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Several definitions for the interval extension (IE) F(X) of a function
f(x) are known. To facilitate constructing and analysing interval algorithms,
it is desirable that the three general requirements of I E be fulfilled:

1. Reliability in computation.

2. Compositional property (C'P): if mappings F;(z) are I E’s of functions
fi(x) then the composition of F; is I E for analogous composition of
fi (here z, f(x) € R; X, F(X) are closed intervals).

3. Capability to describe as many as possible of the known interval pro-
cesses.

We consider four models of IE. Firstly, the classical definition was
proposed by R. E. Moore in 1966 [1]|. It supposes two conditions:

flz) © F(z), where f(X)={f(x):ze X}, (1)
fl@) = F(z)=F([z,z]). (2)
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Secondly, the Shokin’s definition [2] supposes only (1).

This condition is very important: when it is off, interval computations
do not yield guaranteed results. Thus, the condition (1) might be named
“basic inclusion of interval analysis.”

Thirdly, the definition from [3] supposes only (2). The basic inclusion
(1) follows from (2) when mapping F'(X) is inclusion monotonic (IM).

Fourthly, the definition from [4| supposes besides (1) two following con-
ditions:

(3) mapping F'(X) is I M;

(4) for each € > 0 such a number 6 > 0 exists, that w(X) < 0 =
w(F(X)) < e, where w(X) is the width of interval X.

The I'E for functions of several variables are defined analogously.

We can see that condition (1) is a part of all definitions. It is the only
condition of Shokin’s IE, which thus can be easily implemented on com-
puter, and its C'P evidently holds.

Further, the equality (2) is not guaranteed in practical computations,
since real values of f are rarely represented by computer numbers. Therefore,
Moore’s [ E' cannot be implemented on computer at all.

Furthermore, I E' definition from [3] is not applicable to interval processes
with non-proved inclusion monotonicity:.

And finally, definition from [4] causes difficulties in investigations of com-
putations. Indeed, 6 cannot be less than minimal distance between adjacent
computer numbers. Thus, finding proper ¢ is sometimes impossible.

Thus, the [ E as defined in [1, 3, 4] is convenient only for description of
purely theoretical, “paper” interval processes.

That is why I use Shokin’s I F from [2]| as the main concept of interval
computations in my lectures. One might introduce a special name for such
an extension, for example inclusion function [5], weak interval extension and
interval enclosure [6], interval expansion [7], or use just interval extension.

For the I E in this sense, the two theorems on the compositions are true:
Theorem 1. The above-mentioned C'P is valid.

Theorem 2. If mappings X — F;(X) are IM, then their composition
is also I M.
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These statements are very convenient in lectures on interval computa-

tions as basic theorems.
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