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Suboptimal Enclosures for the Interval
Buneman Algorithm for Arbitrary

Block Dimension
Hartmut Schwandt

The interval arithmetic Buneman algorithm is a “fast solver” for a class of
block tridiagonal systems with interval coefficients. In [11], we have introduced
a modification for arbitrary block dimension. In the present paper, we discuss
enclosure properties depending on the block dimension of the coefficient matrix
in selected cases for which optimal enclosures cannot be expected.

Субоптимальные включения в
интервальном алгоритме

Бунемана при произвольной
размерности блоков

Х. Швандт

Алгоритм Бунемана, использующий интервальную арифметику, пред-
ставляет собой быстрый решатель для определенного класса блочных
трехдиагональных систем с интервальными коэффициентами. В [11] нами
предложена модификация этого алгоритма, допускающая произвольную
размерность блока. В настоящей работе рассматриваются включающие
свойства алгоритма в зависимости от блочной размерности матрицы ко-
эффициентов для некоторых случаев, в которых невозможно получение
оптимальных включающих множеств.
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1 Introduction

The interval arithmetic analogue of one of the “classical” fast Poisson solves,
the Buneman algorithm [4, 5], is dedicated to the treatment of systems
(M,b) of linear form with a block tridiagonal matrix M = (−S,A,−T),
where S, T are real p × p matrices, p ∈ N, where A is a p × p matrix
with real compact intervals as coefficients and where b is a vector with
N interval components, N = pq, q ∈ N. The specific form of M re-
sults from necessary commutativity conditions, which are satisfied in the
main applications of IBU as a “linear” solver in Newton-like interval meth-
ods for nonlinear systems of equations resulting from difference methods
for almost linear partial BVP [8, 9]. In contrast to the solution of linear
point (i.e. noninterval) systems, an interval method like the interval Bune-
man algorithm IBU yields an interval vector including the set of solutions
SOL(M,b) := {x ∈ RN |Mx = b,M ∈M, b ∈ b} ⊆ x := IBU(M,b). As,
in general, SOL(M,b) is not an interval vector, we can at most expect x to
be an optimal enclosure, i.e. the tightest interval vector including this set
[1, 3]. In a previous paper [11], we have introduced a modification IBUD for
arbitrary block dimension. The original Buneman algorithm is defined for a
block dimension of the form q = 2r+1−1 [4, 5]. A more flexible choice of q is,
however, often desirable if IBU(D) is applied as part of other algorithms. As
an example we mention a domain decomposition method [12] where IBUD
is needed for the treatment of systems on rectangular subdomains whose
number and size just depend on the restriction on q. Suboptimal enclosures
which are discussed in the present paper are admissible if only a reduced pre-
cision of the results is required or if their difference to an optimal enclosure
can be neglected relative to the machine precision. Newton-like methods in
which IBU(D) is used as a “linear” solver can be typical applications for the
latter case. In analogy to the corresponding noninterval algorithm which is
applicable to point systems Mx = b, M = (−S,A,−T) of arbitrary block
dimension and arbitrary block size [13], the interval method IBUD can be
carried out for interval systems for any value of q, but optimal enclosures
can be guaranteed under suitable conditions only for particular values for q
while the size of the blocks can be arbitrary. In the present paper, we mod-
ify IBUD for an efficient treatment of a nonoptimal block dimension and
we develop an estimate for the additional width by which it can be decided
whether acceptable enclosures can be obtained. The theoretical results are
illustrated by numerical examples.
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2 Notation and basic results

For the introduction of interval arithmetic and interval methods, we re-
fer to [1], for example. We denote real numbers by a, . . . , z or by Greek
letters, real point vectors and matrices by a, . . . , z and A, . . . ,Z, resp.,
intervals by A, . . . , Z, real interval vectors and matrices by a, . . . , z and
A, . . . ,Z, resp. We consider real, compact intervals: A = [i(A), s(A)],
i(A) := min{a|a ∈ A}, s(A) := max{a|a ∈ A}. For interval vectors and
matrices we use the notation a = (Ai)

N
i=1 = [i(a), s(a)] =

(
[i(Ai), s(Ai)]

)N
i=1

and A = (Ai,j)
N
i,j=1 = [i(A), s(A)] =

(
[i(Ai,j), s(Ai,j)]

)N
i,j=1

, where the
bounds are defined componentwise. We use the componentwise ordering:
A ≤ B ⇔ ∀i, j ∈ {1, . . . , N} : ai,j ≤ bi,j. I(R), VN

(
I(R)

)
, MNN(R),

MNN

(
I(R)

)
denote the sets of real compact intervals, N -dimensional inter-

val vectors, N × N point and interval matrices, resp. The absolute value,
midpoint, width of an interval are defined by |A| = max{|i(A)|, |s(A)|},
m(A) =

(
i(A) + s(A)

)
/2, d(A) =

(
s(A)− i(A)

)
/2.

We further define [x] := min{i ∈ N|i ≤ x} for arbitrary x ∈ R+.
A real point matrix A is called an M matrix if ai,j ≤ 0 for i 6= j, if A−1

exists and if A−1 ≥ O (see [14], e.g.). An interval matrix A is called an
interval M matrix if all A ∈ A are M matrices. By ρ(A) and spec(A), we
denote the spectral radius and the spectrum of a quadratic real matrix A.

Lemma 2.1. If A, B ≥ O, if all eigenvectors of A are eigenvectors of B
and if A has an eigenvector c > 0, then ‖A‖c,c ≤ ρ(A), ‖B‖c,c ≤ ρ(B)
in the matrix norm corresponding to the monotone vector norm ‖x‖c :=

max
1≤i≤N

{
|xi|
ci

}
.

Proof. The relation Ac = λc with λ ∈ spec(A) is equivalent to λ =

1
ci

N∑
j=1

ai,jcj > 0 ∀ 1 ≤ i ≤ N . For arbitrary x ∈ RN this implies
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‖Ax‖c = max
1≤i≤N

{
1

ci

∣∣∣∣∣
N∑
j=1

ai,jxj

∣∣∣∣∣
}
≤ max

1≤i≤N

{
1

ci

N∑
j=1

ai,jcj
|xj|
cj

}
≤ λ‖x‖c ≤ ρ(A)‖x‖c.

c is also an eigenvector of B, therefore there exists µ ∈ spec(B) such that
Bc = µc, hence µ > 0 and ‖Bx‖c ≤ µ‖x‖c ≤ ρ(B)‖x‖c as above. 2

Corollary 2.2. Under the conditions of Lemma 2.1, the following assertions
hold:
(a) A ≥ O irreducible ⇒ ‖A‖c,c = ρ(A);
(b) Bc = ρ(B)c⇒ ‖B‖c,c = ρ(B).

Proof. If A ≥ O is irreducible, the theorem of Perron-Frobenius implies the
existence of a unique eigenvector c > 0 to the eigenvalue ρ(A) of A ([14],
Th. 2.1). The second assertion is obvious from the proof of Lemma 2.1. 2

For elementary rules of interval analysis we refer to [1], for example. For
convenience we mention some of these rules which are particularly significant
for the present paper.

A,B,C,D ∈ I(R), A ⊆ B,C ⊆ D, • ∈ {+,−, ∗, /}
(1)

⇒ A •B ⊆ C •D;

X = −X ⇒ X =
1

2
d(X)[−1, 1];

(2)
x = −x⇒ Ax = −Ax = |A|x;

A,B ≥ O⇒ ∀x ∈ VN

(
I(R)

)
: A(Bx) = (AB)x; (3)

i(A), i(B) ≥ O⇒ ∀x ∈ VN

(
I(R)

)
: (A + B)x = Ax + Bx; (4)

i(A) ≥ 0⇒ d(A) ≤ s(A); (5)

A ∈ MNN(R)⇒ ∀x ∈ VN

(
I(R)

)
: d(Ax) = |A|d(x); (6)

0 ∈ A⇒ ∀B ∈ I(R) : 0 ∈ AB; (7)

i(A), i(B) ≥ 0⇒ i(AB) = i(A)i(B) ≥ 0;
(8)

s(A) ≤ 0 ≤ i(B)⇒ s(AB) = s(A)i(B) ≤ 0.

The following elementary properties are relevant for the use of any in-
terval method LES for the treatment of systems of linear form (A,y).
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∀A ∈ MNN

(
I(R)

)
, y, z ∈ VN

(
I(R)

)
:

LES(A,y + z) ⊆ LES(A,y) + LES(A, z); (9)

∀A ∈ MNN(R), y, z ∈ VN

(
I(R)

)
:

LES(A,y + z) = LES(A,y) + LES(A, z); (10)

∀A ∈ MNN

(
I(R)

)
, y ∈ VN

(
I(R)

)
, α ∈ R :

LES(A, αy) = αLES(A,y); (11)

∀A,B ∈ MNN

(
I(R)

)
, y, z ∈ VN

(
I(R)

)
:

A ⊆ B, y ⊆ z⇒ LES(A,y) ⊆ LES(B, z); (12)

An → A, yn → y (n→∞)⇒
LES(An,yn)→ LES(A,y) (n→∞). (13)

The tightest interval vector which still includes the set of solutions
SOL(A,y) is called an optimal enclosure of SOL(A,y). The following cases
are typical for optimal enclosures:

If A ∈ MNN

(
I(R)

)
is an interval M matrix, then

a) A ≡ A ∈ MNN(R)⇒ ∀y ∈ VN

(
I(R)

)
:

LES(A,y) =
[
A−1i(y),A−1s(y)

]
= A−1y

b) 0 ∈ y ⇒ LES(A,y) =
[(

i(A)
)−1

i(y),
(
i(A)

)−1
s(y)

]
;

o ∈ LES(A,y)

c) 0 ≤ i(y) ⇒ LES(A,y) =
[(

s(A)
)−1

i(y),
(
i(A)

)−1
s(y)

]
;

i
(
LES(A,y)

)
≥ o

d) s(y) ≤ 0 ⇒ LES(A,y) =
[(

i(A)
)−1

i(y),
(
s(A)

)−1
s(y)

]
;

s
(
LES(A,y)

)
≤ o.

(2.14)

3 The algorithm

The subsequent discussion is based on an algorithm for IBUD which has
been derived in [11]. For convenience, we repeat its formulation and we
briefly recall the main properties. We assume:

A system of linear form (M,b), where b ∈ VN
(
I(R)

)
, M =

(−S,A,−T) ∈ MNN

(
I(R)

)
block tridiagonal with q block

rows, S,T ∈ Mpp(R), A ∈ Mpp

(
I(R)

)
, N = pq, p, q ∈ N.

(3.1)
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The system under consideration is one with a block tridiagonal interval
matrix with, except for the first and last, identical block rows. In [11], we
followed principally the ideas of the Buneman algorithm. Starting from a
point system Mx = y with M ∈ M, b ∈ b, block cyclic reduction first
yields reduced systems M(r)xr = br, M(r) ∈ Mpjr,pjr(R), xr, br ∈ Vpjr(R),
0 ≤ r ≤ rq, rq = [log2(q)] + 1, where

M(r) =


A(r) −T(r)

−S(r) A(r) −T(r)

. . . . . . . . .
−S(r) A(r) −T(r)

−S(r) B(r)
(
C(r)

)−1

 ,

(2)

xr =


x2r

x2r+1

...
xjr−2r

xjr

 , br =


br2r

br2r+1

...
brjr−2r

brjr

 .

In the sequel, superscripts on real numbers, intervals, real and interval
vectors and matrices indicate reduction or solution steps of (block) cyclic re-
duction algorithms. Parentheses are set to avoid any confusion with powers,
except for vectors: λ(r)i , yrj , X(r), A(r), e.g.

An arbitrary block dimension q can be handled due to the introduction of
the matrices B(r), C(r) in the last block equation [13]. The instability of this
block cyclic reduction procedure is avoided in the Buneman algorithm and
its variants by replacing the brj by auxiliary vectors and by a factorization
of the matrices A(r), B(r), C(r). For 0 ≤ r ≤ rq, we obtain

A(r) =
2r∏
i=1

(
A− α(r)

i U
)
, α

(r)
i = 2 cos

(
2i−1
2r+1 π

)
,

B(r) =

kr∏
i=1

(
A− λ(r)i U

)
, λ

(r)
i = 2 cos

(
i

kr+1π
)
,

C(r) =

lr∏
i=1

(
A− µ(r)i U

)
, µ

(r)
i = 2 cos

(
i

lr+1π
)

(3.3)
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where k0 = 1, l0 = 0, and

kr+1 =

{
kr + 2r

kr + 2r+1.
lr+1 =

{
lr if qr even,
kr if qr odd.

(3.4)

Starting from M ∈M, b ∈ b, the interval arithmetic evaluation [1] of the
resulting real point system, mainly by the repeated application of (2.1) and
(2.12), leads to the following algorithm (3.5) from [11] to which we refer in
the sequel. In (3.5) LẼS denotes a partial algorithm for the treatment of par-
tial systems with the matrices A(r). LẼS will be defined in detail after (3.5).

Modified IBU for arbitrary block dimension (IBUD) (3.5)

q0 = j0 = q, rq = [log2(q)] + 1; rs := min{r|0 ≤ r ≤ rq, qr even}
S(0) = S; T(0) = T; U(0) = U =

√
ST; x0 = xq+1 = o;

reduction phase

for j := 1 to q do p0
j = o; q0

j = bj;

for r := 0 to rs − 1 do

S(r+1) =
(
S(r)
)2

; T(r+1) =
(
T(r)

)2
; U(r+1) = S(r)T(r);

qr+1 = qr div 2; jr+1 = jr − 2r; kr+1 = kr + 2r+1; lr+1 = kr;

for j := 2r+1 step 2r+1 to jr+1 do

pr+1
j = prj + LẼS

(
A(r), S(r)prj−2r + T(r)prj+2r + qrj

)
;

(3.6a)
qr+1
j = S(r)qrj−2r + T(r)qrj+2r + 2U(r+1)pr+1

j

for r := rs to rq − 1 do

S(r+1) =
(
S(r)
)2

; T(r+1) =
(
T(r)

)2
; U(r+1) = S(r)T(r); qr+1 = qr div 2;

if qr even then

jr+1 = jr; kr+1 = kr + 2r; lr+1 = lr;

pr+1
jr+1

= prjr+1
+ LẼS

(
B(r),C(r)

(
S(r)prjr+1−2r + qrjr+1

))
;

(3.6b)
qr+1
jr+1

= S(r)qrjr+1−2r + U(r+1)pr+1
jr+1

else

jr+1 = jr − 2r; kr+1 = kr + 2r+1; lr+1 = kr;
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pr+1
jr+1

= prjr+1
+ LẼS

(
A(r), S(r)prjr+1−2r + T(r)prjr+1+2r + qrjr+1

)
;
(3.6c)

qr+1
jr+1

= S(r)qrjr+1−2r + U(r+1)pr+1
jr+1

+ LẼS
(
B(r),C(r)A(r)

(
T(r)qrjr+1+2r + U(r+1)pr+1

jr+1

))
;

for j := 2r+1 step 2r+1 to jr+1 − 2r+1 do

pr+1
j = prj + LẼS

(
A(r), S(r)prj−2r + T(r)prj+2r + qrj

)
;

qr+1
j = S(r)qrj−2r + T(r)qrj+2r + 2U(r+1)pr+1

j

solution phase

if rs = rq then x2rq = p
rq
2rq + LẼS

(
A(rq),q

rq
2rq

)
else x2rq = p

rq
2rq + LẼS

(
B(rq),C(rq)q

rq
2rq

)
;

for r := rq − 1 step −1 to min{rs, rq − 1}+ 1 do

for j := 2r step 2r+1 to jr − 2r do

xj = prj + LẼS
(
A(r), S(r)xj−2r + T(r)xj+2r + qrj

)
;

if qr odd then

xjr = prjr + LẼS
(
B(r),C(r)

(
S(r)xjr−2r + qrjr

) )
;

for r := min{rs, rq − 1} step −1 to 0 do

for j := 2r step 2r+1 to jr do

xj = prj + LẼS
(
A(r), S(r)xj−2r + T(r)xj+2r + qrj

)
.

For the solution of the partial systems, we define the abstract method
LẼS as follows. Instead of A(r), B(r), C(r), we use interval extensions [1]
A−αU of the matrices A−αU. LES denotes any interval method which is
applicable to coefficient matrices A−αU. Typical examples are the interval
Gauss algorithm IGA [1], interval arithmetic cyclic reduction ICR for tridi-
agonal systems [10], the interval Cholesky algorithm [2] or IBU(D) itself in
discretizations of three-dimensional problems.

z = LẼS
(
A(r),y

)
: (3.7)

z0 = y

for i := 1 to 2r do zi = LES
(
A− α(r)

i U, zi−1
)

z := z2r
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z = LẼS
(
B(r),C(r)y

)
: (3.8)

z0 = y

for i := 1 to lr do

zi = zi−1 +
(
λ
(r)
i − µ

(r)
i

)
ULES

(
A− λ(r)i U, zi−1

)
for i := lr + 1 to kr do zi = LES

(
A− λ(r)i U, zi−1

)
z := zkr .

As already mentioned in [11], nonoptimal enclosures are caused by step
(3.6c). Therefore, we have determined in that paper all values of the block
dimension q for which step (3.6c) is never used. In the present context, our
goal is to consider nonoptimal values of q. We use the following algorithm
for (3.6c) which will be justified in the next section:

z = LẼS
(
B(r),C(r)A(r)y

)
:

z0 = y

for i := 1 to kr − 1 do

zi = zi−1 +
(
λ
(r)
i − γ

(r)
j(i)

)
ULES

(
A− λ(r)i U, zi−1

)
(3.9)

zkr = zkr−1 +
(
λ
(r)
kr
− γ(r)j(kr)

)
ULES

(
A− λ(r)kr U, zkr−1

)
z := zkr

where(
γ
(r)
i

)kr
i=1

:= merge
{(
µ
(r)
i

)lr
i=1
,
(
α
(r)
i

)2r
i=1
|γ(r)i+1 ≤ γ

(r)
i

}
, γ

(r)
1 = α

(r)
1 (3.10)

i.e. the γ(r)i are ordered by size. In the sequel, we use the ordering

j(i) = i+ 1 (1 ≤ i ≤ kr − 1); j(kr) = 1 (3.11)

which will be discussed in the next section under the aspect of controllable
enclosures. Principally, any ordering is admissible. Note that we have shown
in [11] for (3.8) that

∀r ∈ {1, . . . , rq} ∀i ∈ {1, . . . , lr} : λ
(r)
i ≥ µ

(r)
i . (3.12)

We summarize the main properties of IBUD from [11] in the following
theorem. α is defined as one of the roots α(r)

i , λ(r)i , µ(r)i of (3.3).
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Theorem 3.1. Assume (3.1). Under the conditions

(a) ∀A ∈ A: AS = SA, AT = TA, and ST = TS

(b) U =
√

ST ≥ O, i.e. U2 = ST, and U−1 exists
(c) LES is an interval method for systems with the coefficient structure

of (A− αU,y)

(d) LES is applicable to interval M matrices and satisfies (2.9)–(2.13)
(e) LES yields optimal enclosures for SOL(A − αU,y) according to

(2.14, a–d)
(f) M and A + α

rq
1 U, A− αrq1 U are interval M matrices,

the following assertions hold:

1) IBUD can be applied to (M,b) and satisfies (2.9)–(2.13)
2) SOL(M,b) ⊆ LES(M,b)

3) ∀r ∈ {0, . . . , rs − 1} : A(r) = B(r)
(
C(r)

)−1; IBU and IBUD coincide
in these steps.

If, in addition,

(g) q = 2n(2m + 1)− 1, n,m ∈ N,

then

4) IBUD yields optimal enclosures of (3.1) according to (2.14, a–d).

The assertions 1 and 2 also hold for interval H matrices [11]. Note that for
M = (−S,A,−T) condition (f) implies S,T ≥ O, U ≥ O. (b) is satisfied,
for example, for S = T, T invertible, or S = αI, T = βI, α, β > 0 and (a)
for A = A + DI. Typical problems result from standard discretizations of
elliptic BVP with difference methods. As simple characteristical examples
(see [9]), we mention discretizations of Dirichlet problems Lu = f on a
rectangle Ω, u = g on ∂Ω, with central difference quotients on a grid with
constant mesh size:

(i) the nine point formula for Lu = uxx+uyy leading to A = (−4, 20,−4),
S = T = (1, 4, 1),
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(ii) a five point formula for Lu =
(
a(x)ux

)
x

+ buyy, a, b > 0, leading to
A = (−γi−1, 2β + γi−1 + γi,−γi), S = T = βI,

(iii) a five point formula for Lu = a(x)uxx + buyy + c(x)ux + duy + e(x)u,
a, b > 0, e ≥ 0, under appropriate conditions on the mesh size leading
to A = (−γi, εi + α + β,−δi), S = αI, T = βI.

Interval matrices M, i.e. A = A + DI result, for example, from the
application of IBU(D) in Newton-like methods whereD is due to the interval
arithmetic treatment of the nonlinearity of problems like f(x) = Mx+ϕ(x) =
o with a diagonal function ϕ, where ϕ′ ≥ 0 on Ω (see [9]).

4 Suboptimal enclosures

Theorem 3.1 shows that IBUD can be carried out for arbitrary q under
appropriate conditions while optimal enclosures can be expected only for
particular q. The nonoptimality is reflected by an increased interval width,
due to a change of sign in one or more of the terms λ(r)i −γ

(r)
j(i) in (3.6c). Based

on the ordering (3.11), we prove a qualitative result for the dependence of
the additional width for nonoptimal q on the diagonal dominance of A and
we develop an estimate of this width for a restricted set of values for q which
are candidates for a moderate increase of the width. In a noninterval system
Mx = y, the problem posed by (3.6c) is reduced to the solution of systems
of the form

kr∏
i=1

(
A− λ(r)i U

)
x =

lr∏
i=1

(
A− µ(r)i U

) 2r∏
i=1

(
A− α(r)

i U
)
y. (4.1)

From the definition of the kr and lr, it follows that

(a) kr = lr + 2r (b) 0 ≤ lr ≤ 2r (c) 2r ≤ kr < 2r+1. (4.2)

By merging the α(r)
i and µ(r)i appropriately

(
compare (3.10)

)
, (4.1) can

be simplified to

kr∏
i=1

(
A− λ(r)i U

)
x =

kr∏
i=1

(
A− γ(r)i U

)
y. (4.3)
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In the interval case, we have to deal with matrices A− αU. After some
manipulations in (4.1) [13] and a subsequent interval extension of (4.3), we
get (3.9). This formula ensures that multiplications by A on the right-hand
sides of interval systems are avoided. In a first step, we justify the ordering
(3.11). In the sequel, we assume r, 0 ≤ r ≤ rq, to be arbitrary, but fixed.

Lemma 4.1. In the case of nontrivial use of (3.6c), i.e. q 6= 2n(2m+1)−1,
n,m ∈ N, the following relation holds:

∀r ∈ {1, . . . , rq} ∀i ∈ {1, . . . , kr} : λ
(r)
i < α

(r)
i .

Proof. According to (4.2) we note kr + 1 ≤ 2r+1 where equality only holds if
qs is odd for all s ≤ r, i.e. kr = 2r+1−1 =

∑r
i=0 2i. Therefore, kr+1 ≤ 2r+1

which is equivalent to i
kr+1 >

1
2r+1 , i.e. the above assertion holds. 2

Corollary 4.2. There does not exist an ordering such that

∀i ∈ {1, . . . , kr} :

∃j ∈ {1, . . . , 2r} : λ
(r)
i ≥ α

(r)
j or ∃k ∈ {1, . . . , lr} : λ

(r)
i ≥ µ

(r)
k .

Lemma 4.1 and Corollary 4.2 show that optimal enclosures cannot be
expected by IBUD if (3.6c) and (3.9), resp., are involved. In the sequel, we
use the abbreviations

l(i) :=
i

lr + 1
, a(i) :=

2i− 1

2r+1
, k(i) :=

i

kr + 1
.

Lemma 4.3. Each of the intervals
[
− 2, λ

(r)
kr

]
,
[
λ
(r)
1 , 2

]
,
[
λ
(r)
i , λ

(r)
i+1

]
, 1 ≤

i ≤ kr − 1, contains at most one α(r)
j and one µ(r)k .

Proof. We first note 1
kr+1 ≤

1
2r ≤

1
lr+1 which implies for all i ∈ {1, . . . , kr−1},

m ∈ {1, . . . , 2r− 1}, j ∈ {1, . . . , lr− 1} that k(i+1)− k(i) ≤ a(m+1)− a(m) ≤
l(j+1) − l(j). On the other hand, (4.2) yields 1

2r+1 ≤ 1
kr+1 ≤

1
lr+1 , hence

α
(r)
1 ≥ λ

(r)
1 ≥ µ

(r)
1 . The corresponding relation for the other boundary

interval follows from the symmetry of the cosine. 2
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Lemma 4.4.

x, y, z ∈ R+, x = y + z ⇒ [x] ≥ [y] + [z].

Proof. Let f(s) be the fractional part of an arbitrary real number, i.e.
s = f(s) + [s]. The assertion follows from

[x] = [y] + [z], f(x) = f(y) + f(z) if f(y) + f(z) ≤ 1
[x] = [y] + [z] + 1, f(x) = f(y) + f(z)− 1 if f(y) + f(z) > 1.

2

Lemma 4.5. Define card(k(i)) to be the number of k(i) (analogously l(i),
a(i)) in a given interval [0, t], 0 ≤ t ≤ 1. Then

−1 ≤ card(k(i))−
(
card(l(i)) + card(a(i))

)
.

Proof. According to their definition, the distance k(i+1) − k(i) between two
consecutive numbers k(i), k(i+1) (similarly a(i+1)− a(i), l(i+1)− l(i)) is always
the same. This implies card(k(i)) = [tkr] and card(l(i)) = [tlr]. In the case
of the a(i), we have to take account of a(1) − 0 = 1/2r+1 instead of 1/2r

and we get [t2r] ≤ card(a(i)) ≤ [t2r] + 1. The assertion then follows from
Lemma 4.4. 2

Corollary 4.6. Assume an arbitrary subinterval I ⊆ [−2, 2]. The number
of λ(r)i included in I differs by at most 1 from the number of α(r)

j , µ(r)k
included in I.

We summarize the result of the preceding lemmata in

Theorem 4.7. In the case of nontrivial use of (3.6c), i.e. q 6= 2n(2m+1)−1,
n,m ∈ N, we get

λ
(r)
kr
< γ

(r)
1 and λ

(r)
i ≥ γ

(r)
i+1, 1 ≤ i ≤ kr − 1

for the ordering (3.11) where
(
µ
(r)
i

)lr
i=1

,
(
α
(r)
i

)2r
i=1

are merged in
(
γ
(r)
i

)kr
i=1

according to (3.10).
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Proof. According to Lemma 4.1, we have λ(r)kr ≤ λ
(r)
1 < γ

(r)
1 = α

(r)
1 and

α
(r)
2 , µ

(r)
2 ≤ λ

(r)
1 . Therefore, the interval

[
− 2, λ

(r)
1

]
contains kr − 1 γ

(r)
i ,

in particular γ(r)2 , hence λ(r)1 ≥ γ
(r)
2 . Assume now, that λ(r)j ≥ γ

(r)
j+1 for

1 ≤ j ≤ i. According to Lemma 4.5, the interval
(
λ
(r)
i+1, 2

]
contains at most

i+ 1 γ
(r)
j , i.e. γ(r)j ∈

[
− 2, λ

(r)
i+1

]
for i+ 2 ≤ j ≤ kr or λ

(r)
i+1 ≥ γ

(r)
i+2. Finally,

there remain λ(r)kr and γ(r)1 with λ(r)kr < γ
(r)
1 . 2

Theorem 4.7 yields a justification for the ordering (3.11) of the λ(r)i and
γ
(r)
j which is only applied in (3.9). This will enable us to develop easily

computable estimates for the width in (3.9) (see Lemma 4.9) which will be
integrated into an estimate for the overall width of IBUD for nonoptimal
q. In the noninterval case the terms

∣∣λ(r)i − γ(r)j(i)

∣∣ are minimized in order to
minimize the roundoff error [13]. In the interval case, an optimal enclosure
requires λ(r)i ≥ γ

(r)
j(i) which cannot hold for all i. (3.11) can at least ensure

that only one change of the sign in the sequence of the λ(r)i − γ
(r)
j(i), i.e. only

one inequality λ(r)i < γ
(r)
j(i) occurs. We do not claim that this strategy is the

best one as principally any ordering is admissible. As an example we mention
any minimization of the terms

∣∣λ(r)i − γ
(r)
j(i)

∣∣. But the proof of Lemma 4.9
will illustrate that the complexity of estimates for the width for orderings of
this type seems not to be reasonable.

After having defined the final form of (3.9) by Theorem 4.7, we are able to
estimate the additional width of the enclosure vector x = LES(M,b) in the
case of nonoptimal enclosures. In order to achieve this task, we determine
an enclosure

x ⊆ x̃ + x̂ (4.4)

where x̃ ≡ xopt denotes the optimal enclosure according to Theorem 3.1
and where x̂ denotes an enclosure of the additional width occurring for
nonoptimal q. Then we derive an estimate for d(x̂) depending on d(x̃) in a
suitable norm.

The larger enclosures are caused by the application of (3.9) in (3.6c).
Therefore, we first derive an estimate of the form (4.4) for (3.9). In the
sequel, we denote all subvectors leading to x̃ accordingly by “ ˜” and the
corresponding enclosures of the additional width by “ ˆ”. We note some
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conditions which are needed in the subsequent Lemmata and Theorems:

(a)–(f) of Theorem 3.1
(g) ∀A ∈ A : spec(A) = (λi)

p
i=1, spec(U) = (ωi)

p
i=1 ⊂ R

and ∀i ∈ {1, . . . , p} : λi ≥ 2ωi > 0
(h) ∀A ∈ A : all eigenvectors of A are eigenvectors of S,T, and U
(i) ∀A ∈ A : A is irreducible or A has an eigenvector c > 0.

(4.5)

The conditions (g) and (h) enable us to treat nonsymmetric matrices like
in example (iii) after Theorem 3.1. Obviously, (g) and (h) are satisfied for
symmetric positive definite and commuting matrices A, S, T where S = T.

Before we start the discussion of the behaviour of IBUD with respect
to the occurrence of (3.9), we collect in the following lemma some auxiliary
results which are needed in later estimates.

Lemma 4.8. Assume (3.1)–(3.11), (4.5), A ∈ A. Define θ ≡ θ(λ, ω) :=
arcosh

(
λ/(2ω)

)
for λ ≥ 2ω,

sh(m,n, θ) := sinh{mθ}
sinh{nθ} for θ > 0, sh(m,n, 0) := 1 and λmin := 1/ρ(A−1),

ωmax := ρ(U), s := ρ(S), t := ρ(T), θi := θ(λi, ωi), θmin := θ(λmin , ωmax ).

Then

(a) (A− αU)−1 ≥ O for all roots α in (3.3)

S(r),T(r),U(r),
(
A(r)

)−1
,
(
B(r)

)−1
C(r),

(
A−γ(r)1 U

)−1
U
(
B(r)

)−1
C(r)A(r) ≥ O

(b) All eigenvectors of A are eigenvectors of A(r), B(r), C(r), S(r), T(r), U(r)

(c) A(r), B(r), C(r), S(r), T(r), U(r) commute

(d) For 0 ≤ m < n : sh(m,n, θ) ↓ 0 (θ ↑ ∞) and sh(m,n, θ) ≤ 1

(e)
∣∣λ(r)kr − γ(r)1

∣∣ ≤ 4

(f) a(r)γ := ρ
((

A− γ(r)1 U
)−1

U
)

=
1

(λmin/ωmax )− γ(r)1
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(g) b
(r)
S := ρ

((
B(r)

)−1
C(r)S(r)

)
=

(
s

ωmax

)2r

sh{lr + 1, kr + 1, θmin} ≤
(

s

ωmax

)2r

b
(r)
T := ρ

((
B(r)

)−1
C(r)T(r)

)
=

(
t

ωmax

)2r

sh{lr + 1, kr + 1, θmin} ≤
(

t

ωmax

)2r

b
(r)
TU := ρ

((
B(r)

)−1
C(r)T(r−1)U(r−1)

)
=

(
t

ωmax

)2r−1

sh{lr + 1, kr + 1, θmin} ≤
(

t

ωmax

)2r−1

b
(r)
U := ρ

((
B(r)

)−1
C(r)U(r)

)
= sh{lr + 1, kr + 1, θmin} ≤ 1

(h) a(r)S := ρ
((

A(r)
)−1

S(r)
)

=

(
s

ωmax

)2r
1

2 cosh{2rθmin}
≤ 1

2

(
s

ωmax

)2r

a
(r)
T := ρ

((
A(r)

)−1
T(r)

)
=

(
t

ωmax

)2r
1

2 cosh{2rθmin}
≤ 1

2

(
t

ωmax

)2r

a
(r)
U := ρ

((
A(r)

)−1
U(r)

)
=

1

2 cosh{2rθmin}
≤ 1

2

x(r) := ρ
(
X(r)

)
=

1
r∏
i=0

(2ω2r cosh{2rθmin})
≤ 1

2r+1

(i) b(r)γA := ρ
((

A− γ(r)1 U
)−1

U
(
B(r)

)−1
C(r)A(r)

)
= b

(r)
A

ωmax

λmin − γ(r)1 ωmax

≤ 1

λmin/ωmax − γ(r)1

with b(r)A := 1− sh{2r − (lr + 1), 2r + (lr + 1), θmin}

(j) w(r) :=
2r∑
k=1

{s2r−1+kt2r−k + s2
r−kt2

r−1+k} ≤ 2r+1 max{s, t}2r+1−1

(k) a
(r)
γ , a

(r)
S , a

(r)
T , a

(r)
U , b

(r)
γA, b

(r)
S , b

(r)
T , b

(r)
U , b

(r)
TU, x

(r) ↓ 0 (λ ↑ ∞).
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Proof. We first note that each A ∈ A is an M matrix as M is an interval
M matrix. Therefore, A−1 ≥ O and with (4.5, g) λmin = min{λ|λ ∈
spec(A)} = 1/ρ(A−1). In (a) S(r),T(r),U(r) ≥ O follows from the definition
of the corresponding matrices. (4.5, f) and the definition of the roots in
(3.3) imply A− α(r)

1 U ≤ A− αU ≤ A + α
(r)
1 U. Then A− αU is also an M

matrix and O ≤
(
A + α

(r)
1 U

)−1 ≤ (A− αU
)−1 ≤ (A− α(r)

1 U
)−1. This also

implies
(
A(r)

)−1 ≥ O. We further get

(
A− γ(r)1 U

)−1
U
(
B(r)

)−1
C(r)A(r) =

kr−1∏
i=1

(
A− γ(r)i+1U

)−1 kr∏
i=1

(
A− λ(r)i U

)−1
=

kr−1∏
i=1

{
I +
(
λ
(r)
i − γ

(r)
i+1

)
U
(
A− λ(r)i U

)−1}(
A− λ(r)kr U

)−1 ≥ O

(4.6)
and, with (3.12),

(
B(r)

)−1
C(r) =

lr∏
i=1

(
A− µ(r)i U

) kr∏
i=1

(
A− λ(r)i U

)−1
=

lr∏
i=1

{
I +
(
λ
(r)
i − µ

(r)
i

)
U
(
A− λ(r)i U

)−1} kr∏
i=lr+1

(
A− λ(r)i U

)−1 ≥ O.

(4.7)

Parts (b), (c) follow trivially from the definition of the above matrices.
For the proof of (d), we recall that with the substitution θ := arcosh(x),
x := λ/(2ω), x ≥ 1, we can rewrite sh with Chebyshev polynomials of the
second kind

sinh(mθ) =
sinh{mθ}
sinh{θ}

=
m−1∏
i=1

(
2x− λ(m)

i

)
= Um−1(x), λ

(m)
i = 2 cos

iπ

m

as

sh(m,n, θ) =
sinh{mθ}
sinh{nθ}

=

m−1∏
i=1

(
2x− λ(m)

i

)
n−1∏
i=1

(
2x− λ(n)i

) =
Um−1(x)

Un−1(x)
.
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Note that λ(m)
i < 2 and λ ≥ 2ω imply 2x > λ

(m)
i . Differentiation with

respect to x yields

d

dx

(
Um−1(x)

Un−1(x)

)
= 2

m−1∏
i=1

(
2x− λ(m)

i

)
n−1∏
i=1

(
2x− λ(n)i

)
(

m−1∑
i=1

1(
2x− λ(m)

i

)−n−1∑
i=1

1(
2x− λ(n)i

)) < 0.

Because of θ ↑ ∞ ⇔ x ↑ ∞, the monotone convergence to 0 follows from
m < n, in particular from λ

(m)
i < λ

(n)
i . (e) follows from the definition (3.3)

of γ(r)1 , λ(r)kr . As A and U have the same eigenvectors,
(
A−γ(r)1 U

)−1
U has the

eigenvalues ωi/
(
λi − γ(r)1 ωi

)
, where λi − γ(r)1 ωi > λi − 2ωi ≥ 0. Because of(

A−γ(r)1 U
)−1

U ≥ O, the theorem of Perron-Frobenius ([14], Th. 2.1) shows
that a(r)γ is ab eigenvalue, where λi = λmin = 1/ρ(A−1), ωi = ωmax = ρ(U),
hence (f) holds.

According to the factorization (3.3), A(r), B(r), C(r) have the nonnega-
tive eigenvalues ω2r

i cosh{2rθi}, ωkri sinh{(kr+1)θi}/ sinh{θi}, ωlri sinh{(lr+
1)θi}/ sinh{θi} (1 ≤ i ≤ p), resp., ([5, 13]), whose maximum is reached with
(d) for θmin = θ(λmin , ωmax ). With part (b), we get

ρ
((

B(r)
)−1

C(r)S(r)
)

= ρ
((

B(r)
)−1

C(r)
)
ρ
(
S(r)
)

= s2
r

ωlr−krmax sh{lr+1, kr+1, θmin}.

The other relations in (g) can be shown similarly. (h) follows from
cosh{2rθi} ≥ 1. According to (a) and to the ([14], 2.1), ρ

((
A −
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γ
(r)
1 U

)−1
U
(
B(r)

)−1
C(r)A(r)

)
is an eigenvalue, hence

ρ
((

A− γ(r)1 U
)−1

U
(
B(r)

)−1
C(r)A(r)

)
=

kr−1∏
i=1

{
1 +

(
λ
(r)
i − γ

(r)
i+1

) ωmax

λmin − λ(r)i ωmax

}
ωmax

λmin − λ(r)kr ωmax

=
ωmax

λmin − γ(r)1 ωmax

kr∏
i=1

λmin − γ(r)i ωmax

λmin − λ(r)i ωmax

=
(
1− sh

{
2r − (lr + 1), 2r + (lr + 1), θmin

}) ωmax

λmin − γ(r)1 ωmax

≤ 1

(λmin/ωmax )− γ(r)1

(4.8)

(
compare (4.6)

)
. Assertion (j) is trivial. The monotonicity in λ ≡ λmin

follows from (d). For the matrix in (4.8), it can be directly deduced from
the expression after the first equality. 2

After these preparations, we start with the estimation of the additional
width caused by one occurrence of (3.9).

Lemma 4.9. Assume (3.1)–(3.11) and (4.5, a–f). Let z̃ be the vector in
(3.9) corresponding to an optimal enclosure for the global system (M,b) in
one of the cases (a) M ≡ M and arbitrary b, (b) 0 ∈ b, (c) i(b) ≥ o, or (d)
s(b) ≤ o. Then the vector z computed by (3.9) in IBUD satisfies

(a) z = z̃ +
∣∣λ(r)kr − γ(r)1

∣∣(A− γ(r)i U
)−1

U
(
B
(r)
d

)−1
C

(r)
d A

(r)
d d(y)[−1, 1]

(b) z = z̃+
∣∣λ(r)kr − γ(r)1

∣∣(i(A)− γ(r)i U
)−1

U
(
B
(r)
inf

)−1
C

(r)
inf A

(r)
inf d(y)[−1, 1]

(c)
z = z̃+

∣∣λ(r)kr −γ(r)1

∣∣((i(A)−γ(r)i U
)−1

U
(
B
(r)
inf

)−1
C

(r)
inf A

(r)
inf s(y)

−
(
s(A)− γ(r)i U

)−1
U
(
B
(r)
sup
)−1

C
(r)
sup A

(r)
sup i(y)

)
[−1, 1]

(d) like (c) with i(A) and s(A) exchanged

where A
(r)
inf :=

2r∏
i=1

(
i(A) − α

(r)
i U

)
, A

(r)
sup :=

2r∏
i=1

(
s(A) − α

(r)
i U

)
, A

(r)
d :=

2r∏
i=1

(
A− α(r)

i U
)
, and similarly defined B

(r)
d , C

(r)
d , B

(r)
inf , C

(r)
inf , B

(r)
sup, C

(r)
sup.
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Proof. (3.9) is characterized by the treatment of a series of systems of the
form

z = y + αULES(B,y) (4.9)

with, according to (3.10) and (4.5, f), interval M matricesB and U ≥ O. The
applicability of LES follows from (4.5, c, d). LES yields optimal enclosures
according to (4.5, e), i.e. (2.14).

Assume one of cases (a)–(d) for the main system (M,b). With
S(r),T(r),U(r) ≥ O and (4.5, e), it can be shown by induction that in
any partial system LES(A − αU,w) in IBUD before the first occurrence
of (3.6c)/(3.9) (including the latter) the same case applies. For (a) this is
obvious. For (b) this follows with (2.7) from the relations o ∈ b ⇒ o ∈
w ⇒ o ∈ LES(A− αU,w)⇒ o ∈ y in (3.9). (c), (d) are treated similarly
with (2.8).

If (a) holds, we obtain for α ≥ 0 an optimal enclosure z = z̃ and with
the abbreviation B = A− αU and B = A− αU, resp.,

i(z̃) = i(y) + αUB−1i(y) = (I + αUB−1)i(y)
s(z̃) = s(y) + αUB−1s(y) = (I + αUB−1)s(y)

z̃ = (I + αUB−1)y
d(z̃) = (I + αUB−1)d(y).

(4.10)

For α < 0 an optimal enclosure still has the form (4.10), but IBUD yields

i(z) = i(y)− |α|UB−1s(y)
s(z) = s(y)− |α|UB−1i(y)

z = y − |α|UB−1y
d(z) = (I + |α|UB−1)d(y).

(4.11)

The comparison of (4.10) and (4.11) yields

i(z) = i(z̃)− |α|UB−1d(y)
s(z) = s(z̃) + |α|UB−1d(y)
d(z) = d(z̃) + 2|α|UB−1d(y).

(4.12)

For (b), we replace B by i(B) in (4.10)–(4.12), for (c)
(
similarly for (d)

)
,

we get
i(z̃) = i(y)− |α|U i(B)−1s(y)
s(z̃) = s(y)− |α|U s(B)−1i(y)
d(z̃) = d(y) + |α|U d

(
LES(B,y)

)
,

(4.13)
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i(z) = i(z̃)− |α|U d
(
LES(B,y)

)
s(z) = s(z̃) + |α|U d

(
LES(B,y)

)
d(z) = d(z̃) + |α|U d

(
LES(B,y)

)
.

(4.14)

The above relations can be summarized in

z = z̃ + |α|U d
(
LES(B,y)

)
[−1, 1] for (c), (d)

z = z̃ + |α|U i(B)−1d(y)[−1, 1] for (b)
z = z̃ + |α|UB−1d(y)[−1, 1] for (a).

(4.15)

We first consider (a). For α = λ
(r)
i − γ

(r)
i+1 ≥ 0, z = zi, y = zi−1, and the

interval M matrix B = A− λ(r)i U ≡ A− λ(r)i U ≡ B (4.10) yields

z̃i = z̃i−1 +
(
λ
(r)
i − γ

(r)
i+1

)
U
(
A− λ(r)i U

)−1
z̃i−1

=
{

I +
(
λ
(r)
i − γ

(r)
i+1

)
U
(
A− λ(r)i U

)−1}
z̃i−1

=
((

A− γ(r)i+1U
)(

A− λ(r)i U
)−1)

z̃i−1

=
i∏

j=1

((
A− γ(r)i+1U

)(
A− λ(r)j U

)−1)
y

(4.16)

d(z̃i) =
i∏

j=1

((
A− γ(r)j+1U

)(
A− λ(r)j U

)−1)
d(y)

for 1 ≤ i ≤ kr because of (2.4), (2.6) and

I +
(
λ
(r)
i − γ

(r)
i+1

)
U
(
A− λ(r)i U

)−1
=
(
A− λ(r)i U

)−1(
A− γ(r)i+1U

)
≥ O (4.17)

with optimal enclosures zi = z̃i for 1 ≤ i ≤ kr−1. With α = λ
(r)
kr
−γ(r)1 < 0,

z = zkr , y = zkr−1, we further get

zkr = z̃kr +
∣∣λ(r)kr − γ(r)1

∣∣U(A− λ(r)kr U
)−1

d(zkr−1)[−1, 1]. (4.18)

With (4.16), (4.18), (2.2), (2.3), and zkr−1 = z̃kr−1, the computed enclo-
sure z = zkr satisfies

z = z̃+

(∣∣λ(r)kr −γ(r)1

∣∣U kr∏
i=2

(
A−γ(r)i U

) kr∏
i=1

(
A−λ(r)i U

)−1)
d(y)[−1, 1] (4.19)
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with γ(r)kr+1 := γ
(r)
1 . With (3.3), this equivalent to the assertion for case (a).

The other two cases are treated similarly using (4.15). For case (b), we note
with (2.7) o ∈ z̃i−1 ⇒ o ∈ z̃i in (4.16). For (c), the repeated application of
(2.14, c) yields o ≤ i(z̃i−1)⇒ o ≤ i(z̃i) with (2.4), (2.8) and

z̃i = z̃i−1 +
(
λ
(r)
i − γ

(r)
i+1

)
U
[(

s(A)− λ(r)i U
)−1

i(z̃i−1),(
i(A)− λ(r)i U

)−1
s(z̃i−1)

]
=
[{

I +
(
λ
(r)
i − γ

(r)
i+1

)
U
(
s(A)− λ(r)i U

)−1}
i(z̃i−1),{

I +
(
λ
(r)
i − γ

(r)
i+1

)
U
(
i(A)− λ(r)i U

)−1}
s(z̃i−1)

]
=
[(

s(A)− γ(r)i+1U
)(

s(A)− λ(r)i U
)−1

i(z̃i−1),(
i(A)− γ(r)i+1U

)(
i(A)− λ(r)i U

)−1
s(z̃i−1)

]
=

[ i∏
j=1

((
s(A)− γ(r)j+1U

)(
s(A)− λ(r)j U

)−1)
i(y)

i∏
j=1

((
i(A)− γ(r)j+1U

)(
i(A)− λ(r)j U

)−1)
s(y)

]
.

(4.20)

For (d), we apply (2.14, d) exchanging i(A) and s(A) and using s(z̃i−1) ≤
o⇒ s(z̃i) ≤ o and (2.8). 2

Orderings with more than one inequality λ(r)i < γ(r)j(i) are possible, but
they require a nested application of (4.18) also for i 6= kr. In this case, the
assertions of Lemma 4.9 become extremely complex. Lemma 4.9 indicates
the additional width in one application of (3.9) with the ordering (3.11).
The following theorem describes the propagation of this width across IBUD.
We define

rt := min{r|rs + 1 ≤ r ≤ rq, r odd}. (4.21)

Theorem 4.10. Assume (4.5), (3.1)–(3.11) and (a) M ≡ M, i.e. A ≡ A,
b arbitrary or (b) o ∈ b or (c) o ≤ i(b) or (d) s(b) ≤ o. Then

1) ∃c(q) ≥ 0:

max
1≤j≤q

{‖d(x̂j)‖c} ≤ c(q)

 max
1≤j≤q

{‖d(x̃j)‖c} a), b)

max
1≤j≤q

{‖ |s(x̃j)| ‖c} c), d)
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where ‖x‖c := max
1≤i≤p

{
|xi|
ci

}
, Ac = ρ(A)c for (a) and i(A)c = ρ

(
i(A)

)
c

otherwise

2) c(q) ↓ 0 (d ↑ ∞) for A replaced by A + dI.

If, in addition,

(j) q = 2n{2m(2l + 1) + 1} − 1, n ≥ 0, m, l > 0

then

3) rs = n, rt = n+m, rq = n+m+ l

4) the assertions 1), 2) hold for

c(q) := 2 max

{
1,max

{ rq−1∏
r=i

(
a
(r)
S + a

(r)
T

)∣∣∣0 ≤ i ≤ rq − 1
}}

∗
rq∏

r=rt+2

(
1 + b

(r)
U

)∣∣λ(rt)krt
− γ(rt)1

∣∣ρ((A− γ(rt)1 U
)−1

U
)

∗
{
b
(rt+1)
U b

(rt)
S

(
x(rt−1)w(rt−1)

)
+ b

(rt)
T b

(rt−1)
S

(
x(rt−2)w(rt−2)

)
+ b

(rt+1)
TU b

(rt)
A

(
1 + a

(rt)
U

) rt−1∏
r=rs+1

(
1 + b

(r)
U

)
a
(rs)
T

}
where all constants are defined by Lemma 4.8 (A replaced by i(A)
for (b), (c), (d)).

If, in addition,

(k) a(r)S + a
(r)
T ≤ 1 ∀i ∈ {0, . . . , rq − 1} and ρ(S) ≤ ρ(T)

then

5) max
1≤j≤q

{‖d(x̂j)‖c} = ‖d(x̃2rq )‖c.

Proof. In the following proof, we use (2.9)–(2.13) without mentioning it
explicitly. Assertion 3) obviously follows from the definition of q in (j) as
q = 2n+m+l + 2n+m + 2n − 1. The first deviation from an optimal enclosure
occurs for r = rt+ 1, i.e. the first step in the reduction phase after a change
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from an even r to an odd r: The width increases while treating the linear
system in the computation of qr+1

jr+1
if qr is odd. More precisely, for r = rt

and j = jrt+1, we note with (3.6c)

qr+1
j = U(r+1)pr+1

j + S(r)qrj−2r

+ LẼS
(
B(r),C(r)A(r)

{
U(r+1)pr+1

j + T(r)qrj+2r
})

(22)
= q̃r+1

j + q̂r+1
j

q̃r+1
j = U(r+1)p̃r+1

j + S(r)q̃rj−2r (23)
+
(
B(r)

)−1
C(r)A(r)

{
U(r+1)p̃r+1

j + T(r)q̃rj+2r
}

q̂r+1
j :=

∣∣λ(r)kr − γ(r)1

∣∣ULẼS
((

A− γ(r)1 U
)
B(r),C(r)A(r)

(
U(r+1)d(p̃r+1

j )

+ T(r)d(q̃rj+2r)
)
[−1, 1]

)
=

∣∣λ(r)kr − γ(r)1

∣∣U(A− γ(r)1 U
)−1(

B(r)
)−1

C(r)A(r)
(
U(r+1)d(p̃r+1

j )

+ T(r)d(q̃rj+2r)
)
[−1, 1].

For the case (a) which we consider first in order to facilitate the discus-
sion. For the same reason, we further assume even qr for r ≥ rt + 1 which
is equivalent to (j) and to the property that (3.6c) is used only once in the
whole algorithm (3.5) for IBUD. (j) can be expressed by

qr is
{

even for rs ≤ r ≤ rt − 1 and rt + 1 ≤ r ≤ rq
odd for r = rt and 0 ≤ r ≤ rs − 1.

(4.24)

According to the definition of rs and rt, prjr , q
r
jr
are computed with (3.6a)

for 0 ≤ r ≤ rs, with (3.6b) for rs+1 ≤ r ≤ rt, for r = rt+1 with (3.6c) and
for rt+2 ≤ r ≤ rq with (3.6b) or (3.6c) in the general case, under restriction
(j) only with (3.6b). In the sequel, we extensively use the commutativity
of the matrices A(r), B(r), S(r), T(r), U(r), and of all matrices derived from
them, which results from the commutativity of A, S, and T, hence also of
U, without mentioning it explicitly. With (j), we only admit even qr for
r ≥ rt + 1. In this case jr = jr+1, hence jr − 2r+1 + 2r < jr = jr+1, i.e.
the additional width introduced in (3.6c) propagates only to prjr and qrjr for
r ≥ rt + 2. We then get

for r = rt + 2, j = jr (25)
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prj = pr−1j + LẼS
(
B(r−1),C(r−1){S(r−1)pr−1j−2r−1 + qr−1j

})
= p̃r−1j + LẼS

(
B(r−1),C(r−1){S(r−1)p̃r−1j−2r−1 + (q̃r−1j + q̂r−1j )

})
⊆ p̃rj + p̂rj

p̃rj := p̃r−1j + LẼS
(
B(r−1),C(r−1){S(r−1)p̃r−1j−2r−1 + q̃r−1j

})
p̂rj := LẼS

(
B(r−1),C(r−1)q̂r−1j

)
=
(
B(r−1))−1C(r−1)q̂r−1j

and

for r > rt + 2, j = jr (26)
p̂rj := p̂r−1j +

(
B(r−1))−1C(r−1)q̂r−1j

as well as

for r ≥ rt + 2, j = jr (27)
qrj = S(r−1)qr−1j−2r−1 + U(r)prj

⊆ S(r−1)q̃r−1j−2r−1 + U(r)(p̃rj + p̂rj) ⊆ q̃rj + q̂rj

q̃rj = S(r−1)q̃r−1j−2r−1 + U(r)p̃rj

q̂rj := U(r)p̂rj.

Note that p̂rjr , q̂
r
jr

are symmetric interval vectors, i.e. (2.14, b) applies
for each application of LES in LẼS and the resulting vectors are again sym-
metric.

The solution phase is started with (rt < rq, otherwise q, i.e. the enclo-
sure, would be optimal)

r = rq, j = jr = 2rq (28)
xj = prj + LẼS

(
B(r),C(r)qrj

)
⊆ (p̃rj + p̂rj) + LẼS

(
B(r),C(r)(q̃rj + q̂rj)

)
⊆ x̃j + x̂j

x̃j = p̃rj + LẼS
(
B(r),C(r)q̃rj

)
x̂j = p̂rj + LẼS

(
B(r),C(r)q̂rj

)
= p̂rj +

(
B(r)

)−1
C(r)q̂rj.

In the steps r = rq − 1 to r = 0, the additional width propagates to all
xj. To continue the enclosure of this error, we first note that, according to
(4.24), jr = jr+1, i.e. jr+1 − 2r+1 < jr+1 for r ≥ rt + 1. Therefore, prjr , q

r
jr
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are not optimal for r ≥ rt + 1 and optimal for r ≤ rt. In the solution phase,
only for r = rq they influence the computation of x under the assumption
(4.24), as xjr = xjrq = x2rq has been computed already in the step r = rq.
With x0 := o, we then obtain

r = rq − 1(−1)0, j := 2r(2r+1)jr − 2r (29)
xj = prj + LẼS

(
A(r), S(r)xj−2r + T(r)xj+2r + qrj

)
⊆ p̃rj + LẼS

(
A(r), S(r)(x̃j−2r + x̂j−2r) + T(r)(x̃j+2r + x̂j+2r) + q̃rj

)
⊆ x̃j + x̂j

x̃j = p̃rj + LẼS
(
A(r), S(r)x̃j−2r + T(r)x̃j+2r + q̃rj

)
x̂j = LẼS

(
A(r), S(r)x̂j−2r + T(r)x̂j+2r

)
=
(
A(r)

)−1(
S(r)x̂j−2r + T(r)x̂j+2r

)
.

Similarly, we get

r = rq − 1(−1)min{rs, rq − 1}+ 1, j = jr (30)
xj = prj + LẼS

(
B(r),C(r)

{
S(r)xj−2r + qrj

})
⊆ x̃j + x̂j

x̃j = p̃rj + LẼS
(
B(r),C(r)

{
S(r)x̃j−2r + q̃rj

})
x̂j := LẼS

(
B(r),C(r)S(r)x̂j−2r

)
=
(
B(r)

)−1
C(r)S(r)x̂j−2r

with odd qr
(
see (3.5)

)
. We now repeatedly insert (4.25) in (4.26), (4.27)

and vice versa in order to finally obtain from (4.28):

x̂2rq =

rq∏
r=rt+2

(
I +
(
B(r)

)−1
C(r)U(r)

)(
B(rt+1)

)−1
C(rt+1)q̂rt+1

jrt+1
. (31)

Before inserting (4.23) into (4.31), we first estimate the term
U(r+1)d

(
p̃
(r+1)
jr

)
+ T(r)d

(
q̃rjr+2r

)
for r = rt in (4.23). In case (a), the op-

timal enclosure is given by x̃ = bM−1i(b),M−1s(b)c, i.e. x̃ = M−1b̃ with
b̃ := d(b), x̃ := d(x̃). we then formally apply the interval algorithm (3.5)
to the point system Mx̃ = b̃ and we get auxiliary vectors p̃rj := d(p̃rj),
q̃rj := d(q̃rj). For convenience, we define the abbreviations:

w̃s,j :=
2s∑
k=1

{
S2s−1+kT2s−kd

(
x̃j−(2k−1)

)
+ S2s−kT2s−1+kd

(
x̃j+(2k−1)

)}
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M(r) =
r∏

i=rs+1

(
I +
(
B(i)
)−1

C(i)U(i)
)(

A(rs)
)−1

T(rs)

(32)
X(r) =

r∏
i=0

(
A(i)
)−1

z̃r,j :=
(
B(r)

)−1
C(r)X(r−1)S(r)w̃r−1,j−2r .

Using the relations

B(r+1)
(
C(r+1)

)−1
= A(r)B(r)

(
C(r)

)−1 − U(r+1)

B(r)
(
C(r)

)−1
= A(r) (0 ≤ r ≤ rs)

(4.33)

the equations (3.2) and ỹrj = A(r)p̃rj + q̃rj (j 6= jr) and ỹrj = B(r)
(
C(r)

)−1
p̃rj +

q̃rj (j = jr), we can show by induction that

for 0 ≤ r ≤ rs − 1, j := 2r+1(2r+1)jr+1 (34)
d
(
p̃r+1
j

)
= d

(
x̃j
)
− X(r)w̃r,j

d
(
q̃r+1
j

)
= −

{
S(r+1)d

(
x̃j−2r+1

)
+ T(r+1)d

(
x̃j+2r+1

)}
+ A(r+1)X(r)w̃r,j

for rs ≤ r ≤ rt − 1, j := jr+1 (35)
d
(
p̃r+1
j

)
= d

(
x̃j
)
−M(r)d

(
x̃jrs+2rs

)
− z̃r,j

d
(
q̃r+1
j

)
= −

{
S(r+1)d

(
x̃j−2r+1

)
+ U(r+1)M(r)d

(
x̃jrs+2rs

)}
+ B(r+1)

(
C(r+1)

)−1
z̃r,j

and finally

for r = rt, j := jr+1 (36)

d
(
p̃r+1
j

)
:= d

(
x̃j
)
−
(
A(r)

)−1(
T(r)M(r−1)d

(
x̃jrs+2rs

)
+ S(r)X(r−1)w̃r−1,j−2r + T(r)z̃r−1,j+2r

)
.

With (4.35) and (4.36), we get for r = rt + 1, j := jr+1

U(rt+1)d
(
p̃rt+1
jrt

)
+ T(rt)d

(
q̃rtjrt+2rt

)
(37)

= U(rt+1)d
(
x̃jrt
)
− U(rt+1)

(
A(rt)

)−1
∗
(

T(rt)M(rt−1)d
(
x̃jrs+2rs

)
+ S(rt)X(rt−1)w̃rt−1,jrt−2

rt
+ T(rt)z̃rt−1,jrt+2rt

)
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−
{

S(rt)T(rt)d
(
x̃j
)

+ T(rt)U(rt)M(rt−1)d
(
x̃jrs+2rs

)}
+ B(rt)

(
C(rt)

)−1
T(rt)z̃rt−1,jrt+2rt

= −U(rt+1)S(rt)X(rt)w̃rt−1,jrt−2
rt

−
(

I +
(
A(rt)

)−1
U(rt)

)
T(rt)U(rt)M(rt−1)d

(
x̃jrs+2rs

)
+
(
A(rt)

)−1
B(rt+1)

(
C(rt+1)

)−1
T(rt)z̃rt−1,j+2rt .

We insert (4.32), (4.37) in (4.23) and then (4.23) in (4.31). As x̂2rq
is a symmetric interval vector, it is sufficient to estimate its width. We
use (2.2) and the nonnegativity of all matrices whose spectral radius has
been estimated in Lemma 4.8. According to this Lemma, all these spectral
radii ρ(.) are positive eigenvalues of the respective matrices and they are all
functions of λmin(A) = 1/ρ(A−1) and ωmax (U) = ρ(U). Then (4.5, i) shows
the existence of a vector c > 0, which is an eigenvector for all matrices in
Lemma 4.8 (f)–(j). From Lemma 2.1, we deduce ‖.‖c,c ≤ ρ(.) in the same
matrix norm for all these matrices. This results in the inequality

‖d(x̂2rq )‖c ≤ c4 max
1≤j≤q

{
‖d(x̃j)‖c

}
where
c4 = 2

∏rq
r=rt+2

(
1 +

∥∥(B(r)
)−1

C(r)U(r)
∥∥
c,c

)∣∣λ(rt)krt
− γ(rt)1

∣∣
∗
(∥∥(A− γ(rt)1 U

)−1
U
∥∥
c,c

(c1 + c2) + c3

)
c1 :=

∥∥(B(rt+1)
)−1

C(rt+1)U(rt+1)
∥∥
c,c

∥∥(B(rt)
)−1

C(rt)S(rt)
∥∥
c,c

∗
(∥∥X(rt−1)

∥∥
c,c
v(rt−1)

)
c2 :=

∥∥(B(rt)
)−1

C(rt)T(rt)
∥∥
c,c

∥∥(B(rt−1)
)−1

C(rt−1)S(rt−1)
∥∥
c,c

∗
(∥∥X(rt−2)

∥∥
c,c
v(rt−2)

)
c3 :=

∥∥(B(rt+1)
)−1

C(rt+1)T(rt)U(rt)
∥∥
c,c

∗
∥∥(B(rt)

)−1
C(rt)A(rt)

(
A− γ(rt)1 U

)−1
U
∥∥
c,c

(
1 +

∥∥(A(rt)
)−1

U(rt)
∥∥
c,c

)
∗

rt−1∏
r=rs+1

(
1 +

∥∥(B(r)
)−1

C(r)U(r)
∥∥
c,c

)∥∥(A(rs)
)−1

T(rs)
∥∥
c,c

v(r) :=
2r∑
k=1

{
‖S‖c,c2

r−1+k‖T‖c,c2
r−k + ‖S‖c,c2

r−k‖T‖c,c2
r−1+k}.

(4.38)

Before terminating the proof of assertion 4), i.e. of assertion 1) under
restriction (j), we note
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for r := rq − 1(−1)0: (4.39a)

max
j=2r(2r+1)jr−2r

{∥∥d(x̂j)
∥∥
c

}
≤
(∥∥(A(r)

)−1
S(r)
∥∥
c,c

+
∥∥(A(r)

)−1
T(r)

∥∥
c,c

)
∗ max
j=2r+1(2r+1)jr

{
‖d(x̂j)‖c

}
≤
(
a
(r)
S + a

(r)
T

)
max

j=2r+1(2r+1)jr

{
‖d(x̂j)‖c

}
and, again with Lemma 4.8,

for r := rq − 1(−1)0: (4.39b)

‖d(x̂jr)‖c ≤


∥∥(B(r)

)−1
C(r)S(r)

∥∥
c,c
‖d(x̂j−2r)‖c(

r := rq − 1(−1)min{rs, rq − 1}+ 1
)∥∥(A(r)

)−1
S(r)
∥∥
c,c
‖d(x̂j−2r)‖c(

r := min{rs, rq − 1}(−1)0
)

≤ ‖d(x̂j−2r)‖c.

Note also that according to our assumption (4.24), q is defined by rs, rt,
i.e. c(q) ≡ c(rs, rt). With

c′(q) := c4 max

{
1,max

{ rq−1∏
r=i

(∥∥(A(r)
)−1

S(r)
∥∥
c,c

+
∥∥(A(r)

)−1
T(r)

∥∥
c,c

)
∣∣∣∣ 0 ≤ i ≤ rq − 1

}} (4.40)

and using Lemma 4.8, we get c′(q) ≤ c(q) with c(q) defined in assertion 4).
Under restriction (j) the monotone convergence c(q) ↓ 0 (d ↑ ∞), i.e. as-
sertion 2), immediately follows with Lemma 4.8 using d ↑ ∞ ⇔ θ ↑ ∞ ⇔
λ′ := λ + d ↑ ∞ and the monotonicity in d from the right-hand side in the
relation

∥∥(B(rt)
)−1

C(rt)A(rt)
(
A−γ(rt)1 U

)−1
U
∥∥
c,c
≤ b

(rt)
A

∥∥(A−γ(rt)1 U
)−1

U
∥∥
c,c
.

With (4.38), we have completed the proof of assertion 4). From (4.39) we
immediately deduce assertion 5).

If we remove the restriction (j) in order to prove assertions 1), 2) for
general q, we are faced with considerably more complicated enclosures. First,
(4.23) has to be replaced by

q̂r+1
j := U(r+1)p̂r+1

j +
∣∣λ(r)kr − γ(r)1

∣∣ULES
((

A− λ(r)kr U
)
B(r),

C(r)A(r)
{

U(r+1)
(
d(p̃r+1

j ) + d(p̂r+1
j )

)
+ T(r)

(
d(q̃rj+2r) + d(q̂rj+2r)

)}
[−1, 1]

) (4.23′)
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also for possibly several r ≥ rt + 1 and j = jr. In the subsequent steps of
both the reduction and the solution phase, additional terms depending on
p̂rjr , q̂

r
jr

have to be added. The assertions 1), 2), however, remain valid, as
the proof is based on the behaviour of the spectral radii listed in Lemma 4.8
for d→∞. Because of the unpredictable number of case decision, a useful
closed expression like (4.38) cannot be derived and in addition we cannot
guarantee anymore that the maximal error in the chosen norm occurs for
x̂2rq .

The whole proof can now be repeated for case (b) by applying (2.7) and
(2.14, b) for LES. In case (c), (d), we only get a weaker estimate. We
simplify (c), (d) from Lemma 4.9 with (2.5) to

z ⊆ z̃+
∣∣λ(r)kr −γ(r)1

∣∣(i(A)−γ(r)i U
)−1

U
(
B
(r)
inf

)−1
C

(r)
inf A

(r)
inf |s(y)|[−1, 1] (4.41)

and replace (4.23) and all subsequent estimates appropriately by applying
(2.8). 2

Condition (k), i.e. assertion 5) is satisfied in many cases (compare
Lemma 4.8), as cosh(2rθmin) � 1 often holds. But for cosh(2rθmin) ≈ 1,
we possibly get a(r)S + a

(r)
T ≥ 1, taking into account that S

ωmax
=
√

S
t and

t
ωmax

=
√

t
S for S 6= T, hence t

ωmax
+ S

ωmax
≥ 1. For S = T, Theorem 4.10 can

be significantly simplified:

Corollary 4.11. If, in addition,

k′) S = T

then

4′) the assertions 1), 2) hold for

c(q) := 2

rq∏
r=rt+2

(1 + b(r))
∣∣λ(rt)krt

− γ(rt)1

∣∣ρ((A− γ(rt)1 U)−1U
)

∗
{
b(rt+1)b(rt)2rt−1

rt−1∏
i=0

a(i) + b(rt)b(rt−1)2rt−2
rt−2∏
i=0

a(i)

+ b(rt+1)b
(rt)
A (1 + a(rt))

rt−1∏
r=rs+1

(1 + b(r))a(rs)
}
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where b(r) ≡ b
(r)
U , a(r) ≡ a

(r)
U

5′) max
1≤j≤q

{
‖d(x̂j)‖c

}
= ‖d(x̃2rq )‖c

Proof. In the special case S = T, i.e. ∀r ∈ {0, . . . , rq} : S(r) = T(r) = U(r),
c(q) can be simplified with a(r) ≡ a

(r)
U , b(r) ≡ b

(r)
U , and x(r)w(r) = 2r

∏r
i=0 a

(i).
We further note (compare Lemma 4.8) a(r)S + a

(r)
T = 2a

(r)
U = 1

cosh(2rθmin)
≤ 1.

2

The conditions (4.5, g–i) ensure that estimates for nonsymmetric coeffi-
cients matrices like that of the five point discretization of the elliptic operator
a(x)uxx + buyy + c(x)ux + duy can be treated. In the symmetric case, the
Euclidean norm can be used.

Corollary 4.12. For symmetric A, S, T, the assertions 2), 4) of Theo-
rem 4.10 can be improved:

2′)

‖d(x̂)‖∞ ≤



max
1≤j≤q

{‖d(x̂j)‖2} ≤ c(q) max
1≤j≤q

{‖d(x̃j)‖2}
a), b)

≤ c(q)
√
p ‖d(x̃)‖∞

max
1≤j≤q

{‖s(x̂j)‖2} ≤ c(q) max
1≤j≤q

{‖|s(x̃j)|‖2}
c), d)

≤ c(q)
√
p‖|s(x̃)|‖∞

4′) max
1≤j≤q

{‖d(x̂j)‖2} = ‖d(x̂2rq )‖2.

Proof. If A, S, and T are symmetric, then all matrices needed in the def-
inition of c(q) commute. This implies their symmetry and ρ(.) = ‖.‖2,2.
2

In the cases (a), (b), we have derived the desired estimate for d(x̂) de-
pending on d(x̃). In the cases (c), (d), we have to accept instead a depen-
dence of d(x̂) on |s(x̃)| which is due to (c), (d) of Lemma 4.9, i.e. basically
(2.14, c) and (2.14, d).
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Corollary 4.13. With C = (δi,jci)
p
i,j=1, we get

‖d(x̂)‖∞ ≤



c(q)‖C‖∞ max
1≤j≤q

{‖d(x̃j)‖c}
a), b)

≤ c(q)‖C‖∞ ‖C−1‖∞ ‖d(x̃)‖∞

c(q)‖C‖∞ max
1≤j≤q

{‖|s(x̃j)|‖c}
c), d).

≤ c(q)‖C‖∞‖C−1‖∞ ‖|s(x̃)|‖∞

The corollaries contain simplifications, mainly estimates in the Euclidean
and the ∞-norm which can be significant for computational purposes. The
eigenvector c defining the ‖.‖c-norm should also be accessible in many cases.
The practical significance of the estimates containing ‖C‖∞, ‖C−1‖∞ de-
pends on the size of these norms in a specific context.

The assertions of Theorem 4.10 are the key for the application of IBUD
for values of the block dimension q for which optimal enclosures cannot be
expected. We have derived an estimate for the additional width of the en-
closure vector IBUD(M,b) when compared to an optimal enclosure in the
“usual” four cases, in which such an enclosure is principally possible. Asser-
tion 2) shows that IBUD can yield satisfactory enclosures for any value of q
under the condition that the coefficient matrix M is sufficiently diagonally
dominant.

For a selected set of values of q, i.e. those which cause only one occurrence
of (3.6c)/(3.9), the width can be explicitly estimated by a rather ugly, but
very easily computable constant c(q). It is principally possible to derive an
estimate for general q. But on the one hand, such an estimate would have
to be computed, due to the case decisions which are necessary for general q,
by an algorithm rather than by a simple constant like c(q) from assertion 5).
On the other hand, more general q than those defined by condition (j) are
characterized by more than one application of (3.6c). Numerical results will
show that for these values of q acceptable enclosures can be observed only
for a very (in practice usually unrealistically) strong diagonal dominance of
M. Unfortunately, the constants defining c(q) are not equally monotone in
r: while a(r)γ , a(r)T , a(r)U , b(r)γA, b

(r)
S , b(r)T , b(r)U , b(r)TU, x

(r) decrease with increasing
r,
∣∣λ(rt)krt

− γ
(rt)
1

∣∣, ρ((A − γ
(rt)
1 U)−1U

)
or the products involving 1 + a

(r)
U ,

1 + b
(r)
U may increase. Therefore, it is not possible to predict suitable q from

monotonicity arguments on r.
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Assertion 4) is only valid for the q defined by (j) because for more general
q, xj in (4.30) can depend also from p̂

(r)
j and q̂

(r)
j . This dependence has to

be mainly considered in (4.37).

5 Numerical results

The numerical examples have been computed on a workstation
IBM RS 6000/560. We have used a simulation of an interval arithmetic
which follows the principles described in [1]. All bounds are computed by the
near-IEEE floating point arithmetic on the IBM workstation. All rounding
errors are included in the computed interval vector. Lower and upper bounds
are multiplied by factors 1 − 2−53 and 1 + 2−52. Underflow results are
avoided by substituting them by one of the constants 0 or ±pmin, where
pmin = 2−1022 denotes the smallest positive normalized machine number.
This simulation represents a compromise between precision and speed. The
usually slight overestimates caused by this simulation and indirectly by the
underlying floating point arithmetic can be reduced by using an accurate
arithmetic like that proposed in [6, 7] and related publications. This has
to be paid for by a reduction of speed by roughly at least one order of
magnitude. In the following examples the quality of enclosures is indicated
by the following relative width

rd(x) := max
1≤i≤N

{
d(X̂i)

d(X̃i)

}
(5.1)

where x̂ denotes an estimate for the difference of x = IBUD(M,b) to the
optimal enclosure x̃ = xopt in case (a) according to x ⊆ x̃ + x̂.

Figure 1 illustrates the dependence of the width on the diagonal domi-
nance of the coefficient matrix for the example M ≡ M = (−I,A + dI,−I),
A = (−1, 4,−1), d = 10k, −7 ≤ k ≤ 3 or k = 0, xopt = ([1, 2])Ni=1,
b := [M i(xopt),M s(xopt)], 127 ≤ q ≤ 146, p = 255.

As predicted, we observe widths which strongly differ depending on q
for small d, but which decrease to 0 with increasing diagonal dominance.
Table 1 confirms this fact for the same example for some values of d and
values q = 2n

(
2m(2l + 1) + 1

)
− 1 for which optimal enclosures cannot

be expected. This table illustrates the fact that c(q) is a good measure
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Figure 1

for the relative additional width (5.1). Note that this is not necessarily an
upper bound for (5.1) according to its definition in Theorem 4.10 on the
basis of maxima over the blocks 1 ≤ j ≤ q in the Euclidean norm. The
last column reveals that the computed relative width remains roughly in the
order of the relative machine precision while values for c(q) indicate that the
theoretical additional width is smaller by orders of magnitude. This is due to
unavoidable overestimates of the rounding errors by the simulated interval
arithmetic. These overestimates are mainly caused by the fact that in the
treatment of the sequences of subsystems with matricesA−αU, in particular
for large r, the absolute values of right-hand sides and intermediate enclosure
vectors extremely vary over almost all orders of magnitude while the initial
r.h.s. and the final enclosures have a reasonable size. It is typical for all
variants of the Buneman algorithm, that, depending on the used floating
point arithmetic, underflow frequently occurs already for moderate system
sizes. As underflow results are replaced by the next admissible normalized
machine number, they can be subject to a significant overestimate of the
relative error in subsequent steps.

The Tables 2, 3 show the behaviour of c(q), i.e. the additional width,
depending on the constantsm, n, l in the definition of q in Theorem 4.10 (j).
While l = rq − rt, i.e. the position of the even-odd-even change in the
sequence of the qr relatively to the number rq of reduction steps, only has a
minor influence (Table 2), the absolute value rt = n+m strongly determines
the additional width (Table 3). This illustrates the fact that almost all
spectral radii defining the constants a(r)X , b(r)X in the definition of c(q) in
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q d = 0 d = 0.1
c(q) rd(x) c(q) rd(x)

130 .36310+01 .15010+01 .12210+01 .67210+00
132 .10310+02 .54310+01 .10910+01 .97510+00
133 .19910+02 .83410+01 .18210+01 .14110+01
136 .21810+02 .13810+02 .18110+00 .24210+00
137 .42310+02 .22910+02 .33910+00 .36510+00
139 .78910+02 .34010+02 .48410+00 .46410+00
144 .39710+02 .29210+02 .22210−02 .36710−02
145 .78010+02 .52110+02 .45710−02 .56110−02
q d = 1 d = 10

c(q) rd(x) c(q) rd(x)
130 .76910−01 .71410−01 .13410−03 .13410−03
132 .50110−02 .53310−02 .19710−07 .19710−07
133 .63710−02 .62910−02 .20510−07 .20510−07
136 .52010−05 .58010−05 .10810−15 .35510−14
137 .66510−05 .66910−05 .11010−15 .35510−14
139 .68910−05 .68810−05 .11110−15 .35510−14
144 .22010−11 .25310−11 .13510−32 .33310−14
145 .28510−11 .29010−11 .13710−32 .33310−14

Table 1

q l d = 0 d = 10
13 1 .12310+02 .20510−07
21 2 .15610+02 .20510−07
37 3 .17910+02 .20510−07
69 4 .19310+02 .20510−07

133 5 .19910+02 .20510−07
261 6 .20010+02 .20510−07
517 7 .20010+02 .20510−07

Table 2: q = 2n+m+l + 2n+m + 2n − 1 = 4 ∗ 2l + 5 (n = m = 1)
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q n m n+m d = 0 d = 0.1
6 0 1 1 .21610+01 .11410+01

12 0 2 2 .67410+01 .10810+01
13 1 1 2 .12310+02 .18110+01
24 0 3 3 .15610+02 .18110+00
25 1 2 3 .29410+02 .33910+00
27 2 1 3 .52110+02 .48410+00
48 0 4 4 .31310+02 .22210−02
49 1 3 4 .61010+02 .45710−02
51 2 2 4 .11510+03 .69710−02
55 3 1 4 .20110+03 .78110−02
96 0 5 5 .53210+02 .17510−06
97 1 4 5 .10510+03 .38210−06
99 2 3 5 .20410+03 .60410−06

103 3 2 5 .38210+03 .69010−06
111 4 1 5 .66110+03 .69410−06
192 0 6 6 .56710+02 .57810−15
193 1 5 6 .11310+03 .13110−14
195 2 4 6 .22510+03 .21110−14
199 3 3 6 .43910+03 .24410−14
207 4 2 6 .81910+03 .24610−14
223 5 1 6 .13710+04 .24610−14
384 0 7 7 .19910+02 .33910−32
385 1 6 7 .40410+02 .78110−32
387 2 5 7 .82810+02 .12710−31
391 3 4 7 .17110+03 .14810−31
399 4 3 7 .34710+03 .14910−31
415 5 2 7 .65510+03 .14910−31
447 6 1 7 .10310+04 .14910−31
768 0 8 8 .10810+01 .60910−67
769 1 7 8 .22710+01 .14210−66

Table 3: q = 2n+m+1 + 2n+m + 2n − 1 = 3 ∗ 2n+m + 2n − 1 (l = 1)
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Theorem 4.10 rapidly decrease with increasing r. As
∣∣λ(rt)krt

− γ
(rt)
1

∣∣, a(r)
γA

and the products concerning 1 + b
(r)
U in the definition of c(q) can increase

(relatively slowly) with increasing r, we cannot prove the monotonicity in
r which can be observed for sufficiently large diagonal dominance. Table 4
illustrates the dependence of the additional width on the block size p.

p c(q)
7 .21810−06

15 .49910−05
31 .12210−04
63 .15510−04

127 .16410−04
255 .16710−04
511 .16710−04

Table 4: q = 151 p = 2k+1 − 1 (2 ≤ k ≤ 8)

q k = −3 k = −1
rd(x) c(q) rd(x) c(q)

130 .14410+00 .16710+00 .14810+00 .17010+00
132 .22510−01 .22010−01 .26410−01 .23210−01
133 .32910−01 .30110−01 .34010−01 .31810−01
136 .12410−03 .95710−04 .13310−03 .10810−03
137 .15710−03 .13410−03 .16810−03 .15110−03
139 .16710−03 .14310−03 .17910−03 .16110−03
144 .99510−09 .71410−09 .11510−08 .92110−09
145 .12510−08 .10210−08 .14410−08 .13110−08

Table 5

Table 5 shows similar results for a non-symmetric example where the
non-symmetry is determined by the “mesh size” h in accordance with typical
discretizations of general elliptic problems which are not given in self-adjoint
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form. We consider the example

M = (−S,A,−T),
S = −

(
b− (h/2)e

)
I,

T = −
(
b+ (h/2)e

)
I,

A =
(
−
(
a− (h/2)c

)
, 2(a+ b),−

(
a+ (h/2)c

))
+ [0, 1]I + dI,

a = 4.1, b = 3.1, c = 1.0, e = 1.1, d = 2,

x =
(
[i+ j, 2(i+ j)]

)p
i=1

q

j=1
, p = 255, h = 10−k, k = −3,−1.

6 Conclusion

The interval Buneman algorithm can be defined, like its noninterval counter-
part, for arbitrary values of the block dimension. This increase of flexibility
is useful in applications where the system size resulting from the require-
ment q = 2k+1 − 1 in the variants of the original Buneman algorithm is not
adequate for various reasons. Under appropriate conditions IBUD yields op-
timal enclosures for selected values of the block dimension q. In the present
paper, we have extended the range of suitable values by admitting also
nonoptimal enclosures. For the special choice q = 2n

(
2m(2l+1)+1

)
−1, we

can prove suboptimal enclosures already in the presence of a moderate de-
gree of diagonal dominance of the coefficient matrix. The enclosure quality
can be controlled by fairly easily computable estimates.
Acknowledgment. I am indebted to the referees for their helpful comments
and suggestions.
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