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Solving Systems of Ordinary
Differential Equations Using Adams’

Interpolation Method with Guaranteed
Accuracy

Oleg B. Ermakov

A technique of constructing two-sided approximations for solution of a system
of ordinary differential equations based on an implicit Adams’ method is con-
sidered which takes account of truncation and rounding errors. Errors in the
input data are taken into account at the stage of numerical solution using the
PASCAL–XSC compiler, which implements a built-in interval vector-matrix
arithmetic.

Решение системы обыкновенных
дифференциальных уравнений

интерполяционным методом Адамса
с гарантированной точностью

О. Б. Ермаков

Рассматривается способ построения двусторонних приближений решения
системы обыкновенных дифференциальных уравнений на основе неявного
метода Адамса с учетом погрешности метода и погрешностей округлений.
Погрешности входных данных учитываются на этапе численного реше-
ния посредством применения компилятора PASCAL–XSC со встроенной
интервальной векторно-матричной арифметикой.
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Let us consider the problem of obtaining a guaranteed two-sided estimate
for solution of a system of ordinary differential equations (ODE) in the form
of

y′ = f(t, y), (1)
y (t0) ∈ [y0] (2)

where y, f ∈ Rn, [y0] :=
[
y
0
, y0

]
∈ I (Rn), with inaccurate initial data using

an interpolative Adams’ method. Let the right-hand sides of (1) be defined
and continuous in the open domain D ⊂ Rn+1 = {t, y1, . . . , yn} and sat-
isfy the off-diagonal monotonicity condition in this domain [1, p. 235]: each
function fi(t, y)

(
i = 1, n

)
does not decrease on y1, . . . , yi−1, yi+1, . . . , yn, i.e.

from y
(1)
1 ≤ y

(2)
1 , . . . , y

(1)
i−1 ≤ y

(2)
i−1, y

(1)
i = y

(2)
i , y

(1)
i+1 ≤ y

(2)
i+1, . . . , y

(1)
n ≤ y

(2)
n

it follows that fi(t, y(1)) ≤ fi(t, y
(1)). This condition is satisfied if inter-

section of D and a plane t = τ is convex in Rn
y for any τ and ∂fi

∂yj
≥

0,
(
i 6= j; i, j = 1, n

)
. As in [2], we append a constant interval vector q :=[

q, q
]
∈ I (Rn) , q

i
< 0, 0 < qi to the right-hand side of the system (1) such

that the error of Adams’ method and rounding errors are overcompensated
for upper functions and undercompensated for lower ones. The case of one
equation is considered in [3]. Inaccurate input data of the problem (1)–
(2) is taken into account during numerical solution using a PASCAL–XSC
compiler that implements built-in interval arithmetic. In this context, in
the nodes of the net tk ∈ [t0, T ]

(
tk := t0 + kh, t0 + ph = T, k = 1, p

)
the

inclusion is guaranteed
y (tk) ∈

[
y
k
, yk

]
(3)

where y
k
, yk are the approximate values of lower and upper functions of the

ODE system (1), respectively.
Thus, in order to approximate values of lower and upper functions [yk] :=[

y
k
, yk

]
∈ I (Rn) of the system (1), where k = m− 1, p , we use the formula

[yk] := [yk−1]⊕ h⊗
m−1∑
ν=0

c∗ν ⊗
(
F
(
tk−ν, [yk−ν]

)
⊕ q
)

(4)

where c∗ν are the coefficients of the Adams’ interpolation formula (see e.g.
[4]), F (t, [y]) is a natural interval extension [5] of the function f (t, y), and
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⊕,⊗ are the machine arithmetic operators that allow construction of two-
sided approximations that take the rounding errors βi,k into account. Let
us introduce the functions y

k−1(t), yk−1(t) ∈ Rn, k = 1, p, which are
exact solutions of (1) given the initial conditions y

k−1 (tk−1) = y
k−1 and

yk−1 (tk−1) = yk−1 for constructing lower and upper functions, respectively.
Actually, the interval-valued function [yk−1 (t)] :=

[
y
k−1 (t) , yk−1 (t)

]
such

that [yk−1 (tk−1)] :=
[
y
k−1, yk−1

]
is thus introduced which is represented

by its boundary real-valued functions. Below we will consider the case of
constructing upper functions (if not stated otherwise). If ρk is the error of
the underlying Adams’ method, then

yk−1 (tk) = yk−1 (tk−1) + h

m−1∑
ν=0

c∗νf
(
tk−ν, yk−1 (tk−ν)

)
− ρk.

Let also
∆k := yk − yk−1 (tk) , k = 1,m− 1 (5)

be the actual local errors of computing the starting points y0, . . . , ym−1 so
that

∆i,k ∈ [0,∆i] (6)

where ∆i := max1≤k≤m−1 ∆i,k, i = 1, n. Estimating (5), we can establish
conditions under which the inclusions (6) hold for m − 1 ≤ k ≤ p as well.
In order to construct lower solutions we apply the same reasoning using
functions y

k−1 (t).

Theorem. Let the following conditions be satisfied in the domain D ⊆
Rn+1:

1) fi(t, y1, . . . , yn), i = 1, n are m times differentiable in D;

2) (tk, [yk]) ∈ D, k = m− 1, p, where [yk] are found in accordance with
(4);

3) βi,k + ρik ∈
[
γ
i
, γi

]
⊆
[
γ, γ
]
, k = m− 1, p,

∂fi
∂yj
∈
[
li, li

]
⊆
[
l, l
]
,
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+

n∑
σ=1

∂2fi
∂yj∂yσ

fσ +
n∑
τ=1

∂fi
∂yτ

∂fτ
∂yj

∣∣∣∣∣ ≤M, (i, j = 1, n);

4) the starting points y
i,k
, yi,k, k = 1,m− 1 satisfy the inclusions

yi,k − yi,k−1 (tk) ∈ [0,∆i] ⊆ [0,∆],

y
i,k
− y

i,k−1 (tk) ∈ [−∆i, 0] ⊆ [−∆, 0];

5) the parameters ∆, q
i
, qi are such that the following relations hold:

∆ ≥
γ − γ

1− nhc∗0 − nh
(
l − l

)
(η+ − η−) exp (−nhl)− 2nh2b

,

qi = h−1

(
−
γ
i
+ γi

2
+

∆

2

(
1− nhc∗0l + nh

(
η+ + η−

) (
li + li

)
exp (−nhl)

))
,

q
i

= h−1

(
−
γ
i
+ γi

2
− ∆

2

(
1− nhc∗0l + nh

(
η+ + η−

) (
li + li

)
exp (−nhl)

))
where ∆ := max1≤i≤n ∆i and the quantities η+, η−, b are determined
as follows: η+ := η3+η5+· · · , η− := η2+η4+· · · , ηµ+1 := c∗µ+1+· · · +

c∗m, µ = 1, 2, . . . ; b :=
m−2∑
µ=1

bµ, bµ := MΘ
(
|ηµ+2| exp(−nhl) + · · · +

|ηm| exp
(
− nhl(m− µ− 1)

))
, Θ :=

(
1− exp(−nhl)

)
/(nhl).

Then at the points tk ∈ [t0, T ], k = m− 1, p, we have the solution of
the problem (1)–(2):

y(tk) ∈ [yk] .

Comment. One can estimate the widths of the intervals obtained, for in-
stance, by solving the corresponding differential equation for the difference
of upper and lower functions with already known corrections q and q. An-
other method to get this estimate is to directly measure the intervals [yk] of
(4) with q := [q, q], taking into account item (5) of the Theorem.

Based on this Theorem, we can propose the following algorithm for con-
structing upper (lower) functions of the solution of (1)–(2) using Adams’
interpolation method.

To get the values of the upper (lower) functions by (4), one must have
certain starting points (intervals). These starting values [yk] , k = 1,m− 1
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can be obtained, for instance, by Euler’s method. In this case the actual
local error is equal to the sum of the errors of the method and rounding
errors. Indeed,

[yk] = [yk−1]⊕ h⊗
(
F
(
tk−1, [yk−1]

)
⊕ q∗

)
(7)

where q∗ :=
[
q∗, q∗

]
∈ I (Rn) is the correction constant for the right-hand

side of (1) for Euler’s method. Analogously, we can find the value of the
actual local error for upper functions:

∆i,k := yi,k − yi,k−1 (tk)

= h
(
f(tk−1, yk−1)− f

(
tk−1, yk−1 (tk−1)

))
+ βi,k + ρi,k + hq∗i

= βi,k + ρi,k + hq∗i (8)

Let βi,k + ρi,k ∈
[
γ∗
i
, γ∗i

]
, i = 1, n. Using the theorem on monotonicity with

respect to inclusion [5], we require that the correction constants in (8) for
obtaining starting points by Euler’s method q∗i , i = 1, n satisfy the condition[

γ∗
i
, γ∗i

]
+ hq∗i ⊆ [0,∆i].

Consequently, for any value of the actual local error in the starting points,

∆i ≥ γ∗i − γ∗i , i = 1, n (9)

it is possible to determine the correction vector

q∗i = h−1
(
−
γ∗
i

+ γ∗i
2

+
∆i

2

)
.

The reasoning is analogous in the case of constructing lower functions.
After we have calculated starting values of the upper function by Euler’s

method with the actual local error as defined in (9), we must estimate the
values in item (3) of the theorem and then inspect the inclusions

[0,∆i] ⊆ [0,∆] (10)

where ∆ is determined from item (5) of the Theorem. If (10) proves true,
then the solution is sought using (4). Otherwise, the step h must be de-
creased and the procedure repeated.
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In conclusion, we would like to note that the whole process of construct-
ing upper (lower) solutions of the problem (1)–(2) includes three major steps:
choosing starting points for obtaining two-sided approximations as described
in [2], computing guaranteed solutions using an extrapolation method [2],
and refinement of the estimate obtained by the interpolation method de-
scribed in the present paper.
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