
Interval Computations
No 1, 1994

Dedicated to Johannes Weissinger
on the occasion of his 80th birthday

A Computer Aided Existence and
Uniqueness Proof for an Inverse

Matrix Eigenvalue Problem

Götz Alefeld and Günter Mayer

We present an algorithm which verifies the existence and within some tight
interval bounds the uniqueness of a solution for the generalized additive inverse
matrix eigenvalue problem.

Посвящается И. Вайсзингеру по
случаю его 80-летия

Компьютерное доказательство
существования и единственности
решения в обратной матричной
проблеме собственных значений

Г. Алефельд, Г. Майер

Представлен алгоритм, проверяющий в некотором узком интервале
существование и единственность решения в обобщенной обратной
аддитивной матричной проблеме собственных значений.

We thank the Deutsche Forschungsgemeinschaft (‘DFG’) for supporting this work under grant
Al 175/4–1 and Al 175/4–2.

c© G. Alefeld, G. Mayer, 1994

A Computer Aided Existence and Uniqueness Proof. . . 5

1 Introduction

In [5] the following generalized additive inverse (matrix) eigenvalue problem
was formulated (cf. also [4, 9, 10, 18, 24, 29]).

Problem 1. Given n + 1 real n × n matrices Ai, i = 0, . . . , n, and given
n real numbers λi, i = 1, . . . , n, find n real numbers c∗i , i = 1, . . . , n, such
that the matrix

A(c) := A0 +
n∑

i=1

ciAi, c := (c1, . . . , cn)T (1)

has the prescribed numbers λi as eigenvalues if ci = c∗i , i = 1, . . . , n.

Often the matrices Ai are assumed to be symmetric (cf. [5], e.g.). We
will also do this in our subsequent sections. But at the moment we allow Ai

to be unsymmetric, too.
Taking for Ai in (1) the matrix ei(ei)T , where ei denotes the i-th column

of the n×n identity matrix I, results in the following additive inverse (ma-
trix) eigenvalue problem [6, 8, 10, 11, 12, 14, 28, 29], which thus is a special
version of Problem 1.

Problem 2. Given a real matrix A0 and given n real numbers λi, i =
1, . . . , n, find a diagonal matrix C∗ := diag(c∗1, . . . , c

∗
n) such that A := A0 +

C∗ has the prescribed numbers λi as eigenvalues (where often the diagonal
entries of A0 are w.l.o.g. assumed to be zero).

Let A0 := 0 and choose Ai in (1) as null matrix with the exception of the
i-th row which is equal to (ei)TA for a given real n× n matrix A. Then (1)
yields to the well-known multiplicative inverse (matrix) eigenvalue problem
[8, 11, 13, 14, 15].

Problem 3. Given a real n × n matrix A and given n real numbers λi,
i = 1, . . . , n, find a diagonal matrix C∗ := diag(c∗1, . . . , c

∗
n) such that C∗ ·A

has the prescribed numbers λi as eigenvalues.

Note that for symmetric matrices A Problem 3 is equivalent to finding
a diagonal matrix C ′ such that A · C ′ has λi, i = 1, . . . , n, as eigenvalues.

6 G. Alefeld, G. Mayer

Often, A is assumed to be symmetric positive definite and C∗ is required to
have nonnegative diagonal elements (c.f. [8], e.g.).

We illustrate the Problems 1 and 3 by the following little example.

Example 1.1. Assume that we are given two point masses m1, m2 which
are coupled by a spring of spring constant c1 > 0. Assume thatm1 is coupled
by a spring of constant c0 > 0 with some rigid wall and that m2 is similarly
connected by a spring of constant c2 > 0 with a second rigid wall standing
parallel to the first one.

��
��
��
��

��A
A
A

A
A
A�

�
�

�
�
�AA

c0

m1 ��A
A
A

A
A
A�

�
�

�
�
�AA

c1

m2 ��A
A
A

A
A
A�

�
�

�
�
�AA

c2 @@

@@

@@

@@

Denote by xi(t), i = 1, 2, the displacement of the mass mi at the time t
from its equilibrium position. Neglecting gravity and using Newton’s second
law [16], p. 55, as well as Hooke’s law [16], p. 200, we get—by elementary
rules of mechanics (i.e., by the superposition of the forces)—the following
equations of motion for our system{

m1ẍ1(t) = −c0x1(t) + c1{x2(t)− x1(t)}
m2ẍ2(t) = −c1{x2(t)− x1(t)} − c2x2(t).

(2)

Here, ẍ(t) denotes the second derivative of x(t) with respect to the time t.
Let

A :=

(
c0 + c1 −c1
−c1 c1 + c2

)
, B :=

(
m1 0
0 m2

)
, x(t) :=

(
x1(t)
x2(t)

)
.

Then (2) can be written as

Bẍ(t) = −Ax(t) (3)

with the solutions

x(t) = αv(1) cos(
√
λ1t) + βv(1) sin(

√
λ1t) (4)

+ γv(2) cos(
√
λ2t) + δv(2) sin(

√
λ2t)

A Computer Aided Existence and Uniqueness Proof. . . 7

where λ1, λ2 are the eigenvalues of the generalized eigenvalue problem Av =
λBv with the symmetric positive definite matrices A and B. Thus λ1, λ2
are positive and eigenvalues of the matrix B−1A; v(1), v(2) are any fixed
eigenvectors associated with λ1 and λ2 respectively, and α, β, γ, δ are any
real constants. Normallymi, ci are given, and one looks for λi, v(i) to get the
solutions x(t) of (2). In some cases, however, mi, λi, and c0 are prescribed
whereas c1, c2 are to be determined in such a way that the solutions of (2) are
given by (4). This means that B is known and A is unknown. Replacing x(t)
in (3) by the fundamental solutions v(i) cos(

√
λit), v(i) sin(

√
λit), i = 1, 2,

yields

λiv
(i) = B−1Av(i)

=

{
B−1

(
c0 0
0 0

)
+ c1B

−1
(

1 −1
−1 1

)
+ c2B

−1
(

0 0
0 1

)}
v(i)

= A(c)v(i), i = 1, 2

with

A(c) := A0 + c1A1 + c2A2, A0 := B−1
(
c0 0
0 0

)
,

A1 := B−1
(

1 −1
−1 1

)
, A2 := B−1

(
0 0
0 1

)
where c := (c1, c2)

T has to be computed. We have thus arrived at a general-
ized additive inverse eigenvalue problem with matrices Ai, i = 1, 2, 3, which
are symmetric if m1 = m2.

Interpreted physically, the problem means the following:
Given the masses, the eigenfrequencies of the system and one spring

constant, say c0, (in order to equal unknowns and equations and thus to
keep the chance for uniqueness), adjust the remaining spring constants in
such a way that the system oscillates with the prescribed eigenfrequencies√
λ1,
√
λ2.

Assume now ci, λi to be given and mi to be determined such that the
solutions of (2) can again be expressed by (4). This means, that the spring
constants are now given whereas the masses are to be computed to make
the system oscillate with the prescribed eigenfrequencies

√
λ1,
√
λ2. We are

again led to the problem

λiv
(i) = B−1Av(i), i = 1, 2 (5)

8 G. Alefeld, G. Mayer

where this time the diagonal matrix B is unknown and the matrix A is
known. It is obvious that (5) is just a multiplicative inverse eigenvalue
problem.

The example above can easily be generalized to a system with n masses
and n + 1 springs with constants ci, resulting in an n × n diagonal matrix
B and a symmetric n× n matrix A.

There are several papers which consider existence and uniqueness of the
Problems 1–3 provided that the matrices Ai and A are symmetric. We cite
[7, 8, 11, 13, 14, 28] without claiming to be exhaustive. Thus [11] derives a
necessary criterion for the existence and non-existence, respectively of the
Problem 2. In [14] a sufficient criterion is presented for the existence and
uniqueness of Problem 2. In [8] it is shown that the Problem 2 has at least
one and at most n! solutions if one admits complex values for ci. It is also
remarked that even in the 2 × 2 case no solution needs to exist for this
problem if one restricts ci to be real. Problem 3 has at least one and at
most n! solutions if all the principal minors of A differ from zero and if
one admits again complex values for ci. Note that the first of these two
assumptions is satisfied for all symmetric positive definite matrices. Again
it is remarked that no solution needs to exist for Problem 3, if one restricts
ci to be real.

In [4, 5, 9, 10, 12, 18], Newton’s method is used to construct approxi-
mations cn to a solution c∗ of the Problem 1 where c∗ is tacitly assumed to
exist. As an inherent fact of the Newton method it is remarked that the
sequence {cn} converges to c∗ if one starts the iteration sufficiently close
to c∗. The goal of our paper consists in deriving an algorithm which ver-
ifies automatically the existence and within some interval bounds also the
uniqueness for the following slightly specialized version of Problem 1.

Problem 1′. Given n+1 real n×n symmetric matrices Ai, i = 0, 1, . . . , n,
and given n real numbers

λ1 < λ2 < · · · < λn (6)

find n real numbers c∗i , i = 1, . . . , n, such that the matrix A(c) from (1) has
the prescribed numbers λi as eigenvalues for ci = c∗i , i = 1, . . . , n.

Our algorithm starts with the Newton method as described in [10], e.g.,
which, in practice, stops with a vector c̃, viewed to be an approximation of

A Computer Aided Existence and Uniqueness Proof. . . 9

c∗. Unless additional considerations are done (e.g., check whether the as-
sumptions of Kantorovich’s theorem are fulfilled) nothing can be said about
the existence of c∗ by this purely computational process. In the sequel, we
will use interval arithmetic combined with Brouwer’s fixed point theorem to
verify c∗ in some neighbourhood U of c̃ or to get informed that no solution
c∗ exists in U . In the first case the algorithm even guarantees the uniqueness
of c∗ with respect to U .

We have organized our paper as follows. In Section 2 we introduce some
definitions and notations. In Section 3 we recall some results needed to
understand the algorithm which is presented in Section 4. In Section 5 we
illustrate this algorithm by numerical examples.

2 Preliminaries

By Rn, Rm×n, IR, IRn, IRm×n we denote the set of real vectors with n
components, the set of real m × n matrices, the set of intervals, the set of
interval vectors with n components and the set of m× n interval matrices,
respectively. By “interval” we always mean a real compact interval. Interval
vectors and interval matrices are vectors and matrices, respectively, with
intervals as entries. We write intervals in brackets with the exception of
degenerate intervals (so-called point intervals) which we identify with the
element being contained, and we proceed similarly with interval vectors and
interval matrices. Examples are the unit matrix I and its i-th column ei. If
necessary, we identify the elements ofRn×1 and IRn×1 in the usual way with
those of Rn and IRn, respectively. We use the notation [a] = [a, a] ∈ IR
simultaneously without further reference, and in an analogous way we write
[x] = [x, x] = ([xi]) ∈ IRn and [A] = [A,A] = ([aij, aij]) = ([aij]) ∈
IRn×n. By int([x]) we denote the topological interior of the interval vector
[x], by x̌ we mean its midpoint x̌ := (x+ x)/2 ∈ Rn. We proceed similarly
for interval matrices [A] for which we introduce, in addition, the non-negative
matrix |[A]| = (cij) ∈ Rn×n by cij := max{|aij|, |aij|}.

We equip IR with the usual arithmetic, i.e., we define

[a] ◦ [b] := {ã ◦ b̃| ã ∈ [a], b̃ ∈ [b]} (7)

10 G. Alefeld, G. Mayer

for ◦ ∈ {+,−, ·, /}, with 0 6∈ [b] in case of division. It is easily seen that (7)
can be expressed by

[a] + [b] = [a+ b, a+ b],

[a]− [b] = [a− b, a− b],
[a] · [b] = [min S,max S] with S := {a b, ab, ab, ab},

[a] / [b] = [a] · [1
b
,
1

b
].

We recall, that (IR,+, ·) is not a field. But it turns out (cf. [3]) that
(IR,+), (IR, ·) are commutative semigroups with the neutral element 0
and 1, respectively. Addition and multiplication are related by the so-called
subdistributivity law

[a] · ([b] + [c]) ⊆ [a] · [b] + [a] · [c]. (8)

Equality seldom holds in (8). We point out, that for non-degenerate
intervals, inverses are missing. Thus, equations cannot be handled as usual.

The product [C] = [A] · [B] of two interval matrices [A] ∈ IRm×n,
[B] ∈ IRn×p is defined entrywise by

[cij] :=
n∑

k=1

[aik] · [bkj] (i = 1, . . . ,m; j = 1, . . . , p).

It is obvious by (7) that

{A ·B| A ∈ [A], B ∈ [B]} ⊆ [A] · [B] (9)

holds. Simple examples show, that “⊆” cannot be replaced by “=” in (9).
For the symmetric matrix A(c) = A0 +

∑n
i=1 ciAi of Problem 1′ we

introduce the eigenvalue vector λ(c) =
(
λi(c)

)
∈ Rn where λi(c), i =

1, . . . , n, are the eigenvalues of A(c). For each c ∈ Rn we assume λi(c) to
be ordered increasingly, i.e., λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c), where multiple
eigenvalues are counted according to their multiplicity. Assume just for the
subsequent definitions that c∗ exists.

By [25], p. 45, λi(c) depends continuously on c. Observing (6) we there-
fore get

lim
c→c∗

λi(c) = λi(c
∗) = λi, i = 1, . . . , n.

A Computer Aided Existence and Uniqueness Proof. . . 11

In particular, there exists a neighbourhood U ∗ ⊆ Rn of c∗ such that

λ1(c) < λ2(c) < · · · < λn(c) for c ∈ U ∗. (10)

For these vectors c let qi(c) ∈ Rn be the eigenvector of A(c) which corre-
sponds to λi(c) and which satisfies

||qi(c)||22 :=
(
qi(c)

)T
qi(c) = 1 (11)

and sign qi1(c) = sign qi1(c
∗) where we assume w.l.o.g. sign qi1(c

∗) to be
non-zero. By [25], p. 45, eigenvectors of algebraic simple eigenvalues depend
continuously on the entries of the matrix. Therefore we have

lim
c→c∗

qi(c) = qi(c∗).

Although it is well-known, that qi(c) depends analytically on c we will not
exploit this fact in order to prove the following lemma, which can already
be found in [9].

Lemma 2.1. For the Problem 1′ and c ∈ U ∗ we get

∂
((
qi(c)

)T
A(c) qi(c)

)
∂ cj

=
(
qi(c)

)T
Aj q

i(c), i, j = 1, . . . , n.

Proof. Let t0 > 0 such that ct := c + t ej ∈ U ∗, 0 ≤ |t| ≤ t0. Then
A(ct)q

i(ct) = λi(ct)q
i(ct) implies(

qi(c)
)T
A(ct)q

i(ct) =
(
qi(c)

)T
A(c)qi(ct)− t

(
qi(c)

)T
Ajq

i(ct)

=
(
λi(ct)− λi(c)

)(
qi(c)

)T
qi(ct) + λi(c)

(
qi(c)

)T
qi(ct).

Dividing by t 6= 0 and taking into account
(
qi(c)

)T
A(c) = λi(c)

(
qi(c)

)T
we obtain

(
qi(c)

)T
Ajq

i(ct) =
λi(ct)− λi(c)

t

(
qi(c)

)T
qi(ct). Letting t tend to

zero and observing the continuity of qi(ct) as well as (11) proves the lemma.
2

In Section 3 we will use the function f : U ∗ → Rn with the entries

fi(c) :=
(
qi(c)

)T
A(c)qi(c)− λi, i = 1, . . . , n (12)

12 G. Alefeld, G. Mayer

and λi from Problem 1′. The zeros of f are clearly the solutions of this
problem.

We will also consider the matrix A(c) for interval arguments [c] = ([ci]) ∈
IRn i.e. A([c]) = A0 +

∑n
i=1[c]iAi ∈ IRn×n. By λi([c]) ∈ IR and

qi([c]) ∈ IRn we denote any supersets of {λi(c)| c ∈ [c]} and {qi(c)| c ∈ [c]},
respectively, where i is kept fixed.

In the subsequent section, we will show how one can get λi([c]) and
qi([c]). It is clear by (9) and by Lemma 2.1 that the Jacobian f ′(c) of f(c)
satisfies

f ′(c) =

((
qi(c)

)T
Ajq

i(c)

)
∈ f ′([c]) :=

((
qi([c])

)T
Ajq

i([c])

)
(13)

for c ∈ [c].
We will use f ′([c]) in connection with some version of the interval Newton

method. To formulate this method, we define the vector

IGA([C], [b]) ∈ IRn (14)

to denote the vector which results from the interval Gaussian algorithm
applied to [C] ∈ IRn×n and [b] ∈ IRn. For simplicity (and in order to be
unique) we assume this algorithm to be performed without pivoting. Since
IGA([C], [b]) is obtained by formulae which read quite analogously to those
of the standard (i.e., non-interval) Gaussian algorithm, it is clear by (7) that

{C−1b| C ∈ [C], b ∈ [b]} ⊆ IGA([C], [b])

holds whenever IGA([C], [b]) exists; in particular, C−1 exists in this case
for any matrix C ∈ [C]. Cf. [3] or [19] for more details concerning the
definition, the existence and properties of IGA([C], [b]).

3 The algorithm

We start this section by recalling some basic facts on the interval Newton
method

[x]k+1 = N([x]k, x̃k) ∩ [x]k, k = 0, 1, . . . (15)
with the interval Newton operator

N([x], x̃) := x̃− IGA
(
g′([x]), g(x̃)

)
, x̃ ∈ [x] ∈ IRn. (16)

A Computer Aided Existence and Uniqueness Proof. . . 13

Here, g : [x]0 ∈ IRn → IRn is a real continuously differentiable vector
function for which we seek a zero within [x]0;

g′ : {[x] ∈ IRn| [x] ⊆ [x]0} → IRn×n (17)

is an interval function for which

{g′(x)| x ∈ [x]} ⊆ g′([x])

holds if [x] ⊆ [x]0. Assume that g′ in (17) is given beforehand in order
to make the definition (16) unique. Think, e.g., of an interval arithmetic
evalution [3], Ch. 3, for a fixed expression g′(x) of the Jacobian of g. Later
on, we will apply the following results on the interval Newton method.

Theorem 3.1 [1]. Let g, N , [x]0 be given as above and assume [x]k,
k = 1, 2, . . . to be constructed by (15). If [x]0 contains a zero x∗ of g then
the vectors [x]k, k = 1, 2, . . . are well defined, each of them contains x∗, and
they converge monotonically to the interval vector [x]∗ :=

⋂∞
k=0[x]k which

again encloses x∗.

In [1] it is shown by an example due to Schwandt [30] that x∗ 6= x∗ can
occur for the bounds of [x]∗ from Theorem 3.1. Criteria which guarantee
x∗ = x∗ = x∗ can also be found in [1]. They are fulfilled if g′(x∗) is non-
singular and if [x]0 encloses x∗ sufficiently tight.

Theorem 3.1 can be applied if (18) of the following theorem holds.

Theorem 3.2 [1]. Let g and N be defined as above.

a) If
N([x], x̃) ⊆ [x] (18)

then [x] contains exactly one zero of g. This zero is also contained in
N([x], x̃).

b) If
N([x], x̃) ∩ [x] = ∅ (19)

then [x] contains no zero of g.

Condition (18) can often be fulfilled by using the so-called ε-inflation
(cf. [26]) which modifies (15) in the following way.

14 G. Alefeld, G. Mayer

Algorithm 3.3.
Choose ε as a small positive number and let kmax be some positive integer.

Step 1: Compute an approximation xapprox of x∗ using any nonlin-
ear system solver. E.g., apply the floating point Newton
method.

Step 2: Iterate according to the following pseudocode.

k := 0
[y] := [xapprox, xapprox]
repeat
k := k + 1
[x] := [y] + [−ε, ε][y] + [−η, η]
choose x̃ ∈ [x]
[y] := N([x], x̃)
if [y] ∩ [x] = ∅ then write (‘ [x] contains no zero’)

until [y] ⊆ [x] or k = kmax.

Step 3: If k < kmax then continue iterating according to (15) un-
til some stopping criterion is fulfilled. Otherwise stop or
improve xapprox or change ε. In the two latter cases start
the inflation process once more.

In Step 2, η denotes a fixed small number (e.g. the smallest machine
number) necessary to guarantee inflation if [y]i = 0.

Without further knowledge on g, there is no guarantee to avoid k = kmax.
But it is a wide numerical experience that (18) is achieved after one or two
steps of inflation provided x∗ exists and xapprox approximates x∗ sufficiently
well. In addition, there are also criteria which guarantee that ε-inflation
yields (18) after finitely many steps of iterations according to Step 2 of
Algorithm 3.3. Cf. [23] or [27] for details.

We remark that there are also results dealing with (19); cf. [1] and
[20], e.g.

It is obvious that the Steps 1–3 form the base of an algorithm to verify
a solution of Problem 1′ and to prove its uniqueness within some interval
bounds. One only has to replace g(x) by f(c) from (12), g′([x]) by f ′([c])
from (13), and x̃ by c̃. Unfortunately, f ′([c]) =

((
qi([c])

)T
Ajq

i([c])
)

is

A Computer Aided Existence and Uniqueness Proof. . . 15

not given by an arithmetic expression with respect to [c]. This complicates
the problem. There are several methods to construct enclosures for the
eigenvectors qi(c), c ∈ [c]; cf. [21] for an overview. For our numerical results
we chose a method described in [2] for point matrices and generalized in [22]
to interval matrices. The essential ideas are the following.

Let (x̃, λ̃) be an approximation of an eigenpair (x∗, λ∗) of a real n × n
matrix A from a given interval matrix [A], which, later on, will be A([c]).
Without loss of generality assume x̃n = x∗n = α 6= 0. For x ∈ Rn and λ ∈ R
introduce the errors ∆x := x− x̃, ∆λ := λ− λ̃. Then ∆xn = 0 and

A(x̃+ ∆x∗) = (λ̃+ ∆λ∗)(x̃+ ∆x∗)

hence
0 = λ̃x̃− Ax̃− (A− λ̃I)∆x∗ + x̃∆λ∗ + (∆λ∗)∆x∗. (20)

Since ∆x∗n = 0, (20) is equivalent to

0 = r −B∆y∗ + (∆y∗n)(∆ŷ∗)

where  r := λ̃x̃− Ax̃,
∆y∗ := (∆x∗1, . . . ,∆x

∗
n−1,∆λ

∗)T ,
∆ŷ∗ := (∆x∗1, . . . ,∆x

∗
n−1, 0)T ,

(21)

and where B ∈ Rn×n is equal to A − λ̃I with the exception of the n-th
column, which coincides with −x̃. With C ∈ Rn×n, (20) yields the fixed
point form

∆y∗ = Cr + (I − CB)∆y∗ + C(∆y∗n)∆ŷ∗ (22)

which is the base of the interval iterative process

[∆y]k+1 = g([∆y]k) ∩ [∆y]k, k = 0, 1, . . . (23)

where
g([∆y]) := Cr + (I − C[B])[∆y] + C([∆yn][∆ŷ]). (24)

Analogously to (21), [∆ŷ] coincides with [∆y] in the first n− 1 components
whereas the last component is defined to be zero. The matrix [B] ∈ IRn×n

is equal to [A] − λ̃I with the exception of the n-th column, which again
coincides with −x̃.

With the notation above, and with (9) and (22) the following theorem
can easily be proved for (23).

16 G. Alefeld, G. Mayer

Theorem 3.4. If ∆y∗ ∈ [∆y]0 then ∆y∗ ∈ [∆y]k, k = 0, 1, . . ., and the iter-
ates [∆y]k converge monotonically to the interval vector [∆y]∗ :=

⋂∞
k=o[∆y]k

which again encloses ∆y∗.

We add another result which resembles Theorem 3.2.

Theorem 3.5. Let g be defined by (24) and let [∆y] ∈ IRn.

a) If
g([∆y]) ⊆ int([∆y]) (25)

then C is non-singular, and for each matrix A ∈ [A] the vector (x̃ +
[∆ŷ], λ̃+[∆yn]) contains exactly one eigenpair (x∗, λ∗), which depends
on A, with x̃n = x∗n = α 6= 0. In addition, (23) can be performed
without intersection, when starting with [∆y]0 := [∆y].

b) If
g([∆y]) ∩ [∆y] = ∅ (26)

then for no matrix A ∈ [A] the vector (x̃ + [∆ŷ], λ̃ + [∆yn]) contains
an eigenpair (x∗, λ∗) with x∗n = α.

Proof.

a) is proved in [22] based on results from [26].

b) If the assertion is false then there is a matrix A ∈ [A] and an eigenpair
(x∗, λ∗) of A such that x∗n = α and ∆y∗ ∈ [∆y]. By (22) and (9) we
get

∆y∗ = g(∆y∗) ∈ g([∆y∗])

which contradicts (26). 2

Starting with an approximation of an eigenpair, (25) can often be fulfilled
using an ε-inflation analogously to Algorithm 3.3. In our next theorem we
show that ε-inflation used as in Algorithm 3.3 is superfluous if [∆y]0 can be
chosen in a particular way.

A Computer Aided Existence and Uniqueness Proof. . . 17

Theorem 3.6 [2]. Denote by ||x|| the maximum norm for x ∈ Rn, and
use the same symbol for its associated matrix norm. Define

ρ := ||Cr||, σ := || |I − C[B]| ||, τ := ||C||.

Assume
σ < 1 and (1− σ)2 − 4ρτ > 0. (27)

Then

β± :=
1− σ ±

√
(1− σ)2 − 4ρτ

2τ
are real numbers, and

[∆y] := [−β, β] · (1, 1, . . . , 1)T (28)

fulfills (25), provided β ∈ (β−, β+). If [A] is a point matrix and if β is chosen
from

(
β−, (β− + β+)/2

)
then [∆y]∗ = [∆y∗,∆y∗] for the limit of (23), with

∆y∗ from (22).

Note that the assumptions (27) certainly hold if C ≈ B̌−1, if the diameter
of [B] is sufficiently small, and if (x̃, λ̃) is for each matrix A ∈ [A] a good
approximation of an eigenpair (x∗, λ∗). If the last two conditions hold and
if [A] is degenerate, it is shown in [2], that B̌−1 exists, provided λ∗ is an
algebraically simple eigenvalue. We remark that (10) guarantees this latter
property at least near a solution of Problem 1′.

If (23) is applied toA([c]) with [∆y]0 satisfying (25) then one gets iterates
[x]k := x̃+[∆ŷ]k which enclose eigenvectors x(c) of A(c), c ∈ [c], normalized
by xn(c) = α. To get enclosures qi([c]) of qi(c), c ∈ [c], we must take into
account the normalization (11). This can be done in several ways. To this
end define

h(x) :=
x√∑n
j=1 x

2
j

for x ∈ Rn\{0}.

Replacing x by [x] ∈ IRn with 0 6∈ [x], yields an interval function h([x]) in
which the squares and the root are computed for [a] ∈ IR as

[a]2 := { ã2 | ã ∈ [a] },

and √
[a] := {

√
ã | ã ∈ [a] }, (29)

18 G. Alefeld, G. Mayer

where we assume a ≥ 0 in (29). It is easily seen that h([x]) contains all
unit vectors (with respect to the Euclidean norm) of the vectors from [x].
Unfortunately, h([x]), often highly overestimates the rangeH := {h(x) | x ∈
[x]}. To get tighter bounds, let h′(x) denote the Jacobian of h at x. Replace
xj by [x]j in h′(x), j = 1, . . . , n, and denote the result by h′([x]). Choose
x̃ ∈ [x]. Then it can be shown (see [3], e.g.) that the so-called mean value
form

hmvf([x]) := h(x̃) + h′([x])([x]− x̃)

encloses H in most cases tighter than h([x]), provided x is sufficiently close
to x. Therefore we will use the intersection

h([x]) ∩ hmvf([x]) (30)

as enclosure for H.
Now we are able to construct qi([c]) using (23) and (30) in the following

way.

Algorithm 3.7.

Step 1: Compute an approximation (x̃, λ̃) for the eigenpair(
qi(č), λi(č)

)
of A(č) using any standard algorithm. E.g.,

apply a software package like LAPACK.
Set α := x̃n.

Step 2: If (27) is fulfilled, then compute [∆y] according to
Theorem 3.6 with β ∈ (β−, β+) close to β−.
Otherwise use ε-inflation starting with (x̃, λ̃) and pro-
ceeding analogously to Step 2 in Algorithm 3.3.

Step 3: If (25) has been fulfilled in Step 2, then continue iter-
ating according to (23) (without intersection) until some
stopping criterion is fulfilled, ending up with some vector
[∆y]k0.

Step 4: Compute

[x] := x̃+ [∆ŷ]k0, [λ] := λ̃+ [∆yn]k0.

A Computer Aided Existence and Uniqueness Proof. . . 19

Step 5: Compute
qi([c]) := h([x]) ∩ hmvf([x])

as in (30).

We formulate now the complete algorithm for verifying and enclosing c∗
of Problem 1′.

Algorithm 3.8.

a) Approximation c̃ of c∗ by using Newton’s method

1. Choose c := c0 ∈ Rn.

2. Compute λ(c), qi(c), i = 1, . . . , n.

3. Compute f(c) = λ(c)−λ∗ ∈ Rn and f ′(c) =
(
(qi(c)TAjq

i(c)
)
∈

Rn×n.

4. Solve f ′(c)(c̃− c) = −f(c). (“Newton step”)

5. If c̃ does not fulfill some given stopping criterion, then set c := c̃
and goto Step 2 or stop.

b) Verification part and improvement of the bounds

6. [c] := [c̃, c̃]; inclusion := false.

7. [c] := [c] + [−ε, ε][c] + [−η, η]. (“ε-inflation”)

8. Compute A([c]) and A(č).

9. Compute λ(č) and f(č) = λ(č)− λ∗ ∈ Rn.

10. Compute and normalize [x]i([c]), i = 1, . . . , n, ending up with
qi([c]).

11. Compute f ′([c]) :=
(
qi([c])TAjq

i([c])
)
∈ IRn×n.

12. Compute [c]′ := č− IGA
(
f ′([c]), f(č)

)
. (“Newton step”)

13. If inclusion = false and if
[c]′ ⊆ [c], set inclusion := true

(“verification succeeded”).
[c]′ 6⊆ [c], set [c] := [c]′, goto Step 7 or stop

(“verification failed”).

20 G. Alefeld, G. Mayer

14. Set [c] := [c]′ ∩ [c] and goto Step 8 or stop.

We remark that č in Step 9 and Step 12 can be replaced by any vector
c from [c].

If inclusion = true for the first time (cf. 13. in Algorithm 3.8) then by
Theorem 3.2 we have verified a unique solution c∗ of Problem 1′ within [c]
and also within [c]′. This finishes the verification part of the algorithm, and
the phase of improving the bounds c′, c′ for c∗ starts by continuing the loop
8–14 until some stopping criterion is fulfilled.

4 Numerical results

We apply now Algorithm 3.8 on several examples. We used the scientific
programming language PASCAL–XSC on a HP 720 workstation. PASCAL–
XSC allows directed roundings and outward rounded interval arithmetic,
cf. [17].

Example 4.1.

A0 =


6 1 3 −2 0
1 2 2 0 4
3 2 1 2 0
−2 0 2 −2 0

0 4 0 0 −3

 , A1 =


2 1 0 −1 1
1 0 −4 −1 0
0 −4 −2 1 3
−1 −1 1 0 5

1 0 3 5 −1

 ,

A2 =


1 2 −3 0 −1
2 −1 −3 1 0
−3 −3 0 −2 2

0 1 −2 0 6
−1 0 2 6 1

 , A3 =


2 −1 0 2 1
−1 2 1 0 −6

0 1 −3 8 −3
2 0 8 6 −3
1 −6 −3 −3 4

 ,

A4 =


−3 −2 2 0 4
−2 1 2 −4 0

2 2 −2 −1 2
0 −4 −1 −5 0
4 0 2 0 1

 , A5 =


−3 −1 −5 3 2
−1 2 7 −1 −2
−5 7 5 −3 0

3 −1 −3 0 −2
2 −2 0 −2 4

 .

A Computer Aided Existence and Uniqueness Proof. . . 21

λ∗ = (−10,−5,−1, 4, 10)T .

Starting vector: c0 = (−2.9, 4.1, 0.9, 2.01,−1.01)T .

Verified enclosure:

[c] =

[−3.000000000000002E + 000, −2.999999999999999E + 000]
[3.999999999999999E + 000, 4.000000000000001E + 000]
[9.999999999999996E − 001, 1.000000000000001E + 000]
[1.999999999999999E + 000, 2.000000000000001E + 000]
[−1.000000000000001E + 000, −9.999999999999997E − 001]

Exact c∗ = (−3, 4, 1, 2,−1)T , A(c∗) =


3 2 0 0 0
2 0 0 0 0
0 0 −5 0 0
0 0 0 −6 8
0 0 0 8 6

 .

Example 4.2.

A0 =


−4 4 −1 0 0

4 −4 −3 2 −5
−1 −3 −4 −4 −1

0 2 −4 8 −2
0 −5 −1 −2 8

 , A1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

A2 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 , A3 =


2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
1 1 1 1 1

 ,

A4 =


−1 −1 −1 −1 −1
−1 0 0 0 1
−1 0 3 2 1
−1 0 2 0 1
−1 1 1 1 2

 , A5 =


−3 2 −1 0 −1

2 1 −2 3 −4
−1 −2 0 2 0

0 3 2 1 −1
−1 −4 0 −1 2

 .

22 G. Alefeld, G. Mayer

λ∗ = (−8,−4,−3, 6, 7)T .

Starting vector: c0 = (−0.9, 1.1,−0.9, 0.9,−0.9)T .

Verified enclosure:

[c] =

[−1.000000000000001E + 000 , −9.999999999999992E − 001]
[9.999999999999999E − 001 , 1.000000000000001E + 000]
[−1.000000000000001E + 000 , −9.999999999999996E − 001]
[9.999999999999999E − 001 , 1.000000000000001E + 000]
[−1.000000000000001E + 000 , −9.999999999999998E − 001]

Exact c∗ = (−1, 1,−1, 1,−1)T , A(c∗) =


−4 2 0 0 0

2 −7 0 0 0
0 0 −3 −3 0
0 0 −3 5 0
0 0 0 0 7

 .

A Computer Aided Existence and Uniqueness Proof. . . 23

Example 4.3.

A0 =



0 4 −1 1 1 5 −1 1
4 0 −1 2 1 4 −1 2
−1 −1 0 3 1 3 −1 3

1 2 3 0 1 2 −1 4
1 1 1 1 0 1 −1 5
5 4 3 2 1 0 −1 6
−1 −1 −1 −1 −1 −1 0 7

1 2 3 4 5 6 7 0


, Ai = ei(ei)T , i = 1, . . . , 8.

λ∗ = (10, 20, 30, 40, 50, 60, 70, 80)T .

Starting vector: c0 = (10, 20, 30, 40, 50, 60, 70, 80)T .

Verified enclosure:

[c] =

[1.190787610247270E + 001, 1.190787610247272E + 001]
[1.970552150808698E + 001, 1.970552150808700E + 001]
[3.054549818697703E + 001, 3.054549818697705E + 001]
[4.006265748844803E + 001, 4.006265748844805E + 001]
[5.158714029072548E + 001, 5.158714029072551E + 001]
[6.470213143217948E + 001, 6.470213143217953E + 001]
[7.017067582089113E + 001, 7.017067582089118E + 001]
[7.131849917021904E + 001, 7.131849917021909E + 001]

In all three examples the following properties occur:

• All the entries of the matrices Ai are machine representable real num-
bers.

• The starting vector c0 differs from the exact solution c∗ by 10% ap-
proximately.

• The verification process needs only 1 inflation step. It was realized by
using the function blow([x], ε) of PASCAL–XSC with ε = 0.1 in Step 7
of Algorithm 3.8. By Theorem 3.2 it is guaranteed that the listed
interval vector [c] contains exactly one solution c∗ of the Problem 1′.

24 G. Alefeld, G. Mayer

• The improvement of the bounds stops whenever [c]′ = [c] holds in
Algorithm 3.8, due to outward roundings on the computer. This part
of the algorithm needs about half of the total time. Thus it is very
time consuming. Since the bounds did not become much tighter, the
improvement step is (at least for our examples) not very efficient and
can be skipped.

Finally we remark, that Example 4.3 is taken from [10], where the ap-
proximation c̃ = (11.90788, 19.70552, 30.54550, 40.06266, 51.58714, 64.70213,
70.17068, 71.31850)T of c∗ is given which has been obtained by the Newton
method. When the bounds of our verifying vector [c] are rounded (outward)
to seven significant digits, then the approximation c̃ in [10] is contained in
[c].

References

[1] Alefeld, G. On the convergence of some interval-arithmetic modifica-
tions of Newton’s method. SIAM J. Numer. Anal. 21 (1984), pp. 363–
372.

[2] Alefeld, G. Berechenbare Fehlerschranken für ein Eigenpaar unter Ein-
schluß von Rundungsfehlern bei Verwendung des genauen Skalarpro-
dukts. Z. angew. Math. Mech. 67 (1987), pp. 145–152.

[3] Alefeld, G. and Herzberger, J. Introduction to interval computations.
Academic Press, New York, 1983.

[4] Biegler-König, F. A Newton iteration process for inverse eigenvalue
problems. Numer. Math. 37 (1981), pp. 349–354.

[5] Bohte, Z. Numerical solution of the inverse algebraic eigenvalue prob-
lem. Comp. J. 10 (1967), pp. 385–388.

[6] Downing Jr., A. C. and Householder, A. S. Some inverse characteristic
value problems. J. Assoc. Comput. Mach. 3 (1956), pp. 203–207.

[7] Friedland, S. Matrices with prescribed off-diagonal elements. Israel J.
Math. 11 (1972), pp. 184–189.

A Computer Aided Existence and Uniqueness Proof. . . 25

[8] Friedland, S. Inverse eigenvalue problems. Linear Algebra Appl. 17
(1977), pp. 15–51.

[9] Friedland, S., Nocedal, J., and Overton, M. L. Four quadratically con-
vergent methods for solving inverse eigenvalue problems. In: Griffith,
Watson (eds) “Numerical Analysis. Pitman research notes in mathemat-
ical series”. Longman Scientific and Technical, Harlow Essex, England,
1986, pp. 47–65.

[10] Friedland, S., Nocedal, J., and Overton, M. L. The formulation and
analysis of numerical methods for inverse eigenvalue problems. SIAM
J. Numer. Anal. 24 (1987), pp. 634–667.

[11] Hadeler, K. P. Ein inverses Eigenwertproblem. Linear Algebra Appl. 1
(1968), pp. 83–101.

[12] Hadeler, K. P. Newton-Verfahren für inverse Eigenwertaufgaben. Nu-
mer. Math. 12 (1968), pp. 35–39.

[13] Hadeler, K. P. Multiplikative inverse Eigenwertprobleme. Linear Alge-
bra Appl. 2 (1969), pp. 65–86.

[14] Hadeler, K. P. Existenz- und Eindeutigkeitssätze für inverse Eigenwer-
taufgaben mit Hilfe des topologischen Abbildungsgrades. Arch. Rational
Mech. Anal. 42 (1971), pp. 317–322.

[15] Heinrich, H. Ein inverses Eigenwertproblem für endliche Matrizen und
seine graphische Lösung für n = 3. Z. Angew. Math. Mech. 40 (1960),
pp. 62–64.

[16] Kittel, C., Knight, W. D., and Ruderman, M. A. Mechanics. Berkeley
Physics Course, Vol. 1. McGraw-Hill, New York, 1965.

[17] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch. PASCAL–
XSC. Sprachbeschreibung mit Beispielen. Springer, Berlin, 1991.

[18] Kublanovskaya, W. N. On an approach to the solution of the inverse
eigenvalue problem. Zapiski nauchnykh seminarov Leningradskogo ot-
deleniya matematicheskogo instituta im. V. A. Steklova Akademii nauk
SSSR (1970), pp. 138–149 (in Russian).

26 G. Alefeld, G. Mayer

[19] Mayer, G. Old and new aspects for the interval Gaussian algorithm.
In: Kaucher, E., Markov, S. M., and Mayer, G. (eds) “Computer Arith-
metic, Scientific Computation and Mathematical Modelling”. IMACS
Annals on Computing and Applied Mathematics, 12, Baltzer, Basel,
1992, pp. 329–349.

[20] Mayer, G. Some remarks on two interval-arithmetic modifications of
the Newton method. Computing 48 (1992), pp. 125–128.

[21] Mayer, G. Enclosures for eigenvalues and eigenvectors. In: Atanas-
sova, L. and Herzberger, J. (eds) “Computer Arithmetic and Enclosure
Methods”. Elsevier (North-Holland), Amsterdam, 1992, pp. 49–68.

[22] Mayer, G. A unified approach to enclosure methods for eigenpairs. Z.
angew. Math. Mech. 74 (1994), pp. 115–128.

[23] Mayer, G. Epsilon-inflation in verification algorithms. Submitted for
publication.

[24] Nocedal, J. and Overton, M. L. Numerical methods for solving inverse
eigenvalue problems. In: Pereyra, V. and Reinoza, A. (eds) “Numerical
Methods. Proceedings, Caracas 1982”. Lecture Notes in Mathematics
1005. Springer, Berlin, 1983, pp. 212–226.

[25] Ortega, J. M. Numerical analysis. A second course. SIAM, Philadel-
phia, 1990.

[26] Rump, S. M. Solving algebraic problems with high accuracy. In:
Kulisch, U. W. and Miranker, W. L. (eds) “A New Approach to Sci-
entific Computation”. Academic Press, New York, 1983, pp. 51–120.

[27] Rump, S. M. On the solution of interval linear systems. Computing 74
(1992), pp. 337–353.

[28] Šarman, S. Bemerkungen zu inversen Eigenwertproblemen. Computing
4 (1969), pp. 207–215.

[29] Scholtyssek, V. Iterationsverfahren auf Mannigfaltigkeiten zur Lösung
inverser Eigenwertprobleme. Thesis, University of Karlsruhe, 1992.

A Computer Aided Existence and Uniqueness Proof. . . 27

[30] Schwandt, H. Schnelle fast global konvergente Verfahren für die
Fünf-Punkt-Diskretisierung der Poissongleichung mit Dirichletschen
Randbedingungen auf Rechteckgebieten. Thesis, Technical University of
Berlin, 1981.

Received: September 20, 1993
Revised version: March 7, 1994

G. Alefeld
Institut für Angewandte Mathematik
Universität Karlsruhe
D–76128 Karlsruhe
Germany

G. Mayer
Fachbereich Mathematik
Universität Rostock
D–18051 Rostock
Germany

