
Interval Computations
No 4, 1993

Estimating Errors of Indirect
Measurement on Realistic Parallel

Machines: Routings on
2-D and 3-D Meshes

That are Nearly Optimal
Elsa Villa, Andrew Bernat, and Vladik Kreinovich∗

Decreasing of running time while estimating the accuracy of indirectly esti-
mated function by mean of several parallelized processors with different par-
allelization schemes is considered. In particular, we describe routing methods
that will enable us to implement these fast parallel algorithms on 2-D and 3-D
meshes in a nearly optimal manner.

Оценка ошибок косвенного
измерения на существующих

параллельных компьютерах: почти
оптимальные маршрутизации на

двух- и трехмерных сетях
Э. Вилла, Э. Бернат, В. Крейнович

В статье рассматривается снижение времени вычисления для оценки
погрешности косвенно вычисленной функции с применением нескольких
параллельно работающих процессоров при использовании различных схем
параллелизации. В частности, описываются методы маршрутизации,
которые позволят нам применять быстрые параллельные алгоритмы на
двух- и трехмерных сетях почти оптимальным образом.

*This work was supported in part by NSF Grant No. CDA-9015006 and by a grant from the Institute
for Materials and Manufacturing Management. The authors are greatly thankful to Misha Koshelev for
his help with the figures, and to anonymous referees for important suggestions that helped to improve
the algorithms and to clarify the exposition.

c© E. Villa, A. Bernat, V. Kreinovich, 1993

Estimating Errors of Indirect Measurement. . . 155

1 Introduction: estimating errors of
indirect measurements is one of the main
applications of interval computations

Indirect measurements are a frequent engineering problem. In many real-
life problems, we are interested in the value of some physical quantity y
that is difficult or impossible to measure directly. For example, we may be
interested in the amount of oil in a given area. In such cases, to estimate y,
we measure other parameters x1, . . . , xn that are somehow related to y,
and then reconstruct y from the results x̃i of these measurements. Such a
situation is called an indirect measurement of y.

An algorithm f that transforms the results x̃i into an estimate ỹ for y
is often extremely complicated; e.g. in geophysics, this algorithm is actually
a numerical method for solving a complicated system of non-linear partial
differential and/or integral equations describing how electromagnetic and
ultrasound waves travel inside different layers.

These algorithms are even more complicated in intelligent systems, when
to process the results of direct measurements x̃i, we use an inference engine
of an expert system or a neural network.

It is necessary to estimate the errors of indirect measurements. Indirect
measurement leads to a value ỹ. What is the accuracy of this value? In many
applications, this is a crucial question. Suppose, e.g., that the estimated
amount of oil in some area is 100 million tons. If the accuracy of this
measurement is ±10, this means that there sure is sufficient oil in this area
to make drilling economically attractive. However, if the accuracy is ±100,
then it is quite possible that there is no oil at all, and it would be better to
perform more accurate measurements before making such an investment.

The error in y comes from the errors in x̃i. These values x̃i are measured
by regular measuring devices, for which the manufacturers usually supply
the accuracy information. So, we have the following problem: we know the
accuracy of x̃i; what is the resulting accuracy of the indirect measurement?

In some cases, these estimates are known from numerical mathematics,
but in many cases, such estimates are not known. For some numerical
algorithms f , accuracy estimates are known from numerical mathematics.
However, for other situations no ready-to-use estimates exist.

156 E. Villa, A. Bernat, V. Kreinovich

In order to describe how these estimates are now calculated, let us recall
in what form the accuracy estimates for measuring xi are usually provided
by the manufacturer of the measuring device.

How errors are described. In some cases, the only thing that the manu-
facturer guarantees is that the error does not exceed a certain value ∆i. In
other words, if the measured value equals x̃i, then the actual value xi of this
physical quantity belongs to an interval [x̃i −∆i, x̃i + ∆i]. In this case, we
are given:

• an algorithm f that transforms n real numbers x1, . . . , xn into a value
f(x1, . . . , xn);

• n real numbers x̃i, 1 ≤ i ≤ n;

• n positive real numbers ∆i, 1 ≤ i ≤ n,

and we need to compute the interval of possible values of f(x1, . . . , xn)
when xi ∈ [x̃i −∆i, x̃i + ∆i].

Another typical situation is when the measuring device has been cali-
brated, i.e., the results of measurements have been compared with the re-
sults obtained by some more accurate measuring device. This comparison
provides us not only with the largest possible value ∆i of the error, but also
tells how frequent different values of error are. In other words, it provides us
with some information about the statistical characteristics of the error. Usu-
ally, these statistical characteristics are the average error and the standard
deviation.

As soon as we know the average error of this measuring device we can
then, subtract this value (the systematic error), and thus eliminate this
component of an error. Therefore, in cases when calibration was applied,
the errors x̃i−xi are a random variables with 0 average and known standard
deviation σi.

How errors of indirect measurements are estimated now. There are three
main methods of error estimation: interval computations, methods based
upon numerical differentiation, and Monte-Carlo methods.

Interval computations. The main idea of interval computations (see,
e.g., [6]) is as follows: the algorithm f , no matter how complicated it is,
consists of elementary computational steps (+,−,×, etc). We know only

Estimating Errors of Indirect Measurement. . . 157

the interval of possible values of the inputs. Therefore, after each step,
we obtain an interval of possible values of the corresponding intermediate
results. So, on each step, instead of applying the corresponding arithmetic
operation to numbers, we apply it to intervals. At the end, we obtain an
interval that contains all possible values of y.

This is one of the main applications of interval computations to real-life
problems.

The main drawback of the traditional interval computations approach. If
we apply this idea “mechanically”, by just changing all operations to opera-
tions with intervals, then the resulting estimate is often an “overshoot” (see,
e.g., [6]). There exist many methods of “restructuring” the algorithm that
enable us to avoid such an overshoot, but again, these methods are very
specific, and they have been developed only for certain classes of algorithms
that in no way exhaust the list of all possible algorithms.

Alternative method of computing the interval of possible values of f(x1,
. . . , xn): numerical differentiation. Other methods that give exactly the
interval of possible values of f(x1, . . . , xn) (and not a bigger interval) are
based on the assumption (usually true) that the measurements are so accu-
rate, that we can neglect the terms that are quadratic in errors. For example,
if the measurements are done accuracy 2% (0.02), then the quadratic terms
are proportional to 0.0004 (0.04%).

If we denote the errors by ∆y = ỹ − y and ∆xi = x̃i − xi, we can then
conclude that

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =
f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn).

If we expand the right-hand side into a Taylor series and neglect quadratic
terms, we conclude that ∆y = f,1∆x1 + · · ·+ f,n∆xn, where f,i denotes the
partial derivative ∂f/∂xi.

Therefore, if we know the values ∆i such that |∆xi| ≤ ∆i, then the
possible values of ∆y form an interval [−∆,∆], where ∆ = |f,1|∆1 + · · · +
|f,n|∆n.

Since we are considering a complicated case, when an algorithm f is
not simply an explicit expression, but a very complicated algorithm, it is
impossible to differentiate f analytically. To obtain numerical estimates,
we use the same assumption that the terms that are quadratic in errors are
negligible. In this case, for each i, if we take h small, we will conclude that

158 E. Villa, A. Bernat, V. Kreinovich

f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n) = f(x̃1, . . . , x̃i, . . .) + hf,i. Therefore,
we estimate f,i as

(
f(x̃1, . . . , x̃i−1, x̃i+h, x̃i+1, . . . , x̃n)−ỹ

)
/h. This formula

is the simplest numerical algorithm for computing f,i and therefore, the
entire method is called numerical differentiation. According to this method,
we apply the algorithm f n+ 1 times: first, to compute ỹ, and then n more
times, to estimate the partial derivatives. Then we compute ∆.

Main drawback of numerical differentiation. This method computes the
exact interval of possible values (not taking into consideration negligible
quadratic terms, of course), but it requires that we compute f n+ 1 times.
For many real-life problems (e.g., for the analysis of a geophysical data),
the number of inouts n can be in thousands, and each computation of f is
(already) very time-consuming. As a result, computing ∆ takes too much
time.

Monte-Carlo method for estimating an interval. A faster method that
was proposed in [5] is termed the Monte-Carlo method. According to this
method, we simulate errors, i.e., use a computer random number generator
to generate random numbers ξi that are distributed according to Cauchy
distribution with a density ρ(x) = const/(1 + (x/∆i)

2) with 0 average
and (scale) parameter ∆i. Then, we compute ∆y(1) = ỹ − y(1), where
y(1) = f(x̃1 − ξ1, . . . , x̃n − ξn). In the case that we may neglect terms that
are quadratic in error, we can conclude that ∆y(1) is a Cauchy-distributed
random variable with 0 average and parameter ∆ =

∑
|f,i|∆i. So, to

determine ∆, we repeat this procedure several times, obtaining N values
∆y(1) = ỹ − y(1), . . . , ∆y(N) = ỹ − y(N), and then apply standard sta-
tistical techniques (namely, Maximum Likelihood Method MLM) to esti-
mate ∆. For Cauchy distribution, MLM turns into solving an equation∑

1/
(
1 + (y(k)/∆)2

)
= N/2 (an algorithm for solving this equation is given

in [5]). For N = 50, we get ∆ with a 20% accuracy in ≥ 99.9% of cases.
A 20% accuracy is quite sufficient if we take into consideration that this
is a precision with which we know accuracy. There is little difference be-
tween a measuring device with a 2% accuracy and a device with a 2.1%
accuracy.

This method executes f N + 1 = 51 times. So, for large n, this method
is much faster than a numerical differentiation method.

What is the advantage of using the above-described statistical method for
estimating an interval instead of more traditional interval methods? The
main advantage is this: as a result of traditional interval methods, we often

Estimating Errors of Indirect Measurement. . . 159

get an overestimate of the desired interval
f
(
[x̃1 −∆1, x̃1 + ∆1], . . . , [x̃n −∆n, x̃n + ∆n]

)
.

This overestimate can be large. On the other hand, the above-described
statistical method gives an interval that (with a 99.9% guarantee) differs
from the desired interval by ≤ 20%.

Similar methods can be used to compute the statistical characteristics
of the random error of an indirect measurement. If all the errors ∆xi are
independent random variables, with 0 average and standard deviations σi,
then ∆y is also a random variable with 0 average and standard deviation
σ =

√
f 2,1σ

2
1 + · · ·+ f 2,nσ

2
n. As soon as we know partial derivatives (e.g.,

by applying numerical differentiation), we can use this simple formula to
compute σ.

Another possibility is to use a Monte-Carlo method. According to this
method, we simulate random errors, i.e., use a computer random number
generator to generate random numbers ξi that are distributed with 0 average
and standard deviation σi. Then, we compute ∆y(1) = ỹ − y(1), where
y(1) = f(x̃1 − ξ1, . . . , x̃n − ξn). In the case that we may neglect terms that
are quadratic in error, we easily conclude that ∆y(1) is a random variable
with 0 average and standard deviation σ. So, to determine σ, we repeat
this procedure several times, obtaining N values ∆y(1) = ỹ − y(1), . . . ,
∆y(N) = ỹ−y(N), and then apply standard statistical techniques to estimate
σ, e.g.,

σ ≈
√

(∆y(1))2 + · · ·+ (∆y(N))2

N
.

For N = 25, we get σ with a 20% accuracy in ≥ 99.9% cases (We have
already argued that such an accuracy is quite sufficient if we take into con-
sideration that this is a precision with which we know accuracy).

This method executes f N + 1 = 26 times.
These methods may be easily parallelized. In all these methods, the

most time-consuming part of the algorithm is applying a time-consuming
algorithm f to different data. So, a natural idea to save time is to make all
these calls of f handled by separate processors. Then, if we have enough
processors (i.e., at least one for each call of f), the resulting computation
time will be equal to the time necessary to apply f only once.

As a result, if we have several processors working in parallel, then we

160 E. Villa, A. Bernat, V. Kreinovich

may compute both the estimate ỹ and its accuracy in practically the same
time that we would have spent on an estimate ỹ itself.

Communications necessary for the resulting parallel algorithm. We will
assume that a program that computes f is already installed in all the pro-
cessors. We must allocate one of the processors as the one through which the
system will communicate with the outside world: i.e., the one that obtains
the measured values x̃i and their accuracy characteristics ∆i (or σi), and
that returns the resulting accuracy estimate ∆ (or σ) to the user. We will
call this processor a Central Processor (CP for short).

Before each processor starts computing, it must receive from CP the
values x̃i and the accuracy characteristics ∆i (or σi). After each processor
is done, it must send the results of its computations back to CP. Based on
these results, the CP will estimate ∆ or σ.

During the computations, no communications are necessary.

This algorithm has been successfully implemented on a special architec-
ture. The majority of the existing concurrent systems are designed to handle
algorithms with extensive communication, so they usually have a very com-
plicated communication protocol designed to resolve write-read conflicts, to
make sure that both communicators are ready, etc. As a result, each com-
munication takes considerable time.

For our particular problem, we do not have any conflicts to resolve, we
only need to pass the information before the computations and to collect
the results after it. So, for this purpose, a simplified concurrency scheme
will be quite sufficient (and even preferable, since it does not waste time on
unnecessary checks). Such a system (called BaRe, a short for Broadcast and
Replication) was used at the University of Texas at El Paso in 1989–91 (for
details, see [7]).

Using this system, we implemented the above algorithms and showed
that we really obtained the desired speed-up [5].

In this paper, we will provide the description of routings for realistic
computer architectures.

Estimating Errors of Indirect Measurement. . . 161

2 Estimating errors of indirect
measurements
on a two-dimensional mesh

2.1 Why 2-D mesh?

The existing hardware technology mainly supports 2-D designs. The existing
hardware chip technology is mainly oriented towards a planar design, so we
end up with processors densely packed on a plane. Such a configuration, in
which processors are arranged into anm×m grid such that each processor is
directly connected with its four neighbors, is called a two-dimensional mesh
(see, e.g., [1, 2]).

Where to place a central processor (CP)? In a 2-D mesh, all processors
are considered equal in quality, so in principle, we can use any of them as a
central processor (that does all the communications with the user).

After the central processor receives the user’s problem, it has to commu-
nicate the problem and the data associated with it to every other processor
in the network. Communication is time consuming; therefore, we will place
this communicating processor in the center of the mesh so that the distance
to the farthest processor is minimized.

How many processors to use? As we have described, there are two basic
ideas: numerical differentiation and Monte-Carlo methods. Numerical dif-
ferentiation requires n + 1 calls of f (so, n + 1 processors, where n is the
total number of variables). Monte-Carlo methods require correspondingly
26 and 51 processors (26 for σ, and 51 for ∆).

If the total number of measurement is small (n < 26), then it is better
to use the methods of numerical differentiation. However, when n is small,
estimating f is not a large problem, and it may not be worthwhile to use
parallel computations.

The problem becomes really serious and time-consuming when we have
large numbers of measurement results (n up to 104 and more). In this case,
Monte-Carlo methods are evidently much faster.

So, the main case when it is necessary to apply parallelization is when n
is large and, therefore, Monte-Carlo methods are to be used.

A mesh of sizem×m containsm2 processors. For Monte-Carlo methods,

162 E. Villa, A. Bernat, V. Kreinovich

we require either 26 or 51. The values m2 that are close to these are 25 =
5× 5 and 49 = 7× 7. In both cases, the mesh has an odd size. In view of
this, we will illustrate our algorithms in the following text on the example
of an odd-size mesh, with m = 2p+ 1 for some p.

For meshes of odd size, there is a processor in the center, so we will take
that processor as a CP.

Coordinate system. To describe a processor in a 2-D mesh, we must
describe its two coordinates X and Y . It is natural to choose the central
processor as the origin of the coordinate system, i.e. as a point with coor-
dinates (0, 0). If we take the distance between the neighboring processors
as 1, then coordinates of each processor are integers running from −p to p.

So, each processor is described by its coordinates (X, Y), where X =
−p,−p+ 1, . . . , 0, . . . , p− 1, p, and Y = −p,−p+ 1, . . . , 0, . . . , p− 1, p.

A processor (X, Y) is directly linked to its 4 neighbors: (X + 1, Y),
(X − 1, Y), (X, Y + 1), and (X, Y − 1) (whenever they exist) [1].

What each processor can do. Each processor has a CPU, and four I/O
ports for transmission and reception of data. So, a processor can either be
processing data, receiving data from one of its neighbors, or sending data
to one of its neighbors. Each of these three possibilities demand the use
of the processor’s CPU and, thus, cannot be done simultaneously. For the
same reason, a processor can read only one “message” (i.e., data received
from only one neighbor) at a time, and send only one message at a time.
However, it is perfectly reasonable to assume that a processor can transmit
the same message (i.e., the same chunk of data) to all four neighbors in the
same unit of time.

Time necessary for one communication step. Communication consists
of elementary communication steps, i.e., of sending and receiving “mes-
sages” (chunks of data). Each sending and receiving takes approximately
the same amount of time. We will denote this amount of time by tc (c for
communication).

If one processor sends a message (= chunk of data) to its neighbor, then
it takes the time tc to send this data, and the time tc to receive it. As a
result, the entire process takes the time 2tc.

Remark. As a result, we arrive at the following description of what we
call a realistic parallel computer.

Estimating Errors of Indirect Measurement. . . 163

2.2 Short description of a realistic computer

The realistic computer that we will consider in this paper is a 2-D mesh (grid)
consisting of (2p+1)×(2p+1) identical processors. The user communicated
with the central processor (CP) of the mesh: i.e., he inputs the initial (input)
data into the CP and then gets the final computation results from the CP.

Each processor has 4 neighbors. At every moment of time, each processor
can do one (and only one) of the following three things:

• do some computations;

• send some chunk of data to one, two, three, or all four of its neighbors;

• receive data from one of the neighbors.

The time that is required to send one block of data is assumed to be
equal to the time that is required to receive this data. This time will be
denoted by tc.

2.3 The routing that is nearly optimal

A brief description of the error estimation algorithm. In order to explain
how error estimation may be done in parallel, let us briefly recall the algo-
rithm.

We assume that each processor is already equipped with a program that
computes y = f(x1, . . . , xn) from x1, . . . , xn. Before any computation takes
place, the user sends the measured values x̃1, . . . , x̃n and their accuracy
characteristics ∆1, . . . , ∆n (or σ1, . . . , σn) to a central processor CP. Then,
CP communicates this input data to all other processors. As soon as each
processor receives its data and has transmitted the data to its neighbors, it
can start computing the corresponding value y(k), k = 1, . . . , N .

Comment. The definition of y(k) was given in in Section 1. This definition
uses random numbers. Generating a random number is a reasonably fast
procedure (much faster than sending them). Therefore, we assume that each
node generates its own random numbers in its computation.

After the computations are over, all processors must send their values to
CP, at which time CP produces the final estimate ∆ (or σ).

164 E. Villa, A. Bernat, V. Kreinovich

Let us now explain the routing (i.e., who sends data to whom, and in
what order). We must describe routing for distributing the input data to all
the processors and for collecting the data from them.

The lower limit on the total running time. Whatever routing algorithm
we use, we need to send the input data x̃1, . . . , x̃n,∆1, . . . , ∆n (that is
initially in CP) to all the processors, in particular, to a corner processor
(p, p). Each processor must apply f to some data that it generates, and
then all the results y(k) of applying f must be returned back to a CP for the
final processing.

The corner processor (p, p) cannot start its computations before the input
data reaches it. To reach from CP to (p, p) on a 2-D mesh, we must make
2p passes, and each pass takes 2tc. So, (p.p) can start computations only
after the time 2p× 2tc = 4ptc. If by T , we denote the time that is necessary
to apply an algorithm f , then this corner processor will be done by the
time 2ptc + T . To get the result of this computation back to CP, we again
need at least 2p communication steps, so we need at least the time 4ptc.
Therefore, we cannot get all the results into CP earlier than the moment
T + 4ptc + 4ptc = T + 8ptc. Processing these results y(k) also takes some
time; we will denote this time by tcomp. For the above-described Monte-
Carlo methods, tcomp � T . So, the final result (i.e., ∆ or σ) will be ready
at the moment T + tcomp + 8ptc.

In other words, in addition to the computation time T + tcomp, we need
to spend at least 8ptc on communications.

This lower estimate is not attainable because we did not take into con-
sideration contention effects. Namely, we can (as we will see) send the input
data to all the processors, so that this initial data will reach the corner pro-
cessor exactly at the time 4ptc. However, when we want to send the values
y(k) back to the CP, we cannot do that without spending more time. Indeed,
e.g., for a 3× 3 mesh, first a CP gets the input data, then its four neighbors
(0,±1) and (±1, 0). These four neighbors will be simultaneously ready with
their values y(k), but we cannot simultaneously send them to a CP, because
a CP can receive only one chunk of data at a time.

The main objective of this paper is to produce a routing algorithm for
which communication time will be as close to the above-given lower bound
as possible. Let’s describe the corresponding routing.

Estimating Errors of Indirect Measurement. . . 165

6

6

?

?

6

6

?

?

6

6

?

?

?

?

6

6 6

6

--��

?

?

(2,−1)

(1,−2) (1,−1)

(0,−2) (0,−1) (0,1)

(−1,−2) (−1,−1)

(−2,−2) (−2,−1)

(2,−2) (2, 0) (2, 1) (2, 2)

(1, 2)(1, 1)(1, 0)

(0, 0)

(−1, 0)

(−2, 0) (−2, 1) (−2, 2)

(0, 2)

(−1, 2)(−1, 1)

CP

Figure 1: Routing for distribution of the initial data

Routing for distribution of the initial data (see Fig. 1 for p = 2).

Let us start from the moment when CP has received the input (initial)
data (i.e., the values x̃i and their accuracy characteristics). We will denote
this moment of time by 0. After receiving this input data, CP sends it to
all four neighbors (this takes time tc) and starts computing its value y(k).

Further communications are done as follows:

Central row, right-hand side (i.e., processors (X, 0) with X > 0). Such a
processor, upon receiving the input data (i.e, the values x̃i and their accuracy
characteristics), sends it to 3 neighbors: up (to (X, 1)), down (to (X,−1)),

166 E. Villa, A. Bernat, V. Kreinovich

and (if X < p) to the right (i.e., to (X + 1, 0)). This CP now has all the
data needed, so it can start its computation.

Central row, left-hand side (i.e., processors (X, 0) with X < 0). Such
a processor, upon receiving the input data, sends it to 3 neighbors: up (to
(X, 1)), down (to (X,−1)), and (if X > −p) further to the left (i.e., to
(X − 1, 0)). After that, it starts computations.

Processor (X, Y) above the central row (Y > 0), upon receiving the input
data, sends it (if Y < p) further up (to (X, Y +1)), and starts computations.

Processor (X, Y) below the central row (Y < 0), upon receiving the
input data, sends it (if Y > −p) further down (to (X, Y − 1)), and starts
computations.

When do the processors start their computations? From the description
of the initial routing, we can determine when each processor starts its com-
putations. Let us first consider processors in a central row, i.e., processors
with coordinates (X, 0), X 6= 0.

Processor (1, 0) receives the input data after 1 communication cycle
(sending and receiving), i.e., after the time 2tc. It spends tc time to send
this input data to its neighbors (2, 0), (1, 1), and (1,−1). Hence, at time
3tc it starts computing.

For a processor (X, 0), X 6= 0, it takes |X| communication cycles for the
input data to reach it; then one more communication step to send the input
data to its neighbors. Hence, it starts computing at the moment (2|X|+1)tc.

Let us now consider an arbitrary processor (X, Y), Y 6= 0. According to
our routing algorithm, the input data that is coming to this processor first
goes to the processor (X, 0) in the central row, and then follows the X−th
column. Therefore, we need |X| communication cycles for the input data
to reach the processor (X, 0) and |Y | additional communication cycles for
the input data to reach the desired processor. This takes 2(|X|+ |Y |) com-
munication steps. If a processor is not on the edge of the mesh (|Y | 6= p),
then we need one additional communication step during which this proces-
sor sends the input data to its neighbors; only after this step, the processor
can start computing.

So, we arrive at the following conclusion: a processor (X, Y), |Y | 6= p,
starts computing at the moment (2|X| + 2|Y | + 1)tc; a processor (X, Y),
|Y | = p, starts computing at the moment (2|X|+ 2|Y |)tc = (2|X|+ 2p)tc.

Estimating Errors of Indirect Measurement. . . 167

When do the processors finish their computations? Since we assume
that all the processors are similar, and since they are all doing practically
the same task (apply the algorithm f to some values), we may conclude that
each of them takes the same amount of time to perform its computations.
Let us denote this amount of time by T .

Therefore, when |Y | < p, a processor (X, Y) finishes computations at
time T +(2|X|+2|Y |+1)tc, and when |Y | = p, at a time T +(2|X|+2p)tc.

Main idea: overlapping communications and computations. As we have
mentioned, the nodes closer to CP finish their computations earlier. We are
going to take advantage of that while collecting data. Namely, to achieve
ultra performance, we will start collecting the results y(k) from the computers
that have already finished their computations while the farther nodes are
still computing.

Remark. We are greatly thankful to the anonymous referee, who formu-
lated this idea in very clear terms, and thus helped us to improve both the
algorithm and its exposition.

Routing for collecting the data from the processors: main ideas. We
have already mentioned that we cannot just send all the results y(k) right
into CP. For example, processors (1, 0), (0, 1), (−1, 0), and (0,−1), finish
their computations at the same time. If they all try to send their results to
CP, we will get contention. So, we need some routing.

General idea: first collect data from each column into a central row,
then collect data from this central row into a CP. To avoid contention, we
will first collect data for each column (X, Y), −p ≤ Y ≤ p, into a central
processor (X, 0) of that column. At that time, processors from the central
row will have all the data. Next we will collect the data from them into CP.

168 E. Villa, A. Bernat, V. Kreinovich

Data collecting in each column and in the central row will be a two-stage
process. Processors (X, 1) and (X,−1) will finish their computations at the
same time. To avoid this contention, for each column, we will first collect
data into two processors: (X, 0) and (X,−1), and then merge these collected
pieces of data together.

Similarly, when we collect data from the central row, we first collect the
data from the right-hand side processors into (0, 0), and the data from the
left-hand side processors into (−1, 0), and then merge these pieces of data.

Resulting routing algorithm.
Upper half (Y > 0). When a processor (X, Y) finishes its computations,

it sends its result to its lower neighbor (X, Y − 1). If it receives a result
from its upper neighbor, it sends it unchanged to its lower neighbor.

Lower half (Y < −1). When a processor (X, Y) finishes its computa-
tions, it sends its result to its upper neighbor (X, Y + 1). If it receives a
result from its lower neighbor, it sends it unchanged to its upper neighbor.

Row −1 (Y = −1). When a processor (X,−1) finished its computations,
it waits for data to come. When data comes from below, it merges this data
with what it already has. After receiving p − 1 messages, it waits for 4tc
(to avoid contention, see below), and sends the resulting collected data to
its upper neighbor (X, 0).

Central row, right-hand side (X > 0, Y = 0). When a processor (X, 0)
finishes its computations, it waits for data to come. When data comes, it
merges this data with what it already has. After receiving p + 1 chunks of
data (p from (X, 1) and 1 from (X,−1)), it sends the data it collected to
its left neighbor (X − 1, 0).

Central row, left-hand side (X < −1, Y = 0). When a processor (X, 0)
finishes its computations, it waits for data to come. When data comes, it
merges this data with what it already has. After receiving p + 1 chunks of
data (p from (X, 1) and 1 from (X,−1)), it sends the data it collected to
its right neighbor (X + 1, 0).

Processor (−1, 0). When a processor (−1, 0) finishes its computations,
it waits for data to come. When data comes, it merges this data with what
it already has. After receiving 2p+1 messages (p from (1, 1), 1 from (1,−1),
and p− 1 from (−2, 0)), it waits for 4tc, and then sends the collected data
to CP (0,0).

CP.When processor (0, 0) finished its computations, it waits for the data
to come. When data comes, it merges this data with what it already has.

Estimating Errors of Indirect Measurement. . . 169

After receiving 2p+ 2 messages (p from (0, 1), 1 from (0,−1), p from (1, 0),
and 1 from (−1, 0)), it uses the collected data (i.e., values y(k), 1 ≤ k ≤ N)
to estimate the desired value ∆ or σ, and sends this value to the user.

What time does it take to collect all the data: Part 1. Collecting data
from a column. Let us first trace the process of collecting the values y(k)
from the nodes in a column X. This trace is illustrated on Fig. 2.

In this figure, states of a column in different moments of time are depicted
from bottom to top, so that the first row depicts the first moment of time,
etc. In the lowest row, numbers (−3), . . . , 3 denote y-coordinates of the
nodes. A node that has already finished computing its value y(k) is marked
by crossing it over. An arrow from one node to another means that the data
has just been sent. On top of each node, we describe what data are already
collected in this node. E.g., “0,1,2,3” means that this node at this moment
of time contains the results y(k) of computations of nodes with y-coordinates
1, 2, and 3. At the last moment of time, when all these results are collected
in the central processor of this column, we mark this central processor by
∗∗∗.

t = T + 2|X|tc + tc. The first processor to finish computations in this
column will be the central processor (X, 0) of this column: it will be done
in the moment T + 2|X|tc + tc.

t = T + 2|X|tc + 3tc. At this moment, processors (X, 1) and (X,−1)
are done. Processor (X, 1) sends its result to (X, 0). Sending and receiving
takes 2tc.

Remark. While this sending is going on, other nodes (that are farther
away from CP) are still computing their respective values y(k). So, this
routing algorithm really enables us to overlap communications and compu-
tations.

After a 2tc time interval, we have the following:
t = T + 2|X|tc + 5tc. At this moment, (X, 0) has already collected

2 results: its own and that of (X, 1). At that very moment of time, two
more processors are done: (X, 2) and (X,−2). They start sending their
data correspondingly to (X, 1) and (X,−1) (meanwhile other nodes are
still computing).

. . .
t = T + 2|X|tc + 2ptc. The last processors to finish their computations

are (X, p) and (X,−p). They will be done by the moment T + 2|X|tc +
2ptc. Processor (X, p) sends its data to (X, 0). This sending requires p
intermediate steps, each of which takes time 2tc. So, the total time that

170 E. Villa, A. Bernat, V. Kreinovich

@
@

@@

�
�
��

@
@

@@

�
�
��

(2)

,
,
,
,

l
l
l
l

�
�
��

@
@
@@

�
�
��@
@
@@ ,

,
,
,l

l
l
l

,
,
,
,

l
l

l
l

�
�
��

@
@

@@

,
,
,
,

l
l
l
l

,
,
,
,

l
l
l
l

�
�
��

@
@

@@
-

�
�
��

@
@
@@

,
,
,
,

l
l

l
l

�
�
��

@
@

@@

,
,
,
,

l
l
l
l

�
�
��

@
@
@@-

- - �

�-

-

�
�
��

@
@
@@

,
,
,
,

l
l

l
l

�
�
��

@
@

@@

,
,
,
,

l
l
l
l

,
,
,
,

l
l
l
l

�
�
��

@
@

@@

�
�
��

@
@
@@

�
�
��

@
@
@@

,
,
,
,

l
l

l
l

�
�
��

@
@

@@

,
,
,
,

l
l
l
l

,
,
,
,

l
l
l
l

�
�
��

@
@

@@

�
�
��

@
@
@@

�
�
��

@
@
@@

,
,
,
,

l
l

l
l

�
�
��

@
@

@@

,
,
,
,

l
l
l
l

,
,
,
,

l
l
l
l

�
�
��

@
@

@@

�
�
��

@
@
@@

�

�
�
��

@
@
@@

,
,
,
,

l
l

l
l

�
�
��

@
@

@@

,
,
,
,

l
l
l
l

,
,
,
,

l
l
l
l

�
�
��

@
@

@@

�
�
��

@
@
@@

�

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

0

1 0 -1

2 0,1 -1 -2

3 2 -3

3 -3

3 -3

-3

∗∗∗

0,1,2 -1,-2

-1,-2,0,1,2

0,1,2,3 -1,-2,

0,1

(-2) (-3)(1) (0)(3) (-1)

Figure 2: Collecting data (y(k)) from a column

Estimating Errors of Indirect Measurement. . . 171

is required for the value y(k) computed by a processor (X, p) to reach the
central processor (X, 0) of this column is 2ptc. Therefore, this value reaches
(X, 0) by the time T + 2|X|tc + 4ptc.

. . .

t = T + 2|X|tc + 4ptc. By this time, all the values y(k) computed by the
processors (X, Y) with Y ≥ 0, are already collected and stored in in (X, 0),
and all the values y(k) computed by the processors (X, Y) with Y ≤ −1, are
already collected and stored in (X,−1). So, the only thing that remains to
be done in order to collect all the data from the entire column the central
processor (X, 0) of this column is to send the data collected in (X,−1) to
(X, 0). This sending takes time 2tc, so after that time interval, we are done
with this column.

t = T + (2|X|+ 4p+ 2)tc. All the data from the column is in (X, 0).

What time does it take to collect all the data: Part 2. Collecting the
data from the central row.

This procedure is somewhat similar to the process of collecting the data
from one column, so we can still use Fig. 2 as an illustration, with the
understanding that rows in Fig. 2 now depict the states of the central row
in different moments of time.

t = T + (4p + 2)tc. According to Part 1, the first column to finish
the collection of all its computational results is column 0; it finishes the
collection exactly at this moment of time.

t = T+(4p+4)tc. At this moment, columns 1 and−1 are done (i.e., have
also finished collecting their results into correspondingly (1, 0) and (−1, 0)).
So, processor (1, 0) sends all the values that it has collected so far to (0, 0).
Sending and receiving takes 2tc. So, after another 2tc time interval, we have
the following:

t = T + (4p + 6)tc. At this moment, (0, 0) already has all the com-
putation results from 2 columns: its own (0) and column 1. At that very
moment of time, two more columns have finished collecting their computa-
tion results into one processor: all the results of column 2 are collected in
the processor (2, 0), and all the results computed by processors from column
−2 are collected in the processor (−2, 0). The central processors of these
columns start sending the data that they collected correspondingly to (1, 0)
and (−1, 0), etc.

172 E. Villa, A. Bernat, V. Kreinovich

. . .

t = T + (6p + 2)tc. The last columns to finish collecting the results
of their computations are p and −p. They will be done by the moment
T + (6p + 2)tc. In other words, at this moment of time, the computation
results y(k) obtained by all the processors (p, Y) in p-th column are collected
in the processor (p, 0), and the computation results from the processors
(−p,−p), . . . , (−p, 0), . . . , (−p, p), are collected in the processor (−p, 0).
Processor (p, 0) sends the values that it has collected to CP (0, 0). This
sending requires p intermediate steps, each of which takes time 2tc. So,
the total time that is required for the collected data to reach CP is 2ptc.
Therefore, this collected data reaches (0, 0) by the time T + (8p+ 2)tc.

. . .

t = T + (8p + 2)tc. By this time, all the values from the processors
(X, Y) X ≥ 0, are already collected and stored in CP, and all the values
from the processors (X, Y) with X ≤ −1, are already stored in (−1, 0).
So, the only thing that remains to be done in order to collect all the data
from all the processors into CP is to send the data collected in (−1, 0)
to CP. This sending takes time 2tc, so after that time interval, we are
done.

t = T + (8p+ 4)tc. All the data from the all the processors is in the CP.

Result: what is the total communication time? All the results of all the
processors are in CP at the time T +(8p+4)tc. By tcomp, we denoted a time
that is necessary to process all these data (tcomp � T); so, the total time
when we can give the result to the user is T + (8p+ 4)tc + tcomp.

In other words, in addition to main computation time T , and time tcomp

that is necessary for processing the results y(k) of simulations, we spend
(8p+ 4)tc on communications.

This result shows that our routing algorithm is close to being optimal.
We have already determined that the user cannot get the final results before
the time T + tcomp + 8ptc.

Our result was a little larger because we had to delay some commu-
nications in order to avoid contention. However, this delay is reasonably
small: 4tc in addition to the ideal 8ptc. Let us illustrate the relative values
of our estimate and theoretical lower bound 8ptc for two examples: p = 5
and p = 7.

Estimating Errors of Indirect Measurement. . . 173

p = 5: our algorithm gives 44tc, while the lower bound is 40tc. So, our
communication algorithm gives only a 10% increase over the lower
bound for communication time.

p = 7: our algorithm gives 60tc, while the lower bound is 56tc. So, our
communication algorithm gives only a ≈ 7% increase over the lower
bound for communication time.

In terms of N . The total number N of simulated values y(k) is m2 =
(2p+ 1)2. In terms of N , 2p+ 1 =

√
N , p = (

√
N − 1)/2, and so the total

communication time is 4
√
Ntc.

3 Three-dimensional mesh

For a 3-dimensional mesh, with (2p + 1) × (2p + 1) × (2p + 1) processors
(X, Y, Z), each of which is directly connected with 6 neighbors (X±1, Y, Z),
(X, Y ± 1, Z), and (X, Y, Z ± 1), we may apply similar routing techniques.
Namely, when we spread the initial data around, each processor (0, 0, Z)
sends this initial data to all 6 of its neighbors, and all the other processors
send the initial data only to other neighbors in the sameXY -plane (i.e., only
to the neighbors with the same value of Z coordinate). When we collect the
data, we apply the above-described 2-D routing to collect the data from
each XY -plane into its central processor (0, 0, Z), and then (just like we
collected data from the central row into CP), collect the chunks of data
that has already been collected into the processors (0, 0,−p), . . . , (0, 0, p),
into CP.

One can show that for a 3-D mesh, communication takes time (12p+6)tc,
which is also pretty close to the lower bound (12ptc). In terms of N =
(2p+ 1)3, this time is equal to 6 3

√
Ntc.

174 E. Villa, A. Bernat, V. Kreinovich

4 Experimental verification on an emulated
machine, and hopes for real-life
implementation

In this paper, we presented a parallel algorithm for a realistic parallel ma-
chine, and (theoretically) analyzed its performance. To verify our analysis
of performance, we implemented this algorithm on an emulated 2-D mesh
(emulated using a transputer board for a PC [4]). The entire algorithm,
including routing and computing of f , was written in Occam [3]. This test
was repeated for several different functions f . To check whether we correctly
computed the timing of all the steps, we made each processor in addition to
computing f , to compute a (global) time, so that before sending or receiv-
ing any message, a node waited until the global time coincided with the one
that we estimated above. This way, we may have sometimes overestimated
the running time, because in reality, the times that different nodes require
may be slightly different. But with this overestimated numbers, we could
check that the description of the routing was consistent, and our counts of
the numbers of communication steps were correct: the total running time
was equal to T + tcomp + 8ptc.

These emulations prove that our theoretical estimates are correct, but
since they are not done on a real parallel machine (only on its emulation on
a PC), they are not yet real parallelization results. Unfortunately, we do not
have a real 2-D or 3-D mesh at out disposal. But our theoretical results, and
this additional emulated verification makes us hope that this algorithm will
be used for real-life parallel computations. We will be glad to collaborate
with anyone interested in that.

Conclusion

Many algorithms that estimate error of indirect measurements (e.g., meth-
ods based on numerical differentiation, or Monte-Carlo methods) are easily
parallelizable. The resulting parallel algorithms do not require extensive
communications, we may achieve a great speed-up.

On the majority of actual parallel computers, however, any communi-
cation is a very time-consuming procedure. If we wish to estimate errors

Estimating Errors of Indirect Measurement. . . 175

of indirect measurements using these computers, we must develop routing
algorithms that eliminate message contention, and thus, reduce the total
communication time. In this paper, we propose such algorithms for a 2-D
and 3-D meshes. We show that for these routing algorithms, communication
times are close to being optimal.

References

[1] Akl, S. and Lyons, K. A. Parallel computational geometry. Prentice-
Hall, Englewood Cliffs, N. J., 1993.

[2] Hwang, K. and Briggs, F. A. Computer architecture and parallel pro-
cessing. McGraw-Hill, N. Y., 1984.

[3] INMOS, ltd. OCCAM 2 reference manual. Prentice-Hall, Englewood
Cliffs, N. J., 1988.

[4] INMOS, ltd. Transputer development system. Prentice-Hall, Englewood
Cliffs, N. J., 1988.

[5] Kreinovich, V., Bernat, A., Villa, E., and Mariscal, Y. Parallel comput-
ers estimate errors caused by imprecise data. Interval Computations 1
(2) (1991), pp. 31–46.

[6] Moore, R. E. Methods and applications of interval analysis. SIAM,
Philadelphia, 1979.

[7] Villa, E. BaRe: a multiprocessing system using broadcast and replica-
tion. Master Thesis, The University of Texas at El Paso, 1991.

E. Villa
Department of Mathematics
El Paso Community College
El Paso, TX 79998
USA

A. Bernat, V. Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968
USA

