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The problem of locating local maxima and minima of a function from approx-
imate measurement results is vital for many physical applications: In spectral
analysis, chemical species are identified by locating local maxima of the spec-
tra. In radioastronomy, sources of celestial radio emission, and their subcom-
ponents, are identified by locating local maxima of the measured brightness of
the radio sky. Elementary particles are identified by locating local maxima of
the experimental curves.

In mathematical terms, we know n numbers z; < --- < z,, n values
Y1, .-, Yn, value € > 0, and we know that the values f(z;) of the unknown
function f(z) at the points x; belong to the intervals I; = [y; , 4 ],i =1,...,n,

where y; = y; — e and y;” = y; + . The set F of all the functions f(z) that
satisfy this property can be considered as a function interval (this definition
was, in essence, first proposed by R. Moore). We say that an interval I locates
a local maximum if all functions f € F attain a local maximum at some point
from I. So, the problem is to generate intervals Iy, ..., I, that locate local
maxima.

Evidently, if I locates a local maximum, then any bigger interval J D [
also locates this maximum. We want to find the smallest possible location 1.
We propose an algorithm that finds the smallest possible locations in linear
time (i.e., in time that is < Cn for some C).
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AjaropurtM c JIMHEIAHBIM BpeMeHeM JIJIs
HaXO02KJIeHUs JIOKAJIbHBIX 3KCTPEMYMOB
pYHKIINNI OJJHOI IepeMeHHOIl 110
JaHHBIMM MHTEPBAJIbHBIX U3MEPEeHUil

K. Bunnasepje, B. Kpeitnosuu

Sajiavua JIOKAJIM3aIiil MaKCUMYMOB U MUHUMYMOB HEKOTOPOH (DYHKITUH HC-
X0/ M3 TPUOJINYKEHHBIX Pe3Y/JIbTATOB U3MEPEHUs UPE3BBIMAfiHO BayKHA IS
MHOTUX (PU3UIECKUX MMPUIOKEHU. B crekTpaJibHOM aHaIM3e OCKOJIKI COeT-
HEHUN WIeHTU(DUIUPYIOTCA MIyTeM JIOKAJIU3AINH JIOKAJbHBIX MaKCUMYMOB B
crieKTpax. B paamoacTpOHOMUN UCTOTHUKH KOCMHYECKOTO M3/Ty9IeHUsI, 8 TaK-
JKe UX CyOKOMITOHEHTBI MOT'YT OBITh MIEHTU(PUIMPOBAHBI C TTOMOIIBIO JIOKAJIT-
3aIiN JIOKAJTBHBIX MAaKCHUMYMOB M3MepsieMOil SIPKOCTH (DOHOBOTO WM3JTyIeHUS.
DJreMeHTapHbIe YACTUIBI UACHTHMOUITUPYIOTCS OCPEJICTBOM JIOKATH3AIIN JIO-
KaJIbHBIX MAaKCHIMYMOB 3KCIIEPUMEHTATHHBIX KPUBBIX.

Ha maTemMaTn4ecKoM sI3bIKe, U3BECTHBI N Huces T < -+ < Ty, N BeJUYUH
Y1, ..., Yn, BeanunHA € > 0, a TaKzKe U3BECTHO, 4TO 3HadeHns f(x;) HeM3BeCT-
noit dpyukiuu f(r) B ToUKax x; npuHajekar uarepsaiam I; = [y;,y;t], 1 =
L,...,n,tney; =vyi—euy, =y;+e. Muoxecrso F Beex dbyuxuuit f(x), yio-
BJIETBOPAIONINX ITOMY CBONCTBY, MOXKHO PacCMaTpPUBAThL KaK (DyHKIIMOHAb-
HBII HHTEPBAJI (9TO ONpeJIesIeH e 0 CYIIeCTBY BIIEpBBIe mosBuIoch y P. Mypa).
Mpuri roBopuM, uTo mHTEpBaJ [ 3aK/IovaeT B cede JIOKAJTLHBII MaKCUMYM, €CJIH
Bce byHKImu f € F JOCTUraloT MaKCUMyMa B HEKOTOPOIl TOUKe U3 UHTEPBAJIA
I. Takum obpaszom, 3ajiatua COCTOUT B 'eHEpUPOBAHUEN MHTEPBAJIOB [, . .., Ij,
B KOTOPBIX 3aK/II0YAIOTCS JIOKAJILHBIE MAKCUMYMBI.

OueBusiHO, YTO eciu B I COJMEPKUTCHA JIOKAJIBHBII MaKCUMyM, TO 0OO0JIb-
muit uarepBas J DO I Tak¥Ke COMEPKUT STOT MAKCUMyM. MbI XOTUM HAWTH
HAUMEHLWUT BOSMOXKHBIN nuTepsas I, cogepxxKanuit makcumyMm. [Ipeoxen
AJITOPUTM HAXOXKJIEHUsI HAMMEHBIITNX BO3MOXKHBIX JIOKAJIU3AINi 3a JIMHEHHOE
BpeMs (T. e. 3a BpeMsi, MeHblIlee ujim pasuoe Cn jyist Hekoroporo C).
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1  Why is this problem important for
applications?

The problem is really important. In many applications, the following
problem arises: we know that a physical quantity y is a function of some
other physical quantity x, y = f(z), and we want to know the local maxima
of this function f.

In spectral analysis, chemical species are identified by locating local max-
ima of the spectra.

In radioastronomy, sources of celestial radio emission and their subcom-
ponents are identified by locating local maxima of the measured brightness
of the radio sky. In other words, we are interested in the local maxima of
the brightness distribution, i.e., of the function y(z) that describes how the
intensity y of the signal depends on the position z of the point from which
we receive this signal.

Elementary particles are identified by locating local maxima of the ex-
perimental curves that describe (crudely speaking) the scattering intensity
y as a function of energy x.

Local maxima and minima are also used in the methods that accelerate
the convergence of the measurement result to the real value of a physical
variable, and thus allow the user to estimate this value without waiting for
the oscillations to stop [12].

In all these cases, we have some basic information. In all these cases,
we know the results v, ...,y, of measuring the (unknown) function f(z)
for some values x1,...,x,, and we know the accuracy € of the measuring
instrument (i.e., we know that |f(z;) — y;| < € for all 7).

In some real-life cases, we may have additional information
about f:

e We may know a formula that describes the unknown function f(x);
e.g., in optical spectroscopy, we often know that the spectrum is a lin-
ear combination of several Gaussian functions: f(z) = ¢;exp ((z —
a;)?/ 02-) (where the parameters ¢;, a;, and ¢; are apriori unknown). In
this case, we can find the parameters of this function f from the mea-
surement results, and then use the explicit formula for f to describe
the local extrema.
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e In addition of the accuracy, we may also know statistical character-
istics of the measurement errors y; — f(x;). In this case, we can use
statistical methods to describe the possible locations of local extrema.

In many important cases we do not have any additional informa-
tion (see, e.g., |1, 18]): we do not know the shape of f(z), and we do not
know the probabilities of different errors. In these cases, the only informa-
tion that we have is the values x; in which f(x) was measured, the measured
values y;, and the accuracy €. The only information we thus have about the
value f(x;) of the (unknown) function f(x) is that it belongs to an interval
[y; — e,y; + ¢€]. We can express this fact by saying that we have interval
measurement results.

For interval measurement results, there are methods that locate
local extrema, but these methods do not give a guaranteed loca-
tion of the extrema. For the cases when no additional information is
available, there exist several numerical methods of locating extrema (see,
e.g., [4, 8, 16, 17]). These methods turn out to be very successful in many
applications in the sense that the locations that they produce are in good
accordance with the results of more accurate measurements. However, the
existing methods do not provide the user with any guaranteed estimates of
the accuracy of their results.

In other words, the algorithm computes an approximate location Z(e) of
the extremum. Since we started with the approximate measurement results,
the actual location x(e) of this extremum may be different from Z(e). What
are the possible values of z(e)?

What we are going to do. In this paper, we produce an algorithm that
not only computes the approximate locations, but also computes the interval
of possible values of z(e).

2 Formulation of the problem in
mathematical terms

Motivation. In all the above applications (spectral analysis, radioastron-
omy, elementary particles), the precise form of the actual function f(z) is
unknown; the only information that we have consists of the results y; of mea-
suring f(x) for finitely many values 1, 75, . .., 7,,. If we denote the accuracy
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of these measurements by ¢, then this information means that the unknown
function must satisfy the inequalities |f(x;) — y;| < e foralli =1,...,n.
In other words, the only information that we have about the function f(x)
is that for every i = 1,...,n, f(x;) € I;, where I; = [y, ,y'], v; = yi — ¢,
and ¥ = y; + €.

Definition 1. Suppose that for some integer n, we are given n real numbers
r1 < ... < x,, n real numbers yi,...,y,, and € > 0. By a function
interval we mean the set F of all continuous functions f(x) such that for all
i=1,...,n, f(x;) € L; =y, ,y] ], wherey, =y, —e and y” = y; +¢.

Remark. This definition is a slight modification of the one originally pro-
posed by R. E. Moore (see, e.g., [9], Section 5.1; [10], Section 2.5).

Definition 2. We say that a function f(x) attains a local mazimum at a
point xq if there exists an interval [x~ x| such that x= < xg < z", and
f(zo) > f(x) for all z € [x~,x"]. Likewise, we say that a function f(x)
attains a local minimum at a point xy if there exists an interval [z~ , x| such
r- <xo<at,and f(xg) < f(x) for all x € [z, xT].

Definition 3. Suppose that a function interval F is given. We say that
an interval I locates a local maximum if all functions f € F attain a local
maximum at some point from I. We say that an interval I locates a local
mantmum if all functions f € F attain a local minimum at some point
from 1.

Main problem: to generate intervals I, ..., I that locate local maxima
and local minima.

Remarks.

1) There exist various algorithms that locate the global mazima of an
intervally defined function (see, e.g., [3, 10, 11, 15]). However, the input
for these methods is very different. namely, an expression for the function.
Besides, for these algorithms, local maxima are the main obstacle that has to
be overcome (and not the desired result). For these two reasons, we cannot
apply these algorithms to locate all [ocal maxima.

2) Evidently, if I locates a local maximum, then any bigger interval
J D I also locates it. We want to find the smallest possible locations /. In
other words, we want an optimal interval estimate in the sense of [13| and
[14] (see also [5]). Let’s describe this demand in mathematical terms.
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Definition 4. Suppose that a function interval F is given. We say that
intervals I and J locate the same local maximum if there exists an interval
K that locates a local maximum and such that K C I and K C J. We
say that a list I, ..., I} locates all local maxima if any other interval I that
locates a local maximum, locates the same interval as one of these I;.

Definition 5. Suppose that a function interval F is given. We say that an
interval I locates the local maximum precisely, if I locates a local maximum,
and no proper subinterval I' C I locates it.

Similar definitions can be repeated for local minima. Taking this into
consideration, we can reformulate the main problem as follows:

Main problem: We must locate all local maxima and local minima pre-
cisely.

Example (see Fig. 1)
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Figure 1: Precise location of local maxima and local minima

Take n = 8, x; = 0.2(1 — 1) (ie., 1 = 0, x5 = 0.2, ..., xg = 1.4),
e = 0.05, 4 = —0.05, o = 0.11, y5 = 0.19, y4 = 0.29, ys — 0.21, y5 = 0.05,
y7 = 0.11, and yg = 0.19. In this case, I; = [-0.1,0], [ = [0.06,0.16], I3 =
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[0.14,0.24), I, = [0.24,0.34], Is = [0.16,0.26], I = [0,0.1], I; = [0.06, 0.16],
and Ig = [0.14,0.24]. The first 6 measurements are consistent with the
function f(x) = z(1 — x) that attains a local maximum at x = 0.5. Our
algorithm will show that for this F, the interval I = (0.2,1.0) locates the
local maximum precisely. This means that an arbitrary number from the
interval (0.2,1.0) can be the location of some function from F. As an
example, in Fig. 1, we show two functions that are consistent with these
measurement results and that attain local maxima correspondingly at z =

0.3 and z = 0.9.

An interval J = (0.1,1.0) locates the same local maximum, because
K CJland K C J for K = 1.

By applying our algorithm, we will also see that an interval I, =
(0.8, 1.4) locates the local minimum precisely.

Remark. We are also interested in locating local maxima as fast as possible.
So, we must give a formal definition of what “fast” means. The actual
running time of an algorithm depends on what computer we use, but we
can make a good estimate by computing the total number of computational
steps (this number is called a computational complexity of an algorithm).
In the majority of computers, arithmetic operations (4, —, %, /, min, max,
taking an absolute value) and comparison of two numbers are hardware
implemented, and the running time of all these operations is approximately
of the same order. Therefore, we can estimate the total running time by
just counting the total number of these arithmetic steps in our algorithm.
So, we come to the following definition [2]:

Definition 6. By a computational step of an algorithm we mean an arith-
metic operation (+,—,*, /, min, max, taking an absolute value) or a com-
parison of two numbers. By a running time of an algorithm on some data
D, we mean the total number of computational steps that are undertaken,
when we apply the algorithm to this data. By a length of the data D, or
input length, we mean the number of real numbers that constitute the in-
put data. By a complexity of an algorithm for a given input length L, we
mean its largest running time on all the inputs of length L. We say that an
algorithm is linear-time if its complexity is O(L) (i.e, for some C' > 0, its
complexity is smaller than C'L).
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Remark. In our case, the input data include z1,...,z,, y1,...,¥Yn, €, SO the
input length L is 2n + 1. Hence, an algorithm is linear-time if and only if
its computational complexity is O(n) (i.e., is < Cn for some n).

3 Testing whether an approximately given
function can be monotonic

Before locating local extrema, it is necessary to know whether the unknown
function has any local extrema at all or it is monotonic. In other words, it
is necessary to solve the following problem: given a function interval F, is
it possible that a function f € F is monotonic? This problem is sometimes
of a separate interest for physical applications. Its solution is also used as
a method to accelerate the global optimization algorithms (see, e.g., [15],
Section 3.11).

Theorem 1. There exists a linear-time algorithm that given a function
interval F, returns “yes” if and only if this interval contains a monotone
non-decreasing function.

For reader’s convenience, all the proofs (that this and other algorithms
are really doing what they are supposed to do) are placed in the last section.

Algorithm. Set M := y;. Then, fori = 2,...,n, do the following: check
whether M — 2e < y;, and compute the new value M := max(y;, M).
If for all @, the checked inequality is true, return “yes”, else return‘no”.

Remark. The fact that we cannot check monotonicity faster than in linear
time is proved by the following Theorem:

Theorem 2. FEvery algorithm that checks whether a given function in-
terval contains a monotone non-decreasing function, requires at least O(n)
computational steps.

Theorem 3. There exists a linear-time algorithm that given a function
interval F, returns “yes” if and only if this interval contains a monotone
non-increasing function.

Algorithm. Set m := y;. Then, for i = 2,...,n, do the following: check
whether m + 2e > v;, and compute the new value m := min(y;, m).

If for all @, the checked inequality is true, return “yes”, else return‘no”.
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Theorem 4. FEvery algorithm that checks whether a given function in-
terval contains a monotone non-increasing function, requires at least O(n)
computational steps.

4 Main result

Theorem 5. There exists a linear-time algorithm that locates all local
maxima and all local minima precisely.

Remark. This theorem first appeared in Technical Reports [6] and [7].
There will be a special variable s with possible values —1, 0, and 1.
These values have the following meaning:

s = 0 means that the data that we have already processed is still consistent
with the hypothesis that f is constant; in other words, that some f € F is
constant. Once this is no longer the case, s only takes the values +1.

s = 1 means that we are now in an interval on which some f € F is
monotone non-decreasing;

s = —1 means that we are now in an interval on which some f € F is
monotone non-increasing.

The algorithm itself is as follows:
Algorithm. First, set s := 0, read the first value y; and set m := y; and

M := 1. Then, read all the other values y;, © = 2,3, ...,n one by one and
depending on the value of s do the following:

e [fs =0, then do the following:

i) Check whether M — 2¢ < y; and whether y; < m + 2¢.

ii) If both checked inequalities are true, then leave s unchanged.
Else, if the first inequality is false (i.e., M —2& > v;), set s := —1.
If the second inequality is false (i.e., y; > m + 2¢), set s := 1.

iii) Update the values M and m: M := max(M,y;) and m :=
min(m, y;).

e [fs =1, then check the inequality M — 2e < y;. If it is true, compute
M := max(M,y;) and leave s unchanged. If it is false, then do the
following:
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i) forj =1—1,i—2,... compare y; with M — 2 until we find an
index j for which y; < M — 2¢ (note that yj+1 > M — 2¢);

ii) for this j, output the interval (z;,x;) as an interval that locates
a local maximum and M — ¢ as a lower bound on the maximum
value;

iii) set s :=—1, m = y;.

e [f s = —1, then check the inequality m + 2¢ > y;. If it is true,
compute m := min(m, y;) and leave s unchanged. If this inequality is
false, then do the following:

i) forj =1—1,1—2,... compare y; with m + 2¢ until we find the
index j for which y; > m + 2¢ (note that y; 41 < m + 2¢);

ii) for this j, output the interval (z;,x;) as an interval that locates
a local minimum and m + € as an upper bound on a minimum
value;

iii) set s:=1, M :=y; 1.

e When we have processed all the y; and no max or min intervals have
been printed, then, depending on the final value of s, it means the
following:

if s = 0, then the function interval F contains a constant func-
tion;

if s =1, then the function interval F contains a monotone non-
decreasing function f;

if s = —1, then the function interval F contains a monotone
non-increasing function f.

The following Mathematica program (written by the referee) implements
this algorithm:

alglx_,y_1:=
Module[{n,s,m,M,maxlist,minlist,i,j},
n=Length[y]; s=0;m=y[[1]]; M=y[[1]1];
maxlist={}; minlist={};
1=2;
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While[i<=n,
If[s==0,

If[M-2 eps<=y[[i]l] && y[[i]l]<=m+2 eps,{},
Block[{},If[M-2 eps>y[[il],s=-1];

If [m+2 eps<y[[il],s=11];
M=Max[M,y[[i]]];m=Min[m,y[[i]1]1]],

If[s==1,

Block [{},If[M-2 eps<=y[[i]l],
M=Max [M,y[[i]]],

Block[{}, j=i-1;While[y[[jl]1>=M-2 eps,j--1;
maxlist=Append[maxlist,{x[[j]1],x[[i]]1}];
s=-1;m=y[[i]]1]]1],

If[s==-1,

Block [{},If [m+2 eps>=y[[i]],m=Min[m,y[[i]]],

Block[{},j=i-1;While[y[[jll1<=m+2 eps,j--1;
minlist=Append[minlist,{x[[j]1],x[[i]]1}];
s=1;M=y[[i]]1]1]1]1]];

i++];
Print [maxlist]; Print[minlist];
If [Length[maxlist]==0 && Length[minlist]==0,Print[s]]]

Example. For the above example, we start with s =0and m = M = y; =
—0.05. For ¢ = 2, we have yo > m + 2¢, therefore, we change the value of s
to 1 and update M to max(—0.05,y2) = 0.11. For i = 3,4, 5, the inequality
y; > M — 2¢ is true, so we leave s unchanged (= 1) and update M. After
we process the value y5, we will have M = 0.29.

For i = 6, we have ys = 0.05 < M — 2¢ = 0.19. Therefore, we compare
yj for j = 5,4, ... with M —2e = 0.19 until we find an index j = 2 for which
Yo < 0.19. So, we return an interval (zo,xg) = (0.2,1.0) as an interval that
locates a local maximum.

After that, we set s to —1, and take m = yg = 0.05. For i = 7,
we have y7; = 0.11 < m + 2¢, so we leave s unchanged and update m to
min(0.05,0.11) = 0.05. For ¢ = 8, we have ys = 0.19 > m + 2¢ = 0.15.
Therefore, for j = 7,6, ..., we compare y; with m 4 2e = 0.15 until we find
an index j = 5 for which y5 > 0.15. So, we return an interval (x5, zs) =
(0.8,1.4) as an interval that locates a local minimum.
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Theorem 6. Every algorithm that locates all local maxima and all local
minima precisely, requires at least O(n) computational steps.

5 Remaining problems

e In some cases, different measurements have different accuracy. In
these cases, we have different ¢; for different :. How to locate local
extrema based on such data?

e In some important real-life applications, we are interested in the local
extrema of functions of several variables. In these cases, we have mul-
tidimensional data, sampled, e.g., over a (hyper-)rectangular lattice.
How to use this data to locate local extrema?

6 Proofs

We will first prove Theorems 1-4, and then Theorems 6 and 5.

Proof of Theorem 1. The algorithm described after Theorem 1 takes
14 3(n—1) = 3n — 2 computational steps: 1 multiplication to compute 2¢,
n — 1 subtractions to compute M — 2¢, n — 1 comparisons between M — 2¢
and y;, and n — 1 comparisons between M and y;. So, this algorithm is
linear-time.

Let us prove that this algorithm produces the correct result. In this
algorithm, the variable M changes. Let us denote the value of M after
we have processed ¢ values y1,...,¥;, by M;. According to the algorithm,
M; = max(y1,y2,...,y;). In the algorithm, we compare M; 1 — 2¢ with y;
for all 4.

Let us first prove that if a function interval F contains a monotone non-
decreasing function f, then this algorithm returns “yes”. Indeed, since f
is non-decreasing, for j < 4, we have f(x;) < f(x;). Since f € F, we
have |f(z;) — ;| < ¢ (hence y; < f(x;)+£) and | f(z;) — | < = (hence
f(z;) <wy; +¢). Combining these three inequalities, we conclude that

Y < f(og) +e < flay) +e < (yi +e) +e=y + 2.
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Therefore, for j =1,2,...,¢ — 1, we have y; < y; + 2¢. Hence, the biggest
of these values y; (that is equal to M;_;) is also < y; +2e: M;_; < y; + 2¢.
Subtracting 2¢ from both sides, we conclude that M;_; — 2¢ < y;, and so
our algorithm will return “yes”.

Let us now prove that if an algorithm returns “yes”, then there is a non-
decreasing f € F. Let us take f; = M; — e = max(yy,...,y;) —e fori <mn
and f, = max(yi,...,y,) + €. Evidently, f; is a non-decreasing sequence.

Let us show that |y; — f;| < e for all i. Indeed, from y; < max(yi, ..., y;),
we conclude that y; < f; +¢,1e.,y; — fi < e.

On the other hand, since the algorithm returned “yes”, we have M; | —
2¢e < y;, ie, max(yy,...,¥i-1) < y; + 2. Since y; < y; + 2¢, we can
conclude that the biggest of the two numbers max(yy, ..., y;—1) and y;, i.e.,
the number M; = max(y1,...,v;), also does not exceed y; +2¢. Subtracting
¢ from both sides of this inequality M; < y;+2¢, we conclude that f; < y;+¢,
i.e., fz —Y; S £.

Combining these two inequalities, we conclude that |y; — fi| < e.

Now, we can define the desired f: for x = x;, we take f(z) = f;; and for
r € (r;,xi11), we define f(x) by linear interpolation:

f@) = flima) + [(& — 2) /(@1 — 2) | (f (@ir1 — f(20)).-

Thus defined function f : [z1,2,] — R is non-decreasing, and satisfies the
inequalities |y; — f(z;)] < e.

We can extend this f to a non-decreasing function on the set of all real
numbers by taking f(z) = f for < z7 and f(z) = f, for x > x,. This f
belongs to F. Q.E.D.

Comment. This function f : [x1,x,] — R attains its biggest value in
only one point: x,. Likewise, if instead of the values f; that we have taken,
we take different values fi =y; —ec and 4; = M; + ¢ for i = 2,3,....,n, we
will get a function that attains its smallest value in only one point: x;.

Proof of Theorem 2. Let us show that if a function interval F contains a
non-decreasing function f, then any algorithm that returns a correct answer
“yes” must process all n values y1,v2,...,y,. Indeed, assume that some
algorithm U skips a value y;. Let us prove that it cannot always give a
correct answer. Indeed, for the initial set of values yi,...,y, (from F) it
must give an answer “yes”. Now, if we input the values y; such that y; = y;
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for j # ¢, and ¢; = min(yy,...,y,) — 3¢, then, since U pays no attention
to ¢-th value, it will generate the same answer “yes”. However, by applying
Theorem 1, we can easily see that the answer should be “no” there is no
non-decreasing function in this new function interval.

So, any algorithm must process all n values ¥, ...,y,. Each computa-
tional step (4, —, etc) enables us to process at most two numbers. So, we
need at least n/2 computational steps. Q.E.D.

Proofs of Theorems 3, 4, 6 are similar to the proofs of Theorems 1, 2.
Proof of Theorem 5.

1) Let us first prove that if this algorithm returns an interval (z;, z;)
as containing a local maximum, then every continuous function f from F
attains a local maximum at some point from that interval.

Indeed, our algorithm returns such an interval if y; < M;_; — 2¢ (here,
we use the denotation M; from the proof of Theorem 1) and y; < M;_1 —2e.

By definition, M;_; is the biggest of several consequent values y;. Let us
prove that M; 1 = y; for some [ between j and <.

Indeed, suppose that it is not so. Then, y; < M;_ 1 for all [ = 5 +
1,...,i1— 1. Forl = 5 and [ = 7, we even have y; < M;_ 1 — 2¢, so
also y; < M;_1. According to the algorithm, the only way to increase M;
is to encounter the value y; that is greater than M;_q; in this case, the
new value M; is equal to y;. So, if M; was ever increased on one of the
steps from j to i, we would have M, ; = y; for that step [. Since this
is not true, it means that for all these [, the value M; did not increase.
Hence, Mi—l = Mi_Q = = M] = Mj—l- SO, Mi—l = Mj—17 and from
y; < M;—1 — 2e, we conclude that y; < M;_; — 2e.

But this inequality, according to our algorithm, would mean that we
switched to phase s = —1 on the value y; and would not have waited until y;
(as we did). This contradiction shows that our assumption that M;_; > y
for all I = 5,5 + 1,...,7 is false. Therefore, there exists an [ such that
j<l<i,and y = M;_1.

Now, let f € F. This means, in particular, that f(x;) < y; +e¢, so from
y; < M;_; — 2e, we conclude that f(x;) < M;_; —e. Likewise, f(x;) <
M; 1 —e. From y; = M; 1 and f(x;) > y; — €, we likewise conclude that
f(z1) > M;_1 —e. Therefore, f(x;) < Mi—1—e < f(xy), Le., f(z;) < f(z1).
Likewise, f(z;) < f(z1).
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The function f is a continuous function on an interval [z, z;]. Therefore,
it must attain its biggest value at some point x from this interval. This x
cannot coincide with one of the endpoints, because there is a point inside
this interval (namely, ;) for which f(x;) is bigger than the value in both
endpoints. Therefore, this x is inside the interval, and is, therefore, a local
maximum.

A similar proof shows that intervals about which the algorithm claims
that they locate a local minimum actually locate it.

2) Let us now prove that this algorithm locates all local maxima, and that
it locates them precisely. The idea of this proof is as follows: let us write
down the sequence of intervals that this algorithm generates. According
to an algorithm, in this sequence, after each interval that locates a local
maximum, the next one locates a local minimum, and vice versa. Let us
choose a point t; on each of the intervals that locate a local maximum, and
a point s; on each interval that locates a local minimum. We want to design
a continuous function whose only local maxima are #j.

If we succeed in this construction, we will thus prove that our algorithm
locates all local maxima, and locates them precisely. Indeed, since this func-
tion f has no local maxima outside the intervals generated by our algorithm,
it proves that we enumerated all intervals that necessarily contain local max-
ima. The fact that an arbitrary point ¢; from each interval is (thus) a local
maximum for some f € F, proves that our intervals cannot be diminished,
i.e., that we have located them precisely.

The construction of this f consists of two steps. First, for those values
t; and s; that do not coincide with z;, we add them to our list of z;. If
this new x; belongs to an interval that locates a local maximum, then as
the corresponding value y;, we take the value of M at the moment when
we have formed this interval. Likewise, if this new x; belongs to an interval
that locates a local minimum, then we take y; = m.

After this, the entire interval [z, z,] is divided into subintervals, that
either go from s; to the nearest £, or from ¢, to the nearest s;. One can see
that on each subinterval [z,,, x,], where x,, is one of the points s, and x,, is
one of the points t;, the algorithm from Theorem 1 will generate “yes”. We
can, therefore, use the construction from the proof of Theorem 1 to design a
non-decreasing function f that satisfies the conditions | f(z;) —y;| < ¢ for all
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i. The values of f in the endpoints are f(x,,) = ym — e and f(x,) = y, +¢,
and f attains its biggest value y, + € only in one point: x,,.

A similar construction applies to a subinterval that starts with the left
endpoint x; and ends in a point ;.

For intervals that start with ¢; and end with s; (or with an endpoint), we
can similarly construct a non-increasing function, for which the maximum
is attained in only one point.

These functions agree on endpoints. Therefore, we can combine them
into a single continuous function whose only local maxima are the points ;.

3) A similar construction proves that our algorithm enumerates all local
minima, and enumerates them precisely.

4) If our algorithm generates no intervals at all, and at the end s = 1,
then, as one can easily see, the algorithm from Theorem 1 will generate a
“yes” answer. Therefore, we can use the proof of Theorem 1 and construct
a non-decreasing function f € F on [z1,x,] that attains its biggest value in
only one point: z,. Hence, this f has no local maxima at all.

Likewise, if our algorithm generated no intervals, and at the end s = —1,
there exists a function f € F with no local minima.

5) Let us now prove that s = 0 at the end if and only if the function
interval F contains a constant function.

Indeed, if f(x) = ¢ belongs to F, i.e., |y; —c| < e for all 7, then y; —y; <
2¢ for all 7 and 5. From y; < y1 4+ 2¢,...,y; < y;—1 + 2¢, we conclude that
y; < m;_1+2¢, where m;_1 = min(yi,...,y;—1). Likewise, for all i, we have
y; > M; 1 — 2e. Therefore, according to our algorithm, no intervals will be
generated, and the value s will never change from the initial value 0.

Now, let us assume that at the end, s = 0. We'll prove that f(x) = c,
where ¢ = max(y,...,y,) — €, belongs to F (i.e., for every i, |y; — c| < €).

Indeed, from y; < max(yi,...,¥y,), we conclude that y; < ¢+ . So,
it remains to prove that y; > ¢ — ¢ = max(yy,...,yn) — 2¢, or that
max(yi,...,Yn) < ¥; + 2¢. The biggest of n numbers y; does not exceed
y; + 2¢ if and only if each of them does not exceed it, i.e., y; < y; + 2¢ for
all 2 and j. For 7 =1, it is trivially true.

The fact that s = 0 at the end means that both inequalities y; > M; 1 —
2¢ and y; < my;_142¢ are true for all 2. So, for j < 4, from y; > M; 1 —2¢ we
conclude that y; > max(y1,...,y;,...,¥i—1)—2¢ > y;—2¢, and y; < y;+2¢.
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For 5 > 4, from y; < mj_; + 2¢, we conclude that y; <
min(yy, ..., Y, ...,¥j-1) +2¢ < y; + 2. So, y; < y; + 2¢ is true for all
i and j. This completes the proof of 5).

6) Our algorithm is linear-time, because it spends finitely many compu-
tational steps on each of n values y;: finitely many when we move forward,
and maybe 1 when we move backwards to find an interval that locates a
local maximum or minimum. Q.E.D.
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