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The generalization of two-valued (crisp) sets to fuzzy sets gave us a rich and
powerful representation scheme within the domain of semantic uncertainty.
A parallel generalization of conjunctions and disjunction is needed from t-
norms and t-conorms to what we might appropriately call linguistic (fuzzy)
connectives, “AND," “OR," etc.

In fact a closer look at the canonical forms of the combination of concepts,
known as the Disjunctive and Conjunctive Normal Forms, DNF and CNF,
respectively, suggest that linguistic (fuzzy) connectives “AND," “OR," etc.,
should be represented with interval-valued fuzzy sets as particular realizations
of type II fuzziness that could represent the semantic uncertainty contained
in linguistic (fuzzy) connectives which exist in everyday natural language ex-
pressions of human use. In fact, the experimentally discovered “Compensatory
‘AND’ " can be grounded within the boundaries of the interval-valued fuzzy
sets so suggested and proposed. This leads to the possibility of defining other
fuzzy relations such as linguistic (fuzzy) IMPLICATION to enrich its repre-
sentation by a new definition which we may call “Compensatory ‘IMPLICA-
TION’ ," etc.

Интервальнозначные нечеткие
множества и нечеткие связки

И. Б. Турксен

Обобщение множеств с двузначной принадлежностью на случай нечет-
ких множеств дало богатые и мощные средства представления в области
семантической неопределенности. В этой связи потребовалось обобще-
ние понятий коньюнкции и дизъюнкции от t-норм и t-конорм к тому, что
можно было бы назвать лингвистическими (нечеткими) связками <И>,
<ИЛИ> и т. д.

Фактически, внимательное рассмотрение канонических форм соответ-
ствующих комбинаций, известных как конъюнктивная и дизъюнктивная
нормальные формы (КНФ/ДНФ), заставляет прийти в выводу, что линг-
вистические (нечеткие) связки <И>, <ИЛИ> и т. д. лучше всего могут
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быть представлены с помощью интервальнозначных нечетких множеств
как особых реализаций нечеткости типа II. Такое представление позволя-
ет отразить семантическую неопределенность, содержащуюся в повседнев-
ном естественно-языковом употреблении этих лингвистических связок. В
частности, открытое экспериментально компенсаторное <И> может быть
обосновано в рамках данного подхода. Оказывается возможным опреде-
лить и другие нечеткие отношения, например, лингвистическую (нечет-
кую) импликацию, что расширяет возможности соответствующего пред-
ставления путем определения того, что мы можем назвать компенсатор-
ной импликацией, и т. д.

1 Introduction

A closer look into history reveals that a heated debate took place between
Paramenides of Elea who proposed the notion of “Being" and hence “Noth-
ingness" and Heraclitus of Euphesus who proposed the notion of “Becom-
ing" and hence “Gradual," i.e., “Graded," notion of our knowledge about
real world conditions.

The debate was won by the supporters of “Being" and “Nothingness"
which culminated in Aristotelian two-valued logic {0,1} which was later can-
onized by Descartes and hence became the foundation of Western science.
Thus the principle of dichotomy better known as the “law of excluded mid-
dle," and its dual the “law of contradiction," dominated Western scientific
thinking and education. It is now known that logicians such as Lukasiewicz
and others realized the limitations of two-valued logic and introduced multi-
valued logic while retaining the two major quantifiers known as the “universal
quantifier," for all, i.e., ∀, and the “existential quantifier," there exist, i.e.,
∃.

With his first seminal paper, Lotfi A. Zadeh [17] initially proposed fuzzy
sets which are generalizations of multi-valued sets to infinite valued sets
and later with his second seminal paper, Zadeh [18] proposed foundations
of fuzzy logic with his “Compositional Rule of Inference," CRI, which is
a generalization of modus ponens. In his third seminal paper, Zadeh [19]
proposed a generalization of syllogisms introducing fuzzy quantifiers such
as “most,” “few,” etc., to the generalization of classical syllogistic models.
Furthermore, in all of his proposals, Zadeh presented examples that showed
application of a class of operators known as “max-min and complement" De
Morgan Triple.
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Again in this historical perspective, we find that there was a parallel
development that brought about t-norms and t-conorms. Noticing certain
anomalies in the analysis of data, Schweitzer and Sklar [6, 7, 8] proposed
the formation of t-norms and t-conorms. The introduction of t-norms and
t-conorms caused further generalizations in the development of fuzzy theory.
Many different fuzzy set and logic theories were formed by each De Mor-
gan Triple of t-norm, t-conorm and complement. Confronted with certain
anomalies, in CRI or generalized Modus Ponens, Dubois and Prade [5] intro-
duced us pseudo-conjunction, and pseudo-disjunction to recapture certain
regularity conditions displayed by classical modus ponens known as the four
desirable properties of inference.

It should be noticed, however, in all these developments, linguistic con-
nectives “AND," “OR," etc., were mostly interpreted crisply, meaning that
they corresponded to a t-norm, t-conorm, respectively, or to a pseudo-
conjunction or pseudo-disjunction, respectively.

It appears that very few researchers realized that certain types of in-
tervals are generated by combinations of concepts when various axioms of
classical set and logic theories are relaxed as it is the case when we consider
fuzzy sets and t-norm and t-conorms. The exceptions are in the works of: (i)
Turksen [9–16] where the Interval-Valued Fuzzy Sets, IVFS, are introduced
as a consequence of natural separation of the disjunctive and conjunctive
normal forms of any combination of concepts; and (ii) Bandler and Kohout
[1–3] based on their “checklist paradigm" where they have identified a dif-
ferent set of intervals for the representation of connectives. In this context,
it should be recalled that there is the work of Zimmermann and Zysno [20]
under the heading of latent connectives which are also known as “Compen-
satory ‘AND’ ," where they have experimentally found that human use of
linguistic connectives do not necessarily correspond to a t-norm or t-conorm
but to a weighted compensation between them.

In the rest of this paper, first the essential concepts are reviewed for a
basic understanding of the interval-valued representation of the linguistic
(fuzzy) “AND," “OR," etc. [14] (in Section 2), together with its comparison
to crisp representations. In Section 3, a skeletal discussion of the “Com-
pensatory ‘AND’ " [20] is presented together with its grounding in Interval-
Valued Fuzzy Sets [10, 14]. In Section 4, representation of the linguistic
(fuzzy) “IF . . . THEN" is presented together with its relationship to some
of the well known crisp “IF . . . THEN" expressions. In Section 5, we pro-
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pose “new compensatory connectives" [9], for future research, as extensions
of basic IVFS concepts.

2 Interval-valued fuzzy sets

IVFS representations of the combination of concepts with linguistic connec-
tives “AND," “OR," “IF . . . THEN," etc., are particular generalizations of
Boolean normal forms. For any two concepts, represented by sets A and B,
it is well known that we can form sixteen new concepts as the combination of
the original concepts A and B. It is also well known that their Boolean Nor-
mal Forms are known as Disjunctive Normal Form and Conjunctive Normal
Form, DNF and CNF, respectively. These normal forms are constructed as
the disjunctions of applicable primary conjunctions in the case of DNF and
conjunctions of applicable primary disjunctions in the case of CNF.

It is well known that DNF(·) = CNF(·), if a, b ∈ {0, 1} for a ∈ A, b ∈
B, and the connectives “AND," “OR," etc., are represented with the De
Morgan Triple of min-max, and complement, i.e., when we are operating
under the assumptions of Boolean algebra complete with its base axioms
which include the law of “Excluded Middle," A ∪ A = I, and its dual, the
law of “Contradiction," A ∪ A = ∅, distributivity, idempotency, absorbtion,
etc. When the laws of “Excluded Middle” and “Contradiction" are relaxed
(and a, b ∈ [0, 1], as Zadeh proposed in his seminal paper [17]), it has been
shown that DNF(·) ⊆ CNF(·) (see [14], for the special case of the De Morgan
Triple of max-min and complement). Further it has been shown, that, in
general, DNF(·) ⊆ CNF(·), [13] for a certain class of t-norms T , and t-
conorms S (in the sense of Schweizer and Sklar [6, 7, 8]), that satisfy the
following conditions:

a ≤ T
[

S(a, b), S(a, b)
]

,

a ≥ S
[

T (a, b), T (a, b)
]

,

b ≥ S
[

T (a, b), T (a, b)
]

where a, b ∈ [0, 1] for a ∈ A, b ∈ B, a = 1 − a, and b = 1 − b, i.e.,
when we are operating under the four assumptions of boundary, associativity,
commutativity, and monotonicity of t-norms T and t-conorms S. It should
be noted that the three explicit conditions stated above in reality reduces
to one: Indeed, since T and S are duals of each other, condition one and
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two are also dual to each other. Condition three is nothing more than a
positional variable change due to symmetry of t-norms and t-conorms. With
the realization that DNF ⊆ CNF, Turksen [13] proposed that IVFS’s defined
by the DNF and CNF boundaries be approximate models to represent the
combined concepts formed by the linguistic connectives “AND," “OR," i.e.,

A AND B
△
=

[

DNF(A AND B), CNF(A AND B)
]

,

A OR B
△
=

[

DNF(A OR B), CNF(A OR B)
]

.

In this proposed representation, specific DNF and CNF expressions are
first to be identified for each combined linguistic concept, and hence the
corresponding linguistic connective, in Tables 1 and 2. Secondly, they are to
be evaluated in the membership domain with a selected De Morgan Triple
of t-norm T , t-conorm S, and the complement that correspond to ∩, ∪, and
−. Thus, for example, for the linguistic connectives “AND," “OR," we have:

µDNF(A AND B) = T (a, b)

µCNF(A AND B) = T
[

T
[

S(a, b), S(a, b)
]

, S(a, b)
]

µDNF(A OR B) = S
[

S
[

T (a, b), T (a, b)
]

, T (a, b)
]

µCNF(A OR B) = S(a, b)

where a, b ∈ [0, 1], a = 1 − a, b = 1 − b, a ∈ A, and b ∈ B.

It is to be observed that µDNF(A AND B) = T (a, b) corresponds to the
usual crisp representations of “AND" in most current fuzzy literature and
its applications. But this is only the lower bound of the IVFS (A AND B),
where IVFS (A AND B) approximately but somewhat adequately represents
the semantic vagueness of “AND" that should be associated with its natural
language use. In the same vain, it is to be observed that,

µCNF(A OR B) = S(a, b)

corresponds to the usual crisp representations of “OR," in most current fuzzy
literature and its applications. But these crisp representations do not ef-
fectively reflect the vagueness that should be associated with the natural
language use of these linguistic connectives, and their uncertain semantic
meanings. Whereas, as it will be explained in the next section, these IVFS
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No. Concept Combination

1 Complete Affirmation True
2 Complete Negation False
3 Disjunction A OR B
4 Conjunctive Negation NOT A AND NOT B
5 Incompatibility NOT A OR NOT B
6 Conjunction A AND B
7 Implication (IF . . . THEN) NOT A OR B
8 Non-Implication A AND NOT B
9 Inverse Implication A OR NOT B
10 Non-inverse Implication NOT A AND B
11 Equivalence A IFF B
12 Exclusion A XOR B
13 Affirmation A
14 Negation NOT A
15 Affirmation B
16 Negation NOT B

Table 1: List of combined concepts for A and B

No. DNF CNF

1 (A ∩ B) ∪ (A ∩ B̄) ∪ (Ā ∩ B) ∪ (Ā ∩ B̄) U

2 φ (A ∪B) ∩ (A ∪ B̄) ∩ (Ā ∪ B) ∩ (Ā ∪ B̄)

3 (A ∩ B) ∪ (A ∩ B̄) ∪ (Ā ∩ B) (A ∪B)

4 (Ā ∩ B̄) (A ∪ B̄) ∩ (Ā ∪ B) ∩ (Ā ∪ B̄)

5 (A ∩ B̄) ∪ (Ā ∩ B) ∪ (Ā ∩ B̄) (Ā ∪ B̄)

6 (A ∩ B) (A ∪B) ∩ (A ∪ B̄) ∩ (Ā ∪ B)

7 (A ∩ B) ∪ (Ā ∩ B) ∪ (Ā ∩ B̄) (Ā ∪ B)

8 (A ∩ B̄) (A ∪B) ∩ (A ∪ B̄) ∩ (Ā ∪ B̄)

9 (A ∩ B) ∪ (A ∩ B̄) ∪ (Ā ∩ B̄) (A ∪ B̄)

10 (Ā ∩ B) (A ∪B) ∩ (Ā ∪ B) ∩ (Ā ∪ B̄)

11 (A ∩ B) ∪ (Ā ∩ B̄) (A ∪ B̄) ∩ (Ā ∪ B)

12 (A ∩ B̄) ∪ (Ā ∩ B) (A ∪B) ∩ (Ā ∪ B̄)

13 (A ∩ B) ∪ (A ∩ B̄) (A ∪B) ∩ (A ∪ B̄)

14 (Ā ∩ B) ∪ (Ā ∩ B̄) (Ā ∪ B) ∩ (Ā ∪ B̄)

15 (A ∩ B) ∪ (Ā ∩ B) (A ∪B) ∩ (Ā ∪ B)

16 (A ∩ B̄) ∪ (Ā ∩ B̄) (A ∪ B̄) (Ā ∪ B̄)

Table 2: List of DNF and CNF corresponding to Table 1
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representations of linguistic connectives have an experimentally verified ef-
fective representativeness associated with them, at least, for the linguistic
connectives “AND" and “OR."

3 Compensatory ‘AND’

It was experimentally discovered by Zimmermann and Zysno [20], that nat-
ural language use of “AND," “OR" by human experts do not correspond to
t-norms T and t-conorms S. They proposed latent connectives in human de-
cision making, known as “Compensatory ‘AND’ " which they defined either
as:

µAθB = µ1−γ
A∩B µγ

A∪B (1)

or as:
µAθB = (1 − γ)µA∩B + γ · µA∪B (2)

where θ is the “Compensatory ‘AND’ " and A and B are fuzzy sets. The first
expression is known as the “Exponential Compensatory ‘AND’ ," and the
second expression is known as the “Convex-Linear Compensatory ‘AND’."
In a recent investigation [10], it is shown that either:

µDNF(A AND B) ≤ µAθB ≤ µCNF(A AND B)

or:
µDNF(A OR B) ≤ µAθB ≤ µCNF(A OR B)

or:
µCNF(A AND B) ≤ µAθB ≤ µDNF(A OR B)

for certain values of γ ∈ [0, 1] and for both the “Exponential" and “Convex-
linear" “Compensatory ‘AND’ ." As shown in Figure 1, a human experts
meaning of the linguistic “AND" or “OR" should and could be identified
and hence represented either within “OR" interval region, i.e., between

[

µDNF(A OR B), µCNF(A OR B)

]

where an experts meaning, i.e., his degree of “OR"ness would be represented
with a value within “OR" boundaries, or “AND" interval region, i.e., be-
tween,

[

µDNF(A AND B), µCNF(A AND B)

]
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where his/her degree of “AND"ness would be represented within “AND"
boundaries or as an appropriate mixture of “AND" or “OR" in the middle
interval region between,

[

µCNF(A AND B), µDNF(A OR B)

]

depending on an experts emphasis placed on his/her meaning of “AND"ness
and “OR"ness. Only when an expert means definitely “AND," should we
use

µDNF(IF A AND B) = T (a, b)

and only when a expert means definitely “OR" should we use

µCNF(IF A OR B) = S(a, b).

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 0.2 0.4 0.6 0.8 1

m
u

gamma

Comp. ‘AND’
CNF of OR
DNF of OR

CNF of AND
DNF of AND

Figure 1: IVFS “A AND B,” “A OR B,” expressed in DNF and CNF and “Exponential

Compensatory AND” using algebraic sum-product for realization of t-conorm and t-norm

for µA = 0.8, µB = 0.6, and γ ∈ [0, 1].

Otherwise we should express them with appropriate IVFS’s as explained
above. After the computation is carried out in IVFS to reflect the semantic
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vagueness associated with these linguistic connectives, then a point-valued
representative may be chosen such as mean with the clear indication of the
type II spread around it.

4 Interval-valued implication

Just as linguistic connectives “AND," “OR," the linguistic implication “IF . . .
THEN" can and should be expressed in an interval-valued fuzzy set repre-
sentation to reflect the vagueness associated with the humans use of “IF . . .
THEN" in natural languages. In this regard, again it should be noted that
“crisp implications," Bandler and Kohout [3], such as:

R6:  Lukasiewicz a →5 b = min(1, a + b),
R5.5: R̊achenbach a →5.5 b = a + ab,
R6: Kleene-Dienes a →6 b = a ∨b,
R7: Early Zadeh a →7 b = (a ∧ b) ∨ a,
R8: Willmott a →8 b = (a →7 b) ∧ (b ∨ b),

are the ones that are researched and applied in most of the current liter-
ature. It has been shown [11, 13], that most of these “crisp implications"
expressions are contained within the IVFS representation of the linguistic
“IF . . . THEN" as follows:

µDNF(A → B|∨,∧,−) ≤ {R6, R7, R8} ≤ µCNF(A → B|∨,∧,−)

µDNF(A → B| ⊕, ·,−) ≤ {R5.5} ≤ µCNF(A → B| ⊕, ·,−)

µDNF(A → B|∨L,∧L,−) ≤ {R5, R5.5, R6} ≤ µCNF(A → B|∨L,∧L,−)

where → represents “IF . . . THEN” as a short hand notation, and

(∨,∧,− ), (⊕, · ,− ), (∨L,∧L,
− )

are the De Morgan Triples for max-min, algebraic sum-product, and bold
union-intersection, respectively. Unfortunately, for the cases of “linguistic
implications," we have no experimental results to validate the existence of
“Compensatory ‘IMPLICATION’ " in natural language uses by humans.
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5 New compensatory connectives

In this section, we define and investigate the four possible realization of
“Compensatory ‘AND’ " operators when A AND B and A OR B are in-
terpreted as linguistic connectives in terms of their DNF and CNF expres-
sions of t-norms and t-conorms [9]. It should be noticed that compensatory
connectives are basically interpreted as the combination of t-norms and t-
conorms [20] either exponentially or convex linearly. Hence by replacing
t-norms with DNF of AND and CNF of AND, and t-conorms with DNF
of OR and CNF of OR, we can obtain four new “Compensatory ‘AND’ "
operators for either exponential compensatory connectives or convex linear
compensatory connectives.

5.1 Exponential “Compensatory ‘AND’ " Operators

We define four exponential “Compensatory ‘AND’ " based on the normal
forms of fuzzy sets proposed by Turksen [14]. Obviously, T (a, b) and
S(a, b) in the exponential “Compensatory ‘AND’ " can be extended to either
µCNF(A AND B) or µDNF(A AND B) and to either µCNF(A OR B) or µDNF(A OR B),
respectively. Thus four normal forms based exponential “Compensatory
‘AND’ " can be defined as follows:

Definition 1. The normal form based exponential “Compensatory ‘AND’ "
operators are defined on the membership domain as follows:

I
(γ)
1 (a, b) =

[

µCNF(A AND B)

]1−γ[

µCNF(A OR B)

]γ
;

I
(γ)
2 (a, b) =

[

µDNF(A AND B)

]1−γ[

µCNF(A OR B)

]γ
;

I
(γ)
3 (a, b) =

[

µCNF(A AND B)

]1−γ[

µDNF(A OR B)

]γ
;

I
(γ)
4 (a, b) =

[

µDNF(A AND B)

]1−γ[

µDNF(A OR B)

]γ
.

Obviously θ
(γ)
1 (a, b) = I

(γ)
2 (a, b) =

[

µDNF(A and B)

]1−γ[

µCNF(A OR B)

]γ
is

the Zimmermann and Zysno [20] definition of the “Compensatory ‘AND’ ."
We derive the following properties:
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Theorem 1. For θ
(γ)
1 (a, b), I

(γ)
1 (a, b), I

(γ)
2 (a, b), and I

(γ)
4 (a, b), ∀ a, b, γ ∈

[0, 1], the following relations hold:

1) θ
(γ)
1 (a, b) = I

(γ)
2 (a, b) =

[

µDNF(A AND B)

]1−γ[

µDNF(A OR B)

]γ
;

2) θ
(γ)
1 (a, b) ≤ I

(γ)
1 (a, b) =

[

µCNF(A AND B)

]1−γ[

µCNF(A OR B)

]γ
;

3) θ
(γ)
1 (a, b) ≥ I

(γ)
4 (a, b) =

[

µDNF(A AND B)

]1−γ[

µDNF(A OR B)

]γ
.

It is clear that the relation between I
(γ)
3 (a, b) and I

(γ)
1 (a, b), and the

relation between I
(γ)
3 (a, b) and I

(γ)
4 (a, b) are quite obvious. In fact,

I
(γ)
3 (a, b) ≥ I

(γ)
4 (a, b)

and
I
(γ)
3 (a, b) ≤ I

(γ)
1 (a, b).

All these properties can be derived from the properties of the conjunctive and
disjunctive normal forms of fuzzy sets and the monotonicity of the function

f(x, y) = x(1−γ)y(γ). However the relation between I
(γ)
3 (a, b) and θ

(γ)
1 (a, b) is

not as obvious as others. We have noticed that the relation is a conditional
one as the relation largely depends on the ranges that it lies in. In order to
study this relation, we construct a new function as follows:

h(γ) = θ
(γ)
1 (a, b) − I

(γ)
3 (a, b) =

[

µDNF(A AND B)

]1−γ[

µCNF(A OR B)

]γ
−

[

µCNF(A AND B)

]1−γ[

µDNF(A OR B)

]γ
.

Let

µDNF(A AND B) = r1, µCNF(A AND B) = r2, µDNF(A OR B) = p1,

µCNF(A OR B) = p2.

Hence, the function h(γ) can be rewritten as:

h(γ) = θ
(γ)
1 (a, b) − I

(γ)
3 (a, b) = r

(1−γ)
1 pγ2 − r

(1−γ)
2 pγ1 (3)

where r1 ≤ r2 and p1 ≤ p2.

The equation that defines h(γ) is complicated. By studying the differ-
ential properties of h(γ), we can conclude the following theorem:
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Theorem 2. For the function h(γ) constructed as above in equation (3),
if h(γ) 6= 0 then h(γ) has one and only one γ0 ∈ [0, 1], so that h(γ0) =
0, h(γ ≤ γ0) ≤ 0, and h(γ > γ0) ≥ 0.

In order to find γ0, we simply set:

h(γ) = r
(1−γ)
1 pγ1

[

(p2/p1)
γ − (r2/r1)

(1−γ)
]

= h1(γ)h2(γ) = 0 (4)

where h1(γ) = r
(1−γ)
1 pγ1; h2(γ) = (p2/p1)

γ − (r2/r1)
(1−γ), and the γ derived

from (3) is γ0. Since h1(γ) > 0 for all r1 > 0 and p1 > 0, then h(γ) = 0 ⇔
h2(γ) = 0. Hence, we have (p2/p1)

γ0 − (r2/r1)
(1−γ0) = 0,

γ0 = ln
r2
r1
/ ln

p2r2
p1r1

(5)

where r1 = µDNF(A AND B), r2 = µCNF(A AND B), p1 = µDNF(A OR B), p2 =
µCNF(A OR B).

Since r1 ≥ r2 and p1 ≥ p2, then 0 ≤ γ0 ≤ 1 is derivable from formula

(4). Based on this analysis, we can conclude the relation between I
(γ)
3 (a, b)

and θ
(γ)
1 (a, b) in the following theorem:

Theorem 3. The normal form based exponential “Compensatory ‘AND’ "

operator I
(γ)
3 (a, b) has the following properties with θ

(γ)
1 (a, b):

1) when γ ≤ γ0, I
(γ)
3 (a, b) ≥ θ

(γ)
1 (a, b), i.e., h(γ) ≤ 0;

2) when γ > γ0, I
(γ)
3 (a, b) < θ

(γ)
1 (a, b), i.e., h(γ) > 0,

where γ0 is given by formula (5) and γ0 ∈ [0, 1].

The overall properties of the four normal form based exponential “Com-
pensatory ‘AND’ " operators are summarized in the following theorem:

Theorem 4. Normal form based exponential “Compensatory ‘AND’ " op-
erators defined in accordance with Definition 1 satisfy the following relation:

i) when γ > γ0:

I
(γ)
4 (a, b) ≤ I

(γ)
3 (a, b) < θ

(γ)
1 (a, b) = I

(γ)
2 (a, b) ≤ I

(γ)
1 (a, b);
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ii) when γ ≤ γ0:

I
(γ)
4 (a, b) ≤ θ

(γ)
1 (a, b) = I

(γ)
2 (a, b) ≤ I

(γ)
3 (a, b) ≤ I

(γ)
1 (a, b)

where γ0 is given by the formula (5).

5.2 Convex linear “Compensatory ‘AND’ " operators

Similarly we also define four convex linear “Compensatory ‘AND’ " operators
based on the normal forms of fuzzy sets:

Definition 2. The four normal form based fuzzy convex linear “Compen-
satory ‘AND’ " operators are defined on the membership domain as follows:

J
(γ)
1 (a, b) = (1 − γ)µCNF(A AND B) + γ · µCNF(A OR B);

J
(γ)
2 (a, b) = (1 − γ)µDNF(A AND B) + γ · µCNF(A OR B);

J
(γ)
3 (a, b) = (1 − γ)µCNF(A AND B) + γ · µDNF(A OR B);

J
(γ)
4 (a, b) = (1 − γ)µDNF(A AND B) + γ · µDNF(A OR B).

It should be noticed that

θ
(γ)
2 (a, b) = J

(γ)
2 (a, b) = (1 − γ)µDNF(A AND B) + γ · µCNF(A OR B)

is the Zimmermann and Zysno [20] definition of the “Compensatory ‘AND’ ."
Similar to Section 5.1, we derive the following properties based on Definition
2 and the properties of t-norms and t-conorms.

Theorem 5. For θ
(γ)
2 (a, b), J

(γ)
1 (a, b), J

(γ)
2 (a, b), and J

(γ)
4 (a, b), ∀a, b, γ ∈

[0, 1], the following relations hold:

1) θ
(γ)
2 (a, b) = J

(γ)
2 (a, b) = (1 − γ)µDNF(A AND B) + γ · µCNF(A OR B);

2) θ
(γ)
2 (a, b) ≤ J

(γ)
1 (a, b) = (1 − γ)µCNF(A AND B) + γ · µCNF(A OR B);

3) θ
(γ)
2 (a, b) ≥ J

(γ)
4 (a, b) = (1 − γ)µDNF(A AND B) + γ · µDNF(A OR B).
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The relation between J
(γ)
3 (a, b) and J

(γ)
1 (a, b), and the relation between

J
(γ)
3 (a, b) and J

(γ)
4 (a, b) are quite obvious. In fact,

J
(γ)
3 (a, b) ≥ J

(γ)
4 (a, b),

J
(γ)
3 (a, b) ≤ J

(γ)
1 (a, b).

All these properties can be derived from the properties of the triangular

norms. The relation between J
(γ)
3 (a, b) and θ

(γ)
2 (a, b) is not so obvious as

other operators. It should be noticed that this relation is also a conditional
one as the relation largely depends on the range of values that it lies in. In
order to study the relation, we construct a new function as follows:

H = θ
(γ)
2 (a, b) − J

(γ)
3 (a, b).

Let µDNF(A AND B) = r1, µCNF(A AND B) = r2, µDNF(A OR B) = p1,
µCNF(A OR B) = p2, hence the function H(γ) can be rewritten as:

H(γ) = θ
(γ)
2 (a, b) − J

(γ)
3 (a, b) = γ(p2 − p1 + r2 − r1) − (r2 − r1) (6)

where r1 ≤ r2 and p1 ≤ p2.

Theorem 6. For the function H(γ) constructed in (6), if H(γ) 6= 0, then
H(γ) is a monotonic increasing function of γ and has one and only one
γ1 ∈ [0, 1], so that H(γ1) = 0, H(γ ≤ γ1) ≤ 0 and H(γ > γ1) ≥ 0.

In order to find γ1, we simply set H(γ) = 0. Hence the solution:

γ1 =
r2 − r1

(p2 − p1) + (r2 − r1)
(7)

where r1 = µDNF(A AND B), r2 = µCNF(A AND B), p1 = µDNF(A OR B), p2 =
µCNF(A OR B).

From (7), it is clear that 0 ≤ γ1 ≤ 1. Hence, based on this analysis, we

summarize the relation between J
(γ)
3 (a, b) and θ

(γ)
2 (a, b) and in the following

theorem.

Theorem 7. The normal form based convex linear “Compensatory ‘AND’ "

operator J
(γ)
3 (a, b) has the following properties with θ(γ):
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1) when γ ≤ γ1, J
(γ)
3 (a, b) ≥ θ

(γ)
2 (a, b), i.e., H(γ) ≤ 0;

2) when γ > γ1, J
(γ)
3 (a, b) < θ

(γ)
2 (a, b), i.e., H(γ) > 0,

where γ1 is given by formula (7) and γ1 ∈ [0, 1].

The overall properties of the four convex linear “Compensatory ‘AND’ "
operators are summarized in the following theorem.

Theorem 8. Normal form based convex linear “Compensatory ‘AND’ " op-
erators defined in Definition 2 satisfy the following relation:

i) when γ > γ1:

J
(γ)
4 (a, b) ≤ J

(γ)
3 (a, b) < θ

(γ)
2 (a, b) = J

(γ)
2 (a, b) ≤ J

(γ)
1 (a, b);

ii) when γ ≤ γ1:

J
(γ)
4 (a, b) ≤ θ

(γ)
2 (a, b) = J

(γ)
2 (a, b) ≤ J

(γ)
3 (a, b) ≤ J

(γ)
1 (a, b)

where γ1 is given by the formula (8).

Example: Suppose µA = a = 0.7, µB = b = 0.2, (T, S) = (·,⊕) (i.e.,
algebraic product, sum), then we have Figure 2 to illustrate the overall
relationship among 4 convex linear “Compensatory ‘AND’ ” operators.
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