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Interval Spanning Trees Problem:
Solvability and Computational

Complexity

Galina L. Kozina and Vitaly A. Perepelitsa

The optimization Spanning Trees Problem on graphs with interval weights is
presented. The interval function is defined as the sum of interval weights of
feasible spanning tree edges. The relation order introduced into set of feasible
solutions generates the Pareto set which is considered as the solution of the
interval problem. The questions of solvability and computational complexity
are investigated by applying the multicriterial approach.

Интервальная задача о остовных
деревьях: разрешимость и
вычислительная сложность

Г. Л. Козина, В. А. Перепелица

Рассматривается оптимизационная задача о остовных деревьях на гра-
фах с интервальными весами. Целевая функция представляет
соой сумму интервальных весов реер, входящих в допустимое
остовное дерево. Введенный на множестве допустимых реше-
ний порядок порождает паретовское множество, которое явля-
ется решением интервальной задачи. Исследуются вопросы раз-
решимости и вычислительной сложности с помощью аппарата
многокритериальности.
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For achieving adequacy of more real situation in mathematical modeling it
is expedient in some cases to use the interval descriptions. By applying
intervals we may account approximate nature of initial data [1–3].

For extremal problems on graphs (for example Spanning Trees Prob-
lem) the interval weights of edges may denote the resource (time, materials)
consumption for network objects or technical parameters (noise immunity,
electromagnetic interaction) in Computer-Aided Design, or yield capacity of
crops in land tenure. The Optimization Spanning Trees Problem on graph
with interval parameters was considered by A. I. Demchenko in [4].

1 Interval definition of Spanning Trees
Problem

In general, let G = (V,E), |V | = n be a graph with set of vertices V and
set of edges E. Every edge e ∈ E is weighted by interval weight w(e) =
[w1(e), w2(e)].

Let us denote the set of all spanning trees of graph G by

X = {x | x = (V,Ex)}.

The weight of the tree x is

w(x) =
∑
e∈Ex

w(e). (1)

Obviously, w(x) = [w1(x), w2(x)], where

wi(x) =
∑
e∈Ex

wi(e), i = 1, 2. (2)

The problem is to find the spanning tree of “minimum” weight [3, 4]

min
x∈X

w(x). (3)

In a classical noninterval case the described problem is successfully solved,
for example, by algorithms of R. C. Prim or J. B. Jr. Kruskal [5] and has
a unique solution. In an interval case the solution of the problem generally
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is not unique, so we must introduce the order on the set of intervals for
definition of the solutions set.
Definition 1. The solution x is “better” than the solution y, x ≺ y, if
wi(x) ≤ wi(y), i = 1, 2 and at least one of these inequalities is strict; other-
wise x and y are incomparable.

Such order generates the Pareto Set (PS) X̃ ⊆ X, X̃ = {x̃}, including
all the Pareto optimums.
Definition 2. The solution x̃ ∈ X is called the Pareto optimum for the
problem (1), (3) if there does not exist such x ∈ X that x ≺ x̃.

PS consists of incomparable solutions.
Two solutions x, y belong to one class of equivalence (CE) if w(x) =

w(y). The Complete Set of Alternatives (CSA) X̂ is a subset of PS which
contains by ones representatives of each CE.

The solution of the problem (1), (3) may be PS or CSA.
Example 1. Consider graph G = (V,E) with interval weights (Fig. 1). Set
of feasible solutions X (all spanning trees of graph G) consists of four trees.

According to the weights obtained we have only 3 trees in Pareto set
X̃ = {x, y, z}. The complete set of alternatives X̂ is not uniquely defined.
We may choose, for example, x and y as CSA.
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Graph G

X SFS PS X̃ CSA X̂

t qq qq w(t) = [5, 16]

x qq qq w(x) = [3, 16]V x x

y qq qq w(y) = [5, 14]V y y

z qq qq w(x) = [5, 14]V z

Figure 1: Set of feasible solutions, Pareto set, complete set of alternatives
for graph G (example 1)



Interval Spanning Trees Problem. . . 45

2 Reduction of interval Spanning Trees
Problem to multiobjective optimization
problem

Problem (1), (3) is reduced to multiobjective optimization problem with
Vector Objective Function (VOF) [3, 4]

F (x) = {w1(x), w2(x)} (4)
wi(x) → min

x∈X
, i = 1, 2, (5)

w1(x) ≤ w2(x). (6)

The solution of the problem (4), (5), (6) is a Pareto set (or complete set of
alternatives).
Definition 3. The solution x̃ ∈ X is called Pareto optimum for problem
(4), (5), (6) if there does not exist any x ∈ X such that F (x) ≤ F (x̃) and
at least one inequality is strict.

According to definitions 2 and 3, PS-s of the interval problem (1), (3) and
the multiobjective optimization problem (4), (5), (6) coincide. (Complete
set of alternatives for the problem (4), (5), (6) is defined as for the problem
(1), (3).)

The condition (6) is proved to be unessential for the given problem. It
directly follows from the two lemmas.
Lemma 1. Let X = {x} be a set of feasible solutions for a problem with
the vector objective function

F (x) = {F1(x), F2(x)} (7)

and X̃ is a Pareto set generated by VOF (7). Then for any constant C the
Pareto sets X̃ and X̃C , generated by VOF

FC(x) = {F1(x), F2(x) + C}

coincide.
The proof follows directly from definition 3.

Lemma 2. Pareto sets of problems with criteria (4), (5) and (4), (5), (6)
coincide.
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Proof. The problem (4), (5), (6) is a partial case of the problem (4), (5).
Let’s show that we may transform any problem (4), (5) into the problem (4),
(5), (6). Really, let every edge e ∈ E of the graph G = (V,E) be weighed
by the two weights w1(e) and w2(e). Add a constant k to the second weight
w2(e) of every edge e ∈ E such that w1(e) ≤ w2(e) + k for all e ∈ E.

The transformed problem (4), (5) has the form (4), (5), (6). Let us
denote it as (4), (5), (6)k. It is obvious that Pareto sets of both problems
coincide. Clearly, the set of feasible solutions X will not change after the
operation. At the same time for every x ∈ X the value of the first criterion
(2) wk

1(x) will not change, wk
1(x) = w1(x), but the value of the second

criterion (2) wk
2(x) will be equal to

wk
2(x) = w2(x) + (n− 1)k

(every spanning tree x = (V,Ex), |V | = n, has exactly n− 1 edges).
Denote C = (n − 1)k. Then using Lemma 1 we have that the Pareto

sets of problems (4), (5) and (4), (5), (6)k coincide.
Hence, we may apply for the problem (1), (3) all the assertions concerning

the Pareto set of the problem (4), (5).

3 Main results

3.1 Solvability by linear convolution algorithms

The problem (4), (5) is investigated by multiobjective optimization methods
[6].

Substitute vector objective function (4), (5) for linear convolution of
criteria

F λ(x) = λ1 · w1(x) + λ2 · w2(x), (8)

where

λ1, λ2 > 0, (9)
λ1 + λ2 = 1. (10)

Any exact algorithm optimizing linear convolution objective function in form
(8) is called linear convolution algorithm (LCA) [6, 7]. It is well known
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that the solution x∗ ∈ X optimizing linear convolution objective function is
Pareto optimum.

Thus, the problem (4), (5) is called solvable by LCA if for any x̃ ∈ X̃
there exists vector λ satisfying (9), (10) such that

F λ(x̃) = min
x∈X

F λ(x).

Otherwise, the problem (4), (5) is unsolvable by LCA if there exists such
instance problem with PS X̃ that

∃x̃ ∈ X̃ F λ(x̃) > min
x∈X

F λ(x) (11)

for all λ, satisfying (9), (10).
It is easy to see that condition (10) is not essential.
The following result is obtained in [6].

Theorem 1. For all n ≥ 3 the problem (4), (5) is unsolvable by LCA.
As a proof we consider

Example 2. Let G = (V,E) be graph with interval weights (Fig. 2). The set
of feasible solutions X consists of three trees and Pareto set X̃ and complete
set of alternatives X̂ consist of 3 trees. So we have X = X̃ = X̂.
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Graph G

X = X̃ = X̂

x
r r r

r��� F (x) = {7, 19}

y
r r r

r@@@ F (y) = {4, 20}

z
r r r

r���@
@
@ F (z) = {8, 16}

Figure 2: Set of feasible solutions, Pareto set, complete set of alternatives
for graph G (example 2).

But for the solution x there does not exist any vector λ satisfying (8),
(9) that

F λ(x) = min{F λ(x), F λ(y), F λ(z)}.
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Really, unsolvability condition is written as follows (see (8), (11))

∀λ ∈ (0, 1)

λ · w1(x) + (1− λ) · w2(x)

> min{λw1(x) + (1− λ)w2(x), λw1(y)

+(1− λ)w2(y), λw1(z) + (1− λ)w2(z)}

or after substitution and transformation

∀λ ∈ (0, 1) 3− 4λ > min{3− 4λ, 4− 8λ, 0}. (12)

The graphs illustrating (12) (see Fig. 3) show that condition (12) is fulfilled.
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(1) F λ(x)↔ 3− 4λ

(2) F λ(y)↔ 4− 8λ

(3) F λ(z)↔ 0
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Figure 3: Graphs for F λ(X)

3.2 Computational complexity

We may consider the cardinality of CSA as a lower bound of Computational
Complexity for its finding. If the maximal cardinality of CSA has exponen-
tial estimate then problem is intractable [8]. Investigation of complexity of
problem (4), (5) has given the following results. In terms of multiobjective
optimization the problem (4), (5) is complete, i.e. for any graph G = (V,E)

there exists such weighting by wi(e), e ∈ E, i = 1, 2, that X = X̃ = X̂.
Since the complete graph G = (V,E) with |V | = n has nn−2 spanning

trees, computational complexity is exponential in worse. Hence we have
Theorem 2. Interval Spanning Trees Problem (1), (3) and Multiobjective
Spanning Trees Problem (4), (5) are intractable.
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3.3 Polynomial solvability

However, if the problem has such description where the interval weight of
tree is not important but lower bound of weight and maximal width of the
interval weights of spanning tree edges are taken into consideration, then we
have more successful result.

Let’s introduce the new criterion

d(x) = max
e∈E

d(e), d(e) = w2(e)− w1(e).

On the set X we consider the new VOF

F (x) = {w1(x), d(x)},
w1(x) → min

x∈X
, (13)

d(x) → min
x∈X

.

Solution of problem (13) (see definition 3) is complete set of alternatives.

Theorem 3 [9]. The problem of finding CSA of Spanning Trees Problem
with criteria (13) is solvable with polynomial complexity O(n4).

The proof is constructive. In [9] the algorithm including two stages
is described. The algorithm has not more than n2 iterations and it is
an algorithm of linear convolution. Every iteration yields one element of
CSA.

4 Conclusion

Application of multiobjective optimization methods in interval modeling has
allowed to formulate and to substantiate methodologically difficult asser-
tions:

• principal unsufficiency of classical optimization methods used for linear
convolution algorithms is assertained;

• computational complexity of interval spanning trees problem is esti-
mated in worse and its intractability is assertained;

• the sufficient conditions of polynomial solvability is found.
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