p, p ]	 [ q, q ] = [ p− q, p− q ].

Then the interval vector (t+ηe) is the desired solution of the linear tolerance
problem, since

Ax ⊆ A(t+ηe) ⊆ At+ A(ηe) ⊆ At+ b	At = b

for each x ∈ t+ ηe.
The results obtained by this method turn out to be completely identical

to those given by Shaidurov’s algorithm. In fact, condition (14) means

η · (Ae)i ≥ (b	At)i and η · (Ae)i ≤ (b	At)i,

i = 1, 2, . . . ,m
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where Ae is a symmetrical interval vector in which

−(Ae)i = (Ae)i = | (Ae)i|, i = 1, 2, . . . ,m.

Moreover, for t ∈ Σ∀∃(A,b),

(b	At)i ≤ 0 ≤ (b	At)i

and thus the following chain of transformations is valid for each i:

η ≤ min

{
( b	 At )i

( Ae )i
,
( b	 At )i

( Ae )i

}

=
min{ −( mid bi − rad bi) + (At)i, ( mid bi + rad bi)− (At)i}

| (Ae)i|

=
min{ rad bi − ( mid bi − (At)i), rad bi − ((At)i −mid bi)}

| (Ae)i|

=
rad bi −max{ mid bi − (At)i, (At)i −mid bi}

| (Ae)i|

=
rad bi − | mid bi − (At)i|

| (Ae)i|
.

For i = 1, 2, . . . ,m, the last expression coincides with the lower bounds
of the corresponding intervals (13), so taking the minimum on all i leads to
the equality η = h.

Both these algorithms, by Shaidurov and by Neumaier, are simple and
easy to implement, but at the price of considerable coarsening of the final
result, especially for wide A. We demonstrate how the size of the interval
solution defined by the formula (10) can be computed exactly. The basis of
the corresponding algorithm is quasiconcavity of the functions in the braces
in (10). Let S be a convex set. Recall that a function f : S → R is said to
be quasiconcave if

f
(
λx+ (1−λ)y

)
≥ min{f(x), f(y)}

for all x, y ∈ S [2].
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Theorem 3 [16]. If R, M, t1, . . . , tn are real constants and S ⊂ Rn is a
convex set that does not contain the origin of the coordinate system, then
the function Φ : S → R defined by the formula

Φ(x) =
R−

∣∣∣ M −∑n
j=1 xj tj

∣∣∣∑n
j=1 |xj|

is quasiconcave.

Proof of the Theorem is based on the fact that quasiconcavity of a function
f is equivalent to convexity of all the Lebesgue sets Sα = {x | f(x) ≥ α }.

Denote for brevity

Ψ(x) = R−

∣∣∣∣∣ M −
n∑
j=1

xj tj

∣∣∣∣∣ and Θ(x) =
n∑
j=1

|xj|

so that Φ(x) = Ψ(x)/Θ(x). For any x, y ∈ Rn, λ ∈ (0, 1), the following
inequalities are obvious

Ψ
(
λx+ (1−λ)y

)
≥ R− λ

∣∣∣∣∣ M −
n∑
j=1

xj tj

∣∣∣∣∣− (1−λ)

∣∣∣∣∣ M −
n∑
j=1

yj tj

∣∣∣∣∣
= λΨ(x) + (1−λ) Ψ(y),

Θ
(
λx+ (1−λ)y

)
≤ λ

n∑
j=1

|xj|+ (1−λ)
n∑
j=1

| yj|

= λΘ(x) + (1−λ) Θ(y).

Therefore,

Φ
(
λx+ (1−λ)y

)
=

Ψ
(
λx+ (1−λ)y

)
Θ
(
λx+ (1−λ)y

) ≥ λΨ(x) + (1−λ) Ψ(y)

λΘ(x) + (1−λ) Θ(y)
(15)

for any x, y ∈ S. Now, let us suppose that Sα is a nonempty Lebesgue
set of the function Φ and x, y ∈ Sα, i.e., Φ(x) ≥ α and Φ(y) ≥ α. Then
Ψ(x) ≥ αΘ(x) and Ψ(y) ≥ αΘ(y). Summing these inequalities with the
weights λ and 1−λ we obtain

λΨ(x) + (1−λ) Ψ(y) ≥ α
(
λΘ(x) + (1−λ) Θ(y)

)
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which is equivalent to

λΨ(x) + (1−λ) Ψ(y)

λΘ(x) + (1−λ) Θ(y)
≥ α.

Together with (15) this implies Φ
(
λx + (1−λ)y

)
≥ α, that is, under our

assumptions λx+ (1−λ) y ∈ Sα too. 2

A quasiconcave function is known to reach its minimum at extreme points
of its convex domain of definition [2]. Thus, for each i = 1, 2, . . . ,m, the
expressions in the braces in (10) attain their minimal values on A ∈ A at
vertices of the interval vectors ( ai1, ai2, . . . , ain), and they can be found by
exhaustive search. Then we take the minimum over i. The complexity of
this algorithm, which is proportional tom ·2n, can be considerably dicreased
if the item-by-item examination of the vertices is carried out in a special
manner, passing at each step to an adjacent vertex and recalculating the
sums mid bi−

∑n
j=1 aijxj and

∑n
i=1 |aij| reccurently. In such an algorithm

[16] the reduction in complexity is larger, the larger the dimension of the
problem, but the exponentiality is still not overcome. For this reason the
practical significance of these exhaustive algorithms is limited only to the
problems of moderate dimension.

As is seen, for computing the value (10), we need a more advanced al-
gorithm having precision better than that of (13), but with complexity less
than that of the exhaustive algorithm rested on the Theorem 3. Such an
algorithm was developed in [16]. With the well known “branch and bound
method” as a basis, it occupies an intermediate position between the sim-
plest algorithm (13) and the exhaustive algorithms. Its running time is
exponential with respect to the dimension only in the worst case (as in all
methods of this kind), but, due to its flexible computational scheme, it can
be successfully applied to the problems of any size.

6 Acknowledgments

The author would like to thank the organizer of the conference MMSC-
93 (September 14–17, 1993, Sozopol, Bulgaria), Prof. Svetoslav Markov,
for conducting an extremely pleasant and productive meeting at which the
present results had been reported, as well as the anonymous referee for his
valuable suggestions that helped to improve the style of the paper.



Solving the Tolerance Problem for Interval Linear Systems 25

References

[1] Alefeld, G. and Herzberger, J. Introduction to interval computations.
New York, Academic Press, 1983.

[2] Bazaraa, M. S. and Shetty, C. M. Nonlinear programming. Theory and
algorithms. John Wiley and Sons, New York, 1979.

[3] Dobronets, B. S. and Shaidurov, V. V. Two-sided numerical methods.
Novosibirsk, Nauka, 1990 (in Russian).
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