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One of the main objectives of interval mathematics is to produce an interval
that contains the solution to a given mathematical problem (i.e., the Cauchy
problem). There exist methods that produce ellipsoids, parallelepipeds, and
other types of sets that contain the same solution. To get a better estimate, it
is natural to consider the intersection of sets belonging to different classes of
mathematical objects as a localization of the desired solution. In this paper, we
propose new data types that help to implement this idea in programming. The
use of these data types also helps to organize an interface between sumbolic
and numerical computations, and to parallelize the resulting program.

Многоаспектность и локализация
А. Г. Яковлев

Одной из основных целей интервальной математики является нахождение
интервала, содержащего решение некоторой математической задачи (на-
пример, задачи Коши). Существуют методы, использующие эллипсоиды,
параллелепипеды и другие типы множеств для локализации одного и того
же решения. Для получения лучшей оценки такого решения естественно
рассматривать пересечение множеств, относящихся к различным классам
математических объектов. В этой связи предложены новые типы данных,
предназначенные для программной реализации данной идеи. Использо-
вание подобных типов данных помогает также организовать интерфейс
между символьными и числовыми вычислениями и создает возможность
распараллеливания порожденной программы.
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1 Introduction

First, we will explain (informally) what we mean by a localization task. By
this, we mean the task of describing a set that contains a solution to a given
mathematical problem. The smaller this set (i.e., the closer its boundaries
to the solution), the better is our knowledge. A procedure that computes
such a set will be called a localization, and the computations that implement
this procedure will be called localization, or localizing computations.

In the following text, we will use the concept of a locus introduced and
used in [1, 2]. A locus is a pair (x,X), where X is a (known) set called a
shell, and x is an (unknown) element of X called a kernel. In these terms, a
localization procedure, or a localizing computation, means finding of a shell
for a kernel that is defined as a solution to a given mathematical problem.
Shells are usually chosen from a fixed class of sets. To process data given
as shells, we need to define some operations with the shells (and maybe
some relations between the shells). A class of sets (= potential shells),
with operations and relations defined for these sets, will be called an aspect.
Interval computations, being understood as computations in the interval
arithmetic, can be viewed as a particular case of localizing computations:
here, shells are intervals, and operations are standard operations of interval
arithmetic.

One and the same element x can belong to shells of different type.
To describe such cases, we will define a multiaspect locus as a tuple
(x,X1, . . . , Xn) where X1, . . . , Xn are different shells of x belonging to dif-
ferent aspects A1, . . . , An. Using multiaspect loci enables the user to move
from working with simple shells (for example, ellipsoids and polygons on a
two-dimensional plane, cones and parallelepipeds in a n-dimensional space,
etc.) to using complex objects formed as intersections of simple shells. So,
it is desirable to compute a multiaspect locus (x,X1, . . . , Xn) that contains
x, and then conclude that x belongs to the intersection X1 ∩ · · · ∩ Xn. In
other words, we must develop localizing computations for multiaspect loci.

In principle, localizing operations can be performed aspectwise (inde-
pendently for each aspect). However, it is often better to use the results
of computing a shell of one type to improve the shell of another type. For
example, let a multiaspect locus (x,X1, X2) be given, where x is a complex
number, X1 and X2 are respectively a rectangle and a circle on the complex
plane (the arithmetics of rectangles and circles are described in [3]). The
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intersection of X1 and X2 contains x. Therefore, as a rectangular shell for
x, we can take not only X1, but also an arbitrary rectangle that contains
X1∩X2. In particular, among all such rectangle, we can take a rectangle X ′1
with the smallest possible area. In general, X ′1 is smaller than X1, and this
leads to a better estimate for x. Similarly, instead of the original circular
area X2, we can take any circle that contains the intersection X1 ∩X2. In
particular, among such circles, we can choose the one X ′2 with the smallest
possible radius. In general, this will be a better estimate for x that the
original circle X2.

We want to have an easy way to program computations with multiaspect
loci, and we want the resulting programs to be efficient. For these two goals,
we need an appropriate language support. In the following text, we present
special language constructions that enable the user to write short, efficient,
and easy-to-write programs for situations with various computational re-
sources. As a basis for these constructions, we take the general purpose
language Ada.

2 Multiaspect data types

In the desired language for programming localizing computations, multi-
aspect loci must be represented by corresponding multiaspect data types.
We call a data type T multiaspect if a finite list of data types (called basic)
is fixed, and every object of type T has representations belonging to one
or more basic data types. These basic types will be called aspects of the
multiaspect type.

The relation between multiaspect types and multiaspect loci is evident:
basic types (that are aspects of a multiaspect type) serve as representations
for classes of shells (which are aspects of multiaspect loci). Generally, it is
convenient to use multiaspect types in the situations when a frequent joint
use of corresponding operations and relations over different types of elements
is expected. In this respect, multiaspect types are a very convenient means
for representing multiaspect loci. For example, let us consider two aspects:
rectangles on the complex plane, and circles on the complex plane. On
both aspects, similar operations are defined: namely, basic arithmetic and
theoretic-set operations.

We can define different kinds of multi-aspect types:
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• If an object of a multiaspect type can have only one representation
(belonging to one of the basic types), then this multiaspect type will
be called disjunctive (because an object of this type either has a rep-
resentation of type A, OR a representation of type B, OR etc.).

• If an object of a multiaspect type can have several different repre-
sentations from the different basic types (i.e., it belongs to the type
A, AND to the type B, AND etc), then such a type will be called
conjunctive.

There are two known ways to represent a disjunctive type:

• static, in which the basic type is chosen during the compilation (based
on the context) and never changed later;

• dynamic, in which the basic type is chosen during the computation
time.

The so-called united mode of the Algol 68 language presents an example
of a disjunctive multiaspect type. In most other languages such types are
modelled in an indirect way: by means of pointers, variant records, and
so on. In the Ada-like notation, a disjunctive type can be described by a
construct of the following form:

type TYPE_D is TYPE1 or TYPE2 or TYPE3; -- the type is
composed of three
basic types.

The computer representation of a conjunctive type is usually static.
Namely, conjunctive types can be easily modelled by records with fields
belonging to corresponding basic types. A “legitimate” Ada-like represen-
tation would be of the following form:

type TYPE_C is TYPE1 and TYPE2 and TYPE3; -- the type is
composed of the
same three basic
types as TYPE_D.
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In the high-level language that we are describing, we do not need ac-
cess to individual components of the multi-aspect type. All operations that
are defined on an object will be applied (aspect-wise) to all the compo-
nents. The fact that some characteristics (components, operations, etc) of
the complex data type are not directly accessible is called encapsulation. So,
in programming terms, in our representation, we will be using encapsulation.

We want to be able to apply the same operation (e.g., +) to all com-
ponents. Therefore, it is highly desirable that the same symbol be used for
operations applied to different components. The possibility to use the same
symbol (e.g., +) to describe addition of numbers, addition of vectors, addi-
tion of intervals, etc, is called overloading. This possibility exists in Ada,
and this is one of the reasons why we chose Ada as an example.

3 Using multiaspectness for organizing
a symbolic-numerical interface

Multiaspectness may play an important role in the organization of a sym-
bolic-numerical interface. The point is that multiaspect types can include
as basic not only numeric, but also analytical types. For example, let the
conjunctive type LOCUS1 be described as

type LOCUS1 is EXPRESSION and INTERVAL

where an element of the basic type EXPRESSION is either a string or a list
of characters (such data types have been proposed, e.g., in [4, 5]), and an
element of the INTERVAL type is a pair of floating point numbers. Such
a multiaspect type may be used for simultaneous processing of both an
analytical expression and of an interval that represents a numerical value of
this expression. The simplest way to define operations with data of this type
is to define them componentwise. But to make interval estimates better, one
can define and implement operations over elements of the LOCUS1 type in
such a way that after each operation, the resulting analytical expression
will be used to compute a new interval estimate for the desired variable,
and as a resulting interval component, we will take the intersection of the
interval obtained by applying interval operations, and the interval, that was
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computed using the analytical expression. To do this, one must define an
element of the EXPRESSION type as a pair consisting of the expression
itself, and of the bounds for all the variables from this expression.

For example, suppose that after some arithmetic operation has been
applied to both EXPRESSION and INTERVAL parts of the object y, we
have x ∗ x + 1 as an EXPRESSION part (with (−∞,+∞) as the range of
possible values of x), and [−0.5, 2] as an INTERVAL part. Assume also that
we have no knowledge about the exact value of x; in other words, that the
range of possible values of x coincides with the entire real line (−∞,+∞).
For x from this range, the range of possible values of x ∗ x + 1 is [1,+∞).
So, to get the refined interval estimate for y, we can take into consideration
that y belongs to [−0.5, 2], and that y belongs to [1,+∞). Therefore, y
belongs to the intersection [1, 2] = [1,∞) ∩ [−0.5, 2]. This intersection is
then chosen as the new (refined) value of the INTERVAL part of y.

The main idea of this improvement is that the EXPRESSION type con-
tains direct information about the kernel, while the INTERVAL type con-
tains information about the shell localizing this kernel. Evidently, direct
information about the kernel can be used to refine its shell.

4 Conversions of multiaspect types

In the previous text, we considered the case when all operands are of the
same type (e.g., all rectangles, or all described as a pair of a circle and a
rectangle, etc). However, in some cases, we need to compute an arithmetic
expression for which different operands are described by different multiaspect
types.

In the following text, we will show how this can be done. We will not
present the complete solution to the problem, but we will explain the main
ideas that (we hope) will help. All explanations will be carried on the
example of arithmetic operations.

In our considerations, we will assume that for every pair of aspects (basic
data types) we already know how to transform estimates of one type into
estimates of another type (e.g., in the complex example, we know how, given
a rectangle X1, to construct a circle X2 that contains X2; and we also know,
how to transform a circle X2 into a rectangle X1 that contains this circle).
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4.1 Conversions in operations with disjunctive types

Let us first consider the case when all the variables are of disjunctive type.
The problem arises only if the variables involved in some operation have
different basic types. Clearly, such an operation requires transforming vari-
ables into a common basic type. This may be performed in different ways.
For example, let’s consider the following program fragment:

A, B, C : TYPE_D; -- see above the type definition
D : TYPE1;

begin
........
D := A * B + C;

end;

Assume that during the run time (and before computing D) the multi-
aspect variables A, B and C have obtained values of different basic types,
so before we compute D, we must perform some data conversions. There
are two possible conversion tactics:

1) • One of the variables A and B is converted to the type of the
other.

• Multiplication is performed.

• The result of multiplication is either converted to the type of C,
or C is converted to the type of the result of the multiplication.

• Addition is performed.

• The result of addition is converted to the type of D, and the
assignment is performed.

2) • A, B, and C are converted to the type of D.

• The expression is computed, and assigned to D.

Even in this example, we can use several different computation tactics,
and it is difficult to guess which method will lead to a better estimate. For
complicated expressions, the number of possibilities grows exponentially.
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Therefore, it may be quite difficult (and sometimes even impossible) to de-
termine a priori a tactic leading to the most precise result. The tactics
allowing to avoid exceptions like divide-by-zero, or overflow (or at least to
minimize the number of these exceptions) are also extremely difficult to
choose.

We also face the following dilemma: should we choose a conversion to
the type whose operations are quickly executable but not quite sharp, or a
conversion to the type with less sharp but faster operations?

Thus, an essential feature of disjunctive types is the impossibility of
choosing a priori the best tactic of computing expressions.

There is one important exception to this general rule: the conversion
tactics is easier to choose if one of the operands is of the analytical expression
type, and the objective of our computations is to get the most precise result
(so that run time is not our main concern). In this case, it is necessary to
use an analytical representation type as much as possible. The reason for
such a tactic is that, e.g., in interval computations, overestimation is caused
by the dependency of the operands; the trivial example is x ∗ x − x ∗ x: it
should be 0, but for, say, x ∈ [0, 1], interval arithmetic leads to [−1, 1]. If
we use analytical expressions, then we will get the desired 0 as the result.

When one of the operands is an analytical expression, and another one is
an interval, then we would prefer to get the result in a semi-analytical form,
and postpone the conversion to an interval for as long as possible. There
are several ways to do that, among them:

• analytical transformations based on the application of the subdistribu-
tivity property and other properties of the interval arithmetic and its
generalizations (such methods are described in [6]);

• a posteriori interval analysis [7];

• Hansen’s arithmetic [8], etc.

Let us consider an example. Assume that we have defined a disjunctive
type LOCUS2 composed of the same basic types as LOCUS1. Assume also
that for every expression of the EXPRESSION type, for each variable from
this expression, we are explicitly given the range of its possible values. In
the following program, a constant in quotes (e.g., ’[1, 2]’) belongs to the
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type EXPRESSION, and a constant without quotes belongs to the type
INTERVAL. We consider the following program:

type LOCUS2 is EXPRESSION or INTERVAL;
A, B, C, D, E : LOCUS2;

F : INTERVAL;
begin

A := ’[1, 2]’; -- A = ’[1, 2]’
B := A + [2, 3]; -- B = A(=’[1, 2]’) + [2, 3]
C := B - [3, 4]; -- C = A(=’[1, 2]’) + [2, 3] - [3, 4]
D := A * [4, 5]; -- D = A(=’[1, 2]’) * [4, 5]
E := D / [5, 6]; -- E = A(=’[1, 2]’) * [4, 5] / [5, 6]
F := C - E; -- F = A(=’[1, 2]’) + [2, 3] - [3, 4] -

- A(=’[1, 2]’) * [4, 5] / [5, 6] =
= A(=’[1, 2]’) * [0, 1/3] + [-2, 0] =
= [-2, 2/3]

end;

In a comment part of this program, we present the results of execut-
ing each of its operators (we assume that if different types meet, then the
analytical expression type “prevails”). Computing F begins with moving A
outside the parentheses (to achieve that, we use the subdistributivity prop-
erty). We move A outside to simplify the expression in the right-hand side
of the assignment statement. Then, the constant ’[1, 2]’ is converted to the
INTERVAL type, and the expression is computed according to usual rules
of interval arithmetic.

Note that if instead of converting everything to an EXPRESSION type,
we choose the conversion to the INTERVAL type, then the values of B,
C, D, and E would be correspondingly equal to [3, 5], [−1, 2], [4, 10], and
[2/3, 2], and F would be equal to [−3, 11/3], which is a less precise result
than [−2, 2/3] obtained by the first method. Thus, this example shows that
retaining the analytical form as long as possible is reasonable.

4.2 Conversions in operations with conjunctive types

Let’s now consider the case when some of the operands belong to a conjunc-
tive multiaspect type.
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It is sufficient to consider the case when all types are conjunctive, because
we can consider a disjunctive type as a one-aspect conjunctive one.

If both operands consists of components that belong to the same list of
aspects, then we simply perform componentwise operations with correspond-
ing components. If two operands are represented by shells from different lists
of aspects, then each operands must be “completed” to an element composed
of the union of basic types of operands (so that each element will be rep-
resented by shells of all necessary types). The completion is performed by
means of conversion of representation of given basic type into the new basic
types. If, later on, we must assign the result to a multiaspect variable with
a fewer number of aspects, then the assignment is performed only for corre-
sponding aspects, and all the other components are simply deleted. As an
example, consider the following program:

type LOCUS3 is EXPRESSION and RECTANGLE;
type LOCUS4 is EXPRESSION and CIRCLE;
type LOCUS5 is RECTANGLE and CIRCLE;

A : LOCUS3; B : LOCUS4; C : LOCUS5;
begin

C := A + B;
end

where the EXPRESSION type is the same as above (with the only differ-
ence that the variables involved in the formulas can now denote complex
intervals as well), and the RECTANGLE and CIRCLE types present re-
spectively rectangular and circular complex intervals. The above program
can be executed as follows:

• First, we describe the type that is the union of the basic types of
operands:
{EXPRESSION, RECTANGLE} ∪ {EXPRESSION, CIRCLE} =
{EXPRESSION, RECTANGLE, CIRCLE}.

• Both A and B are “completed” to this type:

– the rectangle A is inscribed into a circle, and
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– the circle B is inscribed into a rectangle (with sides parallel to
the coordinate axes).

• Next, addition is performed. As a result, we get a value of the union
type.

• Finally, we transform the result of addition into a C type (by deleting
its analytical expression component), and assign the resulting value to
the variable C.

If an expression with conjunctive type operands involves more than one
operation, then a similar sequence of steps is performed for every operation.

In some cases, a missing component (that needs to be computed for
completion) must be computed based on components belonging to several
basic types.

5 Comparison of convenience and efficiency of
different multiaspect types

In the framework of localizing computations, conjunctive types turn out
to be more convenient for a user than disjunctive ones. Simultaneous ac-
cessibility of several representations enables the user (at any stage of the
computation process) to make a mutual refining of shells corresponding to
different components of the same element. This refining can be done both by
taking their intersection, and by comparing their analytical representation
with numerical ones (see above).

Another advantage of conjunctive types (important from the implemen-
tation viewpoint) is the possibility of parallel processing of components cor-
responding to different basic types. This parallelization enables a user to
reduce the time that is necessary to compute a result with a given accuracy
by using additional available computational resources. A program for pro-
cessing a n-aspect conjunctive type is thus regarded as subdivided into n
processes. For example, a program fragment

A, B, C : TYPE_C; -- see above the type definition
begin
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C := A + B;
end

can be regarded as divided into three processes of the form

A, B, C : TYPEn; -- where n = 1, 2, 3
begin

C := A + B;
end.

If we want to refine C, we must allow these processes to interact. The
more frequently they interact, the more precise results each of them com-
putes. However, the interaction itself requires time and slows down each
of interacting processes. Depending on the requirements on speed and ac-
curacy of the computations, we can use various tactics of organizing such
an interaction. Various tactics of parallelization are discussed in [2, 9] (in
connection with the so-called wave computations).
Summarizing: The use of conjunctive types is more convenient for the user,
and leads to a higher accuracy of the final result. For time efficiency, the
results depend on whether we can parallelize:

• For sequential (non-parallel) computations, conjunctive types are more
time-consuming than disjunctive ones.

• If we have an (appropriately organized) parallelization, then conjunc-
tive types are as (or almost as) efficient as disjunctive ones.

6 Other applications of localizing
computations

It should be pointed out that multiaspect types can be used not only for
representing shells, but for other purposes as well. For example, triplex
intervals [10] can be described as follows:

type TRIPLEX is INTERVAL and MAIN
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where the element of the basic type INTERVAL is an interval represented by
a pair of floating point numbers, and MAIN is a number from this interval.

The INTERVAL component is interpreted as an interval that contains all
possible values of the unknown physical quantity x, and the MAIN compo-
nent is a value that x can take. For example, suppose that we have measured
a physical quantity x, and the result is 0.5. We know that the measuring
device has a guaranteed accuracy ±0.1, and we know that the result 0.5 is
possibly correct. Then, the result of this measurement can be represented
by a triplex ([0.4, 0.6], 0.5). The idea behind adding 0.5 is that [0.4, 0.6] can
be an overestimation; the actual interval (corresponding to the accuracy of
this measuring device) can be smaller that [0.4, 0.6]. In view of that, in
addition to the interval, it would be nice to know where inside this interval
the actual interval of uncertainty may be located. The fact that 0.5 is a
possible value means that the actual interval cannot be in [0.4, 0.49], or in
[0.51, 0.6]: it has to include 0.5.

In general, multiaspect types are convenient to use in all cases where
frequent joint use of corresponding operations and relations over elements
of different types is expected.

7 Conclusion

The present paper has described only a few applications and advantages
of multiaspectness. The idea of the multiaspect approach like that of the
object-oriented approach is certainly substantially richer than it may seem
after considering one or two particular implementations of this idea. Multi-
aspectness is worth developing. The author will be glad to learn about the
work of other researchers in this direction.
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