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Verified Inclusion for Eigenvalues of
Hill’s Equation

Wolfram J. Luther and Werner Otten

We present a method depending on matrix continued fractions and Sturm’s
comparison theorem to obtain verified inclusions for all eigenvalues of Hill’s
equation u′′ + (λ + g̃)u = 0, with an arbitrary periodic function g̃. As an
example we treat the first-order phase locked loop equation.

Верифицированное включение
собственных значений для уравнения

Хилла
В. Й. Лутер, В. Оттен

Предлагается метод получения верифицированных включений всех соб-
ственных значений для уравнения Хилла: u′′ + (λ+ g̃)u = 0, где g̃ — про-
извольная периодическая функция. Метод основан на применении мат-
ричных цепных дробей и теоремы сравненияШтурма. В качестве примера
рассматривается уравнение фазово замкнутой петли первого порядка.
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1 Introduction

The task of finding all eigenvalues and eigenfunctions of a boundary value
problem has always been of mathematical interest. One special problem
is the calculation of eigenvalues for Hill’s equation u′′ +

(
λ + g̃(ϕ)

)
u = 0,

with an arbitrary periodic function g̃(ϕ). This equation occurs in different
problems of practical interest such as in investigation of cycle slipping of
phase locked loops (PLL).

The phase locked loop (PLL) is an electrical control system which syn-
chronizes an oscillator and a given signal in frequence and phase. If the phase
error in this regulation leaves the interval [0, 2π] the PLL slips a cycle. In
many applications, for example in information transmission in satellite tech-
nique, the cycle slipping is very detrimental. To avoid unreliable and costly
design of loop components an accurate calculation of the cycle slip rate is
crucial.
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Figure 1: Basic block diagramm PLL MC14046

Studying the cycle slip rate leads to a stochastic differential equation
for the phase error process ϕ(t) of a first order phase locked loop (filter
omitted) [2, 9, 15] with phase detector characteristic g(ϕ) , i.e. ϕ̇(t) =
Ω − K[Ag

(
ϕ(t)

)
+ n(t)], where Ω is the initial frequence detuning, A, K

characteristic loop constants and n(t) a stationary white Gaussian noise pro-
cess with zero mean and one-sided band limited spectral density N0w/cps.

The corresponding Markov process is described by the transition proba-
bility density function P (ϕ, t |ϕ0, t0), which satisfies a Fokker-Planck equa-
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tion [4]. Applying the separation method to this equation we are led to the
self-adjoint eigenvalue problem

Ly =

{
p
∂2

∂ϕ2 +
∂

∂ϕ
g(ϕ)

}
y = −λy (1)

with a normed separation constant λ. Here 1/p := 4A/(N0K) = A2/(N0BL)
is the signal-to-noise ratio SNR in the loop bandwith BL.

Together with absorbing boundary conditions P (ϕ0 − 2π, t) = P (ϕ0 +
2π, t) = 0 the statistical description of cycle slipping indicates, as shown
by Meyr and Ascheid [10], that the mean lifetime between cycle slips is
related to the first non-zero eigenvalue λ(2)0 of the 2Mπ-periodic problem
with M = 2 as E(Ts) = 1/λ

(2)
0 . Instead of absorbing the particles at the

boundaries ϕ = ϕ0±2π one can measure the phase error modulo 2Mπ. Thus
the boundary conditions are of 2Mπ-periodic type and one gets Ryter’s
multistable cyclic model with M attractors as in [10]. For moderate noise
the transition cycle slipping rates in this model are determined by theM−1
smallest eigenvalues of the Fokker-Planck operator L. In both cases a precise
determination of the eigenvalues and eigenfunctions is necessary.

The substitution u(ϕ) := y(ϕ) exp
( ∫ ϕ

0 g(θ)dθ/(2p)
)

transforms our
equation (1) to Hill’s equation u′′ +

(
λ/p + g′/(2p) −

(
g/(2p)

)2)
u = 0.

For big SNR’s the eigenvalue problem is ill-conditioned, the error increases
exponentially in 1/p.

In former works we have studied the PLL equation with sinusoidal or
finite trigonometric polynomials as phase detector characteristic [9]. Now
we turn our attention to the general case

g(ϕ) =
∞∑
m=1

(−1)m−1βm sinmϕ, βm ≥ 0

which includes triangular, sawtooth and tanlock [1] characteristics.
The existence problem is treated in [8, 9]. For the 2π-periodic problem

(1)
(
and a function g(ϕ) with only one extremal value in (0, π)

)
we have a

simple eigenvalue λ(1)0 = 0 ∼ λ
(2)
0 and in the case of g(ϕ) = g(π−ϕ) double

real eigenvalues λ(1)ν with λ(2)2ν−1, λ
(2)
2ν ∼ λ

(1)
ν ∼ g′(0)ν, ν small, p → 0 and

for large ν it holds λ(1)ν ∼ p ν2. Otherwise we can localize eigenvalues near
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g′(0)µ and −g′(π)µ, µ = 1, 2, 3, . . ., λ(2)ν ∼ λ
(1)
ν , ν small, p→ 0 and for large

ν it holds λ(1)2ν−1, λ
(1)
2ν ∼ p ν2. This enables us to decide whether an interval

inclusion contains one or more eigenvalues. For a more detailed discussion
see [3, 6, 8].

2 The eigenvalue problem

In [9] we utilized complex continued fractions for the treatment of Hill’s
equation in the case of g(ϕ) = sinϕ− γ (cf. also [12, 14]). By a generalized
approach based on matrix continued fractions ([11]) we are also able to treat
problem (1) with finite Fourier expansions

g(ϕ) =
k−1∑
m=1

(−1)m−1βm sinmϕ.

We start with the eigenvalue-problem

Ly =

{
p
∂2

∂ϕ2 +
∂

∂ϕ
g(ϕ)

}
y = −λy, (2)

y(−Mπ) = y(Mπ), y′(−Mπ) = y′(Mπ), for one M ∈ IN

and insert the “ansatz” y(ϕ) =
∑

m≥0Am cosmϕ/M + Bm sinmϕ/M . We
find

0 =
∞∑
m=0

(
λ− pm

2

M2

)(
Am cos

mϕ

M
+Bm sin

mϕ

M

)
+

k−1∑
ν=1

(−1)ν−1βν

∞∑
m=0

Am
2

(
m+ νM

M
cos

m+ νM

M
ϕ− m− νM

M
cos

m− νM
M

ϕ

)

+
k−1∑
ν=1

(−1)ν−1βν

∞∑
m=0

Bm

2

(
m+ νM

M
sin

m+ νM

M
ϕ− m− νM

M
sin

m− νM
M

ϕ

)
.

After an index transformation we can determine the expansion coefficients
of the Fourier series using the homogeneous recurrence relations (m =
0, 1, 2, . . .)
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(
λ− pm

2

M2

)
Am − m

2M

k−1∑
ν=1

(−1)ν−1βν(Am+νM − A|m−νM |) = 0,

(3)(
λ− pm

2

M2

)
Bm − m

2M

k−1∑
ν=1

(−1)ν−1βν(Bm+νM − sgn(m− νM)B|m−νM |) = 0.

If λ vanishes, a direct integration is straightforward. So we are only inter-
ested in eigenvalues λ 6= 0 and immediately find A0 = B0 = 0. In the case
M > 1 we substitute

xν := (−1)νAMν+r, yν := (−1)νBMν+r, r = 1, . . . ,M − 1,
x′ν := (−1)νAM(ν+1)−r, y′ν := (−1)νBM(ν+1)−r, ν = 0, 1, 2, . . . ,

choose the other Am, Bm to be zero and obtain independent recurrence
relations of maximum order 2k−1 (r = 1, . . . ,M , ν = 0, 1, 2, . . .) for xν, yν
and replacing r by M − r also for x′ν, y′ν. Thus, it holds for i = 0, 1, 2, . . .:

0 =

(
λ− p(iM + r)2

M 2

){
xi
yi

}

+
iM + r

2M

k−1∑
ν=1

βν

{
xν+i
yν+i

}
−

min(i,k−1)∑
ν=1

βν

{
xi−ν
yi−ν

}
±

k−1∑
ν=i+1

βν

{
x′ν−i−1
y′ν−i−1

} .

Note that only the first k relations of both systems are coupled.
For a greatest common divisor gcd(r,M) > 1 we are led to smaller M

and r = M is equivalent to M = 1. The problem is now to calculate
the parameter λ (the eigenvalues) in (3) in such a way that the sequences
(Am)m≥0 and (Bm)m≥0 tend to zero for m→∞.

3 The verification of real eigenvalues

The inclusions for real eigenvalues are calculated with an algorithm based
on matrix continued fractions. Both recurrences in (3) can be formulated
as a recurrence of type ~xm = bm(λ)~xm+1 + am+1(λ)~xm+2 with the initial
conditions ~x0 = f0(λ)~x1, (k − 1) × (k − 1)-matrix coefficients bm, am, f0
and (k − 1)-vectors ~xm built from the above defined xi and x′i. With these
matrices a continued fraction

C(λ) = b0 + a1

(
b1 + a2

(
b2 + a3

(
b3 + · · ·

)−1)−1)−1
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= b0 + a1

(
b1 + a2

(
b2 + · · ·+ ar−1

(
br−1 + Cr(λ)

)−1 · · ·)−1)−1(4)
is defined as in Risken [12]. In [11] the following theorem is proved:

Theorem 1. Assume that ‖amb−1m ‖ ≤ q1 < 1/2 and ‖b−1m ‖ ≤ q2 < 1/2
for m ≥ m0. Then the continued fraction converges uniformly and for an
eigenvalue, i.e. ‖~xm‖ → 0, follows:

λ∗ is eigenvalue iff ~x0 = C(λ∗)~x1.

With the initial conditions ~x0 = f0(λ)~x1 this leads to the homogeneous
linear system

(
E − f0(λ)C−1(λ)

)
~x0 = 0 with identity matrix E. For a

nontrivial solution of this system we get F (λ) := det
(
E−f0(λ)C−1(λ)

)
= 0,

so that we have to determine inclusions of the zeros of F (λ). To do this,
verified inclusions of the continued fraction C(λ) have to be calculated.

As shown in [11], the continued fraction remainder Cr(λ) is enclosed by
an interval matrix R := (rij) with rij = [−α(q1, q2), α(q1, q2)]. This matrix
R is inserted into the continued fraction for the remainder Cr(λ). If we
now evaluate the continued fraction, using a backward recurrence algorithm
with matrix interval arithmetic, we get verified inclusions of C(λ). If the
above assumptions are valid over a closed interval I the following algorithm
to verify the zeros of F (λ) can be used:

Algorithm 1.

1. Real approximation:
Calculate an approximation λ̃ ∈ I of the function F (λ) = det(E −
f0(λ)C−1(λ)) = 0.

2. ε-inflation:
Create an interval I0 = [λ1, λ2] = λ̃ · [1 − ε, 1 + ε] through ε-
inflation with λ̃ from Step 1. In a floating-point system with base b
and mantissa-length l we choose ε = b−l+1. (In the examples below
we choose b = 2 and l = 53.)

3. Verification:
Calculate verified I1 = F ([λ1]), I2 = F ([λ2]), I3 = F (I0), using an
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interval evaluation of F at the point intervals [λi] and the interval I0
by employment of a machine matrix interval arithmetic and verified
inclusion of the matrix continued fraction C(λ) (cf. [11]).

(a) If sup
(
F ([λ1]) · F ([λ2])

)
< 0 and I3 is bounded, it follows for

reason of the continuity of F (λ):
In the interval I0 = [λ1, λ2] lies at least one zero of F (λ), and so
the existence of at least one eigenvalue of the recurrence inside
I0 follows from Theorem 1.

(b) If 0 ∈ I1 or 0 ∈ I2, no statements about eigenvalue inclusion are
possible. In this case we enlarge ε of Step 2 with the rule ε := ε·b.
If ε < 1, we repeat Step 3; otherwise we terminate the algorithm
and the result is not verified.

(c) If I3 is not bounded, F (λ) may have a pole inside I0, and so no
statement about eigenvalue inclusion is possible.

Using this algorithm, we have calculated the verified inclusions given
below. The calculations are turned out with interval variables in PASCAL–
XSC. To calculate the results in Section 5 we have truncated the continued
fraction C(λ) at the index r, with r between 100 and 4000 depending on k,
so that the assumptions of Theorem 1 are fulfilled. The verification of the
continued fraction was turned out as described above.

In the complex case we only consider the sinusoidal phase detector char-
acteristic g(ϕ) = sinϕ− γ and utilize the following theorem proved in [9].

All non-vanishing eigenvalues of (1) together with 2πM -periodic boundary
conditions are solutions of the nonlinear equation

D(λ) = C · C∗ − 1 = 0, M > 1, C = 0, C∗ = 0, M = 1.

C∗ denotes the conjugate complex of the continued fraction (4). To verify a
complex eigenvalue we use Rouchés theorem and calculate the change of the
argument ofD(λ) on a rectangle including the eigenvalue. To this behind we
must decompose the four sides into 10t pieces with length δ, t, δ depending
on the parameter p.

As an example we have verified the following eigenvalues with the pa-
rameters p = 10−1.2, γ = sin(π/36), ν = 1:

0.96196524779075 ± 1.868060 · 10−9i, M = 1, t = 5, δ = 10−15,

0.961939463000 ± 1.0678060 · 10−5i, M = 4, t = 6, δ = 10−15.
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4 Characteristics with infinite Fourier series

Now we turn our attention to phase detector characteristics with infinite
Fourier series expansions such as the 2π-periodic triangular

g(ϕ) =

{
2ϕ/π, −π/2 ≤ ϕ ≤ π/2
sgn(ϕ)(2− 2|ϕ|/π), π/2 ≤ |ϕ| ≤ π

sawtooth or tanlock characteristic [1, 2]

g(ϕ) =
√

1− a2 sinϕ

1 + a cosϕ
, 0 ≤ a < 1 (5)

and are interested in determining the truncation error which arises if we cal-
culate verified inclusions for the eigenvalues of problem (2) with a trigono-
metric polynomial gf(ϕ) as a few term approximation of g(ϕ).

In order to find an absolute error bound for the eigenvalues we utilize
the self-adjoint form

u′′ +

(
g′(ϕ)

2p
− g2(ϕ)

4p2

)
u = − λ

p
u . (6)

Now we take gf(ϕ) as a few term approximation of g(ϕ). If the estimation

E(g, gf) :=

∣∣∣∣∣g′(ϕ)

2
− g2(ϕ)

4p
−
g′f(ϕ)

2
+
g2f(ϕ)

4p

∣∣∣∣∣ ≤ ε (7)

holds uniformly for all ϕ, we get an absolute error bound for all eigenvalues
of (1). This argument is a consequence of a well-known comparison theorem
which is given below in a more general form. Here we consider two eigen-
value problems pu′′ + (f + λ)u = 0, pu′′t + (ft + λt)ut = 0 and the same
boundary conditions. Then it holds:
If f ≥ (≤)ft then u oscillates faster (slower) than ut and for correspond-
ing eigenvalues leading to the same number of zeros of the eigenfunctions
u(ϕ, λ), ut(ϕ, λt) we have λ ≤ (≥)λt.

Thus we are able to prove the following theorem using inclusions contain-
ing only one eigenvalue guaranteed by the asymptotic relations described in
Section 1:
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Theorem 2. Let ε be a uniform bound for (7) and [λl, λu] an eigenvalue
inclusion of the boundary value problem

py′′1 + (gfy1)
′ = −λy1, y1(−2π) = y1(2π), y′1(−2π) = y′1(2π). (8)

Then the interval [λl− ε, λu+ ε] created through ε-inflation is an eigenvalue
inclusion for at least one eigenvalue of

py′′2 + (gy2)
′ = −λy2, y2(−2π) = y2(2π), y′2(−2π) = y′2(2π). (9)

Proof: If the corresponding λ2
(
i.e. y1 and y2 have the same number of zeros

in [−2π, 2π)
)
is outside the expanded interval the eigenfunction y2 oscillates

faster (slower) and has more (less) zeros than y1, which is a contradiction.

Especially for the calculation of verified results for small eigenvalues we get
better results if we use estimations of relative error instead of absolute error.
These estimations are possible using Sturm’s comparison theorem:
Let P ≥ P1 > 0, Q ≥ Q1, P , P1, Q, Q1 be continuous functions on (a, b).
Assume that u(ϕ) and u1(ϕ) are real solutions of the equations

−(Pu′)′ +Qu = 0, −(P1u
′
1)
′ +Q1u1 = 0

respectively on (a, b). Then between any two consecutive zeros ϕ1, ϕ2 of
u(ϕ) there exists at least one zero of u1 (i.e. u1 oscillates faster than u).

To apply the theorem we take

P1 = p exp

(
− 1

p

∫ ϕ

0

gf(θ)dθ

)
, Q1 = −λ

p
P1,

P = p exp

(
− 1

p

(∫ ϕ

0

g(θ)dθ ±∆1,2

))
, Q = −λ

p
P exp

(
±∆

p

)
(10)

and construct constants ∆1, ∆2 > 0, ∆ := ∆1+∆2 to obtain the inequalities
P1 ≥ (≤)P , Q1 ≥ (≤)Q as in the assumption of Sturm’s theorem. Now we
evaluate the defining integrals and constants in (10):

g(ϕ) :=
∞∑
m=1

(−1)m−1βm sinmϕ,
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gf(ϕ) :=
k−1∑
m=1

(−1)m−1βm sinmϕ, βm ≥ 0,

−∆2 = −
∞∑
m=k

βm
m

(
(−1)m + 1

)
≤
∫ ϕ

0

(
g(θ)− gf(θ)

)
dθ

≤
∞∑
m=k

βm
m

(
1− (−1)m

)
= ∆1.

Furthermore,

∆ := ∆1 + ∆2 = 2
∞∑
m=k

βm
m
.

This error bound ∆ ensures by an application of Sturm’s theorem an in-
terval inclusion [λl exp(−∆/p), λu exp(∆/p)] for each eigenvalue λ with an
eigenvalue inclusion [λl, λu] of the boundary value problem (8).

5 Numerical results

In this section we give numerical results for the eigenvalues of (2). As phase
characteristic we use the tanlock (5) and smooth approximations, introduced
by Rosenkranz [13], for triangular and sawtooth characteristic to avoid the
well-known overshooting destructive to every approximation by finite sums.

gta(ϕ) =
√

1− a2 2

a

∞∑
m=1

(−1)m−1

(
1

a
−
√

1

a2
− 1

)m

sinmϕ (tanlock) (11)

gtr(ϕ) =
8

π2

∞∑
m=0

(−1)mµ2m+1
sin(2m+ 1)ϕ

(2m+ 1)2
(triangular) (12)

gs(ϕ) =
2

π

∞∑
m=1

(−1)m−1µm
sinmϕ

m
(sawtooth) (13)

µm =

√
πy

2
e−y
{
Im−1

2
(y) + Im+1

2
(y)
}
,

Im(y) =
∞∑
ν=0

(y/2)2ν+m

ν! Γ(m+ ν + 1)
, y =

SNR

2
.
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If we now choose gf(·)(ϕ) as the (k − 1)-th partial sum of g(·)(ϕ) we have
to estimate the term in formula (7) for absolute error bounds. Using mono-
tonicity arguments for the above defined values µk and estimations for the
Bessel functions of first kind and the series remainder we get the following
estimations:

E(gtr, gf(tr)) ≤
2ec−(1/(2p)) p−k−0.5

π1.5 (2k + 1) 4kk!

(
1 +

1

4p (k + 1)

)
1

1− 4p c

(
1 +

maxϕ |gtr + gf(tr)|
2p (2k + 1)

)
,

E(gs, gf(s)) ≤
yk/2 ec−y

√
π 2k/2 Γ

(
(k + 1)/2

) 1 + y/(k + 1)

1−
√
y/(k + 1)

(
2√
π

+
G0

p k

)
, c =

y2

2k + 2
,

E(gta, gf(ta)) ≤
ak

2

(√
1 + a

1− a
+
k

2
+

1

p

)
, k = 2κ > 0.

The constant G0 in the sawtooth case is defined as

G0 := µ1 sup
n

max
ϕ
|Gn(ϕ)|

with 0 ≤ Gn(ϕ) = 2
π

∑n
m=1(−1)m−1 sinmϕm ≤ 2

π

∑n
m=1

1
m sin mπ

n+1 ≤ 1.1799
(Gibbs constant). Now we give the first eigenvalues of (2), for M = 2,
k = 10, 12, 14, p = 0.1, and g(ϕ) =

∑k−1
m=1(−1)m−1βm sinmϕ in verified

inclusion form:

λ
(2)
ν Triangular: Sawtooth: Tanlock:

k = 10, y = 5, β2m = 0, y = 0.5 · 100.7, a = 0.5,

12, (−1)m−1β2m−1 = 25/2

π3/2 · βm =
√

2y
π
e−y

m
· βm =

√
1− a2 ·

14 e−y√y
(2m−1)2

(
Im−1(y) + Im(y)

) (
Im−1

2
(y) + Im+1

2
(y)
)

2
a

(
1
a
−
√

1
a2
− 1
)m

ν = 0 8.554091218
081E−8 1.03011637674

049E−6 3.36160997
694E−9

8.554091948
879E−8 1.030013649

510E−6 3.36160979
440E−9

8.554091964
881E−8 1.03000804

578E−6 3.36160936
289E−9

ν = 1 0.63205848158207
105 0.3180201346718252

200 0.5756273872517576
344

0.63205821393442
340 0.3180202096899429

020 0.5756273765253365
133

0.63205821694890
738 0.31802021137411

379 0.5756273765059872
409

To verify the eigenvalues of the characteristics with infinite Fourier series
expansions we find in the above given cases the following estimations for
E(g, gf):
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triangular characteristic 4c =
y2

k + 1
, p = 0.1, y =

1

2p

k 4 5 6 7

ε 0.0306 0.00744 0.001821 0.0004294

tanlock characteristic a = 0.5, p = 0.1

k 8 10 12 14

ε 0.0013158 0.0001068 8.55316E−6 6.7766E−7

In the case of relative error bounds we get the following expressions.
Triangular:

exp

(
±∆

p

)
= exp

±23.5−kyk+0.5 exp
(

y2

4k+4 − y
)

(2k + 2 + y)

π1.5 p k! (2k + 1)3 (2k + 2− y)


Sawtoooth:

exp

(
±∆

p

)
= exp

±22−k/2yk/2 exp
(

y2

2k+2 − y
) (

1 + y/(k + 1)
)

√
πp k2 Γ

(
k+1
2

) (
1−

√
y/(k + 1)

)


Tanlock:

exp

(
±∆

p

)
= exp

± 4

p k

(
1
a −

√
1
a2 − 1

)k
1−

√
1−a
1+a


In a numerical example this leads to the following values:

triangular sawtooth tanlock
p = 0.1, y = 0.5 p = 0.1, y = 0.5 · 100.7 p = 0.1, a = 0.5

k ∆/p k ∆/p k ∆/p

4 0.00716 8 0.023392 8 0.0003144

5 0.00129 10 0.0033952 10 0.00001806

6 0.000244 12 0.0004654 12 1.08026E−6

7 0.00004581 14 0.00005924 14 6.648E−8
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