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Computation of Integrals of Uncertain
Vector Functions

V. M. Veliov

The paper deals with the problem of numerical integration of a function
[0, 1]→ Rn for which only a set-membership description is known. The set of
values of the integrals of all possible realizations of the uncertain function is
considered as a guaranteed result of the integration. The problem is to approx-
imate this set, with a prescribed accuracy ε, by polyhedral sets, in particular,
to enclose it in an n-dimensional interval which is ε-minimal.

In the first part of the paper we focus on quadrature formulae for set-valued
integrals and the estimation of their errors. In the second part we sketch the
idea of their implementation.

ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ НЕОПРЕДЕЛЕННЫХ

ВЕКТОРНЫХ ФУНКЦИЙ

В. М. Велев

Рассматривается задача численного интегрирования функции [0, 1]→ Rn,
о которой известна только ее принадлежность некоторому множеству.
Множество значений интегралов всех возможных реализаций неопреде-
ленной функции рассматривается как гарантированный результат инте-
грирования. Задача состоит в аппроксимации этого множества с заданной
точностью ε с помощью многогранных множеств и, в частности, в заклю-
чении его внутрь n-мерного интервала, являющегося ε-минимальным.

В первой части статьи мы рассматриваем квадратурные формулы для
интегралов, значениями которых являются множества, уделяя внимание
оценке их погрешностей. Во второй части мы даем набросок схемы их
применения.
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1 Introduction

We begin with the following problem of integration of an uncertain function
f : [0, 1] 7→ Rn. Suppose that the only information about f(·) is that
f(t) ∈ conv{f1(t), . . . , fr(t)}, t ∈ [0, 1], where f1(·), . . . , fr(·) are known
functions. Then

∫ 1

0 f(t) dt may, in principle, take any value from the set

I =

{∫ 1

0

f(t) dt; f(t) ∈ conv{f1(t), . . . , fr(t)}, f(·) – integrable
}
.

The problem is to approximate the convex compact set I with any given
accuracy.

The above problem is well understood in the scalar case f(·) : [0, 1] →
R1, f(t) ∈ [f1(t), f2(t)], where

I =
[ ∫ 1

0

f1(t) dt,

∫ 1

0

f2(t) dt
]

provided that f1(t) ≤ f2(t) on [0, 1]. In higher dimensions, however, the
problem is more complicated. In particular, even if the uncertainty is one-
dimensional (that is, f(t) ∈ [f1(t), f2(t)] = conv{f1(t), f2(t)} ⊂ Rn), the
set I can be a body in Rn (that is, with nonempty interior).

Since the uncertain function f can be presented as

f(t) =
r∑
i=1

wi(t)fi(t), wi(t) ≥ 0,
r∑
i=1

wi(t) = 1

we have that ∫ 1

0

f(t) dt =

∫ 1

0

F (t)w(t) dt

where F is a known (n× r)-matrix function (with columns fi) and w(·) =
(w1(·), . . . , wr(·))∗ is unknown, but bounded in a convex and compact set
W (= {w ; wi ≥ 0,

∑
wi = 1}). Thus the problem we started with is a

particular case of the more general problem of approximation of the set

I =

∫ 1

0

F (t)W dt =

{∫ 1

0

F (t)w(t) dt ; w(t) ∈ W, w(·) – integrable
}
(1)
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where F (·) is an (n × r)-matrix function and W is a convex and compact
set in Rr. The above set is known as Aumann’s integral of the set-valued
mapping F (·)W [1].

Two interrelated issues arise: 1) to develop the theory of quadrature
formulae for set-valued integrals as in (1); 2) to choose tools for constructive
representation/approximation of convex sets in Rn, in order to implement
these formulae. These two issues are considered in the two sections below.

2 Set-valued quadrature formulae

In this section we formulate certain set-valued analogues to well-known
quadrature formulae and estimate the corresponding error. Linear com-
posite quadrature formulae of first and second order accuracy are known
(see [2] and [3], respectively). There is a principle barrier, however, towards
higher order approximations of set-valued integrals by linear quadrature for-
mulae, which can be overcome only in exceptional cases. The main result in
this section is a quadrature formula of third order accuracy, that artificially
involves nonlinearity and is applicable mainly to the case when W is an
r-dimensional interval (that is, a box).

As a measure of the deviation of a set J ⊂ Rn from the integral I we
use the Hausdorff distance

H(I, J) = max
{
max
x∈I

dist(x, J),max
x∈J

dist(x, I)
}
.

Further we denote also

|W | = max
{
|w| ; w ∈ W

}
, |F (t)| = max

{
|F (t)l| ; |l| = 1

}
where | · | is the Euclidean norm in Rn.

Let t0 = 0, t1 = h, . . . , tN = Nh = 1 be the N -points uniform grid in
[0, 1]. The following simple fact is well-known (see e.g. [4]).

Proposition 1. Let F (·) be of bounded variation. Consider the rectangle
formula

JN =
N−1∑
i=0

F (ti)W
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where the sum of sets is in Minkowski sense. Then

H(I, JN) ≤ |W |
1∨
0

F (·)/N. (2)

In the above inequality and further
∨1

0 F (·) denotes the variation of F
on [0, 1] with respect to the distance in the space of matrices induced by the
operator norm (defined above).

Now let us consider the more general linear composite quadrature for-
mula

h

N−1∑
i=0

p∑
j=1

ajg(ti + hτj) (3)

where aj ≥ 0 and 0 ≤ τ1 ≤ . . . ≤ τp ≤ 1 are parameters. The following
theorem is given in [3] (see also [5]).

Theorem 1. Let F (·) be Lipschitz continuous with constant L0 and let the
derivative Ḟ (·) be also Lipschitz continuous with constant L1. Suppose that
the quadrature formula (3) is exact for polynomials of degree one. Then the
composite set-valued quadrature formula

JN = h

N−1∑
i=0

( p∑
j=1

ajF (ti + hτj)
)
W (4)

provides accuracy

H(I, JN) ≤
(
1 +

p∑
j=1

aj
)
(2L0 + 3L1)|W |/N2. (5)

Notice that the setW multiplies the whole inner sum in (4), rather than
the summands separately (as [2] suggests).

We stress the following principial difference between Proposition 1 and
Theorem 1. If we denote

I i =

∫ ti+1

ti

F (t)W dt, J iN = hF (ti)W
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then
N∑
i=1

H(I i, J iN) ≤ |U |
1∨
0

F (·)/N

which means that (2) can be obtained by summing up the local errors of
integration. In contrast to that, if now we denote

J iN =
( p∑
j=1

ajF (ti + hτj)
)
W

one can verify that even for very simple examples (like F (t) = (1, t)∗ and
W = [−1, 1] ⊂ R1)

H(J i, J iN) ≥ const/N2 (6)

for any particular quadrature formula of the type of (4). Thus the sum of
the local errors is proportional to 1/N , despite that the global error is of
order 1/N2, according to Theorem 1. An effect of nonaccumulation of errors
is behind the second order estimate (5), as explained in more details in [6].

The inequality (6) also implies that higher than second order approx-
imations to Aumann’s integrals cannot be provided in general by linear
quadrature formulae like (4). In a more precise way this is claimed by the
next proposition.

Proposition 2. (A negative result.) LetW ∈ R1 be a nondegerate interval,
let F : [0, 1] → R2 be continuously differentiable with Lipschitz continuous
derivative and let rank

{
F (t), Ḟ (t)

}
= 2 for every t ∈ [0, 1]. Then for every

linear quadrature formula (4) there is a constant c such that

H(J, JN) ≥ c/N2,

for any N .

Proof. According to Theorem 3.1 (see also Remark 3.1) in [7] the integral
I in this case is a strongly convex set in R2 (that is, there is α > 0 such
that for any points x, y ∈ I and every unit vector l ∈ R2 the point (x +
y)/2+α|x−y|2l also belongs to I). Hence, the Hausdorff distance H(I, Pk)
between I and any polygon Pk with k vertices is not less than c/k2, where
the constant c is independent of k and the polygon Pk. On the other hand
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the number of vertices of JN in (4) is proportional to N , which proves the
claim of the proposition.

A different point of view on the “barrier” towards higher than second
order quadrature formulae is presented in [4].

We mention that approximations to the integral I of third order accuracy
are proposed in [2] and in a more elaborate form also in [4], but under
assumptions stronger than twice differentiability of the support function of
the integrand. This assumption is rather restrictive for many applications
and in particular does not hold in the situation described by the above
proposition.

Below we present a quadrature formula for the Aumann’s integral I,
which is of different type and provides third order approximation without
any assumptions concerning the support function of the integrand (and ap-
plicable also for integrals as in Proposition 2). The approach is taken from
[5], relays again on the effect of nonaccumulation of errors, but is applica-
ble essentially for sets W that are boxes. The computational aspects of the
nonlinearities that this type of quadrature formulae involve will be discussed
in the next section.

Consider again the Aumann’s integral (1), supposing now that W is a
box, that is, without loss of generality, W = [−1, 1]r. Since in this case we
have

I =
r∑

k=1

∫ 1

0

fk(t)[−1, 1] dt

where fk is the k-th column of F , it is enough to cope with one dimensional
uncertainty: r = 1. Thus we consider

I =

∫ 1

0

f(t)[−1, 1] dt. (7)

Theorem 2. Let f(·) be twice differentiable and let the second derivative
f̈(·) be bounded by a constantM and be Lipschitz continuous with constant
L. Let N be an integer, h and ti, i = 0, . . . , tN be defined as above and the
vectors f 0i , f 1i and f 2i satisfy the inequalities

|f 0i − f(ti)| ≤ c0h
3, |f 1i − ḟ(ti)| ≤ c1h

2, |f 2i − f̈(ti)| ≤ c2h.
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Denote

S =

{
(y1, y2, y3) ∈ R3 ;

∣∣∣∣∣∣∣
y1 = 1− 2α,

y2 = 1
2 − α

2,

y3 = 1
6 −

1
3α

3,

α ∈ [0, 1]

}
.

Then the quadrature formula

JN = hco
N−1∑
i=1

{
± [f 0i f

1
i f

2
i ]S
}

(8)

provides accuracy

H(I, JN) ≤
(
M +

7

3
L+ c0 +

c1
2
+
c2
3

)
/N3 (9)

(here “co” denotes the convex hull).

Proof. In the proof we use the more general argument from [5], attributing
more attention to the estimation of the involved constants.

Denote by W1(ti, ti+1) the set of all piece-wise constant functions on
[ti, ti+1]→ [−1, 1] with at most one jump. Denote

IN =
N−1∑
i=1

{∫ ti+1

ti

f(t)w(t) dt ; w(·) ∈ W1(ti, ti+1)
}
. (10)

Taking into account that IN ⊂ I one can estimate

H(I, IN) = sup
|l|=1

(
max
x∈I
〈x, l〉 −max

y∈IN
〈y, l〉

)

= sup
|l|=1

N−1∑
i=0

(∫ ti+1

ti

|f(t)| dt− max
w(·)∈W1(ti,ti+1)

∫ ti+1

ti

〈f(t), l〉w(t) dt
)
. (11)

Fix an arbitrary |l| = 1. For those i for which the function 〈f(t), l〉 has at
most one zero in (ti, ti+1) the corresponding summands in (11) are equal to
zero. Denote by K2 the rest of indexes i in (11). According to [5, Lemma 3]

∑
i∈K2

(∫ ti+1

ti

|f(t)| dt
)
≤ h3

(
‖f̈(·)‖C + 2

1∨
0

f̈(·)
)
≤ h3(M + 2L).
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Hence, taking w(t) = 0 for the corresponding members in (11), we estimate

H(I, IN) ≤ (M + 2L)/N3. (12)

Now let us estimate H(IN , JN). Using the Taylor expansion of f up to
second order terms on each interval [ti, ti+1] in (10) we obtain that

H

IN , co(N−1∑
i=1

{∫ ti+1

ti

(f 0
i + (t− ti)f 1

i + 0.5(t− ti)2f 2
i )w(t) dt ; w(·) ∈ W1(ti, ti+1)

})
≤
(
c0 +

c1
2
+
c2
3
+
L

3

)
h3.

Simple calculation often used in linear optimal control theory implies that
the second argument of H coincides with JN (the parameter α in the defini-
tion of the set S in (8) corresponds to the position of the only jump of w(·)
in each of the subintervals).

Then the claim of the theorem follows from the above inequality and
(12).

Notice that if the exact values of f(ti) and of the derivatives up to second
order are known, one may use them instead of f ji and take c0 = c1 = c2 = 0
in (9).

We mention that the above theorem reveals again the effect of nonac-
cumulation of errors, mentioned above in the case of second order schemes.
Namely, in general the Hausdorff distance between each summand in (8)
and the corresponding piece of the integral I is of order 1/N3, however, the
error of the sum JN remains 1/N3, in contrast with the sum of the errors,
which is of second order.

We mention also that the set S in (8) is an one dimensional curve in R3

and can be considered as a nonlinear image of the setW = [−1, 1], while the
second order approximations (4) do not involve nonlinear operations. This
nonlinearity is the price of the higher order accuracy.

3 Constructive implementation

Since the Aumann’s integrals in the form of (1) are convex and compact sets,
we chose in the present context to associate with any such set its support
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function
ρ(l|I) = max

x∈I
〈l, x〉, l ∈ Rn.

We suppose that the set W , which is a part of the available data, is simple
enough, so that its support function can be evaluated approximately with
accuracy ε for any l ∈ Rr:

ρ̃(l) = ρ(l|W ) + ε(l), |ε(l)| ≤ ε.

For example, in the “standard” case

W = [a1, b1]× . . .× [ar, br] (13)

we have

ρ(l|W ) =
r∑
i=1

lizi,

{
zi = ai if li ≤ 0
zi = bi if li > 0

where l = (l1, . . . lr)
∗ and ε(l) is the error in the computation of the above

sum. If W is an ellipsoid given as

W =
{
w ∈ Rn ; 〈E−1(x− e), x− e〉 ≤ 1

}
where e ∈ Rr, E is a symmetric positive definite matrix, then

ρ(l|W ) = 〈l, e〉+ 〈El, l〉1/2.

If the conditions of Theorem 1 are fulfilled, then one can evaluate

ρ(l|I) ≈ h
N−1∑
i=0

p∑
j=1

ajρ̃
(
F (ti + hτj)

∗l
)

(14)

with accuracy ε
∑p

j=1 aj + H(I, JN), where H(I, JN) is estimated by (5).
The requirement about this accuracy could be met by choosing appropri-
ately the number N . The impact of the computational error in the linear
operations in (14) can also be taken into account (observe that only dot
products are involved in the case (13), which can be performed with very
high and controlled accuracy).

In the papers [8, 9] one can find more details concerning computer real-
ization with controlled accuracy of the above results, including the case of
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matrix F (·) resulting from an uncertain system of linear differential equa-
tions.

If the conditions of Theorem 2 are fulfilled, then

ρ(l|I) ≈ h
N−1∑
i=0

max
α∈[0,1]

{
±
(
〈f 0i +

1

2
f 1i +

1

6
f 2i , l〉−2〈f 0i , l〉α−〈f 1i , l〉α2−1

3
f 2i α

3
)}

with accuracy H(I, JN) given by (9). Thus the calculation involves solving
of 2N one-dimensional maximization problems for cubic functions on [0, 1],
which problems seem to be still tractable with result verification. Computer
implementation of the above third order scheme is subject to further work.

We mention that the opportunity to calculate with prescribed accuracy
the values of the support function of Aumann’s integrals makes it possible
to solve with result verification a number of problems involving uncertain
integrals or linear control/uncertain systems. In particular, one can enclose
the integral in a minimal box (within the given accuracy) by calculating
the value of the support function with this accuracy along the coordinate
directions and their opposite ones. More generally, one can enclose the
integral (or its projection on a specified subspace) in a polyhedron which
does not differ in Hausdorff sense from the integral more than required.
More details about the implementation with result verification of the above
approach can be found in [8].
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