
Interval Computations
No 4, 1993

Verified Calculation of the Nodes and
Weights for Gaussian Quadrature

Formulas
Ulrike Storck

Using Gaussian Quadrature for the verified calculation of an integral assumes
that enclosures of the nodes and weights are given. The traditional method of
computing the nodes and weights is ill-conditioned and cannot be performed
with interval arithmetic. Since the nodes and weights can be determined by use
of orthonormal polynomials, an algorithm is presented which first calculates
approximations and then computes enclosures of the orthonormal polynomials.

Верифицированное вычисление
узлов и весов

для квадратурных формул Гаусса
У. Шторк

Применение гауссовых квадратур для верифицированного вычисления ин-
теграла предполагает известными оболочки узлов и весов. Традиционный
метод вычисления узлов и весов плохо обусловлен и не может быть реа-
лизован при помощи интервальной арифметики. Поскольку узлы и ве-
са можно определить, используя ортонормальные полиномы, представлен
алгоритм, который вначале рассчитывает приближения, а затем вычис-
ляет оболочки для ортонормальных полиномов.

c© U. Storck, 1993

Verified Calculation of the Nodes and Weights. . . 115

1 Introduction

Our aim is to determine a verified enclosure of the integral

J :=

b∫
a

w(x)f(x)dx

with a weight function w(x) which fulfills the assumptions for Gaussian
quadrature formulas and with a smooth function f(x). We use Gaussian
Quadrature for which the following holds (see [8]):

Theorem 1. Let f(x) ∈ C2n[a, b]. Then there exist xi and wi for i =
1, . . . , n and kn with

b∫
a

w(x)f(x)dx =
n∑

i=1

wif(xi) +
f (2n)(ξ)

(2n)!k2n

with ξ ∈ [a, b]. The nodes xi, the weights wi, and the error coefficient kn
are determined by the weight function w(x) and the integration bounds a
and b.

This theorem leads to an enclosure algorithm which requires interval
arithmetic (see [3]), automatic differentiation (see [6]) and enclosures of the
nodes xi, the weights wi, and the error coefficient kn:

J ∈ ♦J = ♦

(
n∑

i=1

♦wi♦f(♦xi) +
♦f (2n)([a, b])
(2n)!♦∗♦k2n

)
.

Here ‘♦’ symbolizes enclosures and interval arithmetic. Since we use the
optimal scalar product (see [3]), a single rounding symbol ♦ is used in front
of the summation symbol.

In order to realize this enclosure algorithm, we have to find tight enclo-
sures of the nodes, of the weights, and of the error coefficient. This is the
subject of this paper.

116 U. Storck

2 The traditional method

The traditional method for the determination of the values we need is de-
scribed in [8] and is sketched only here. By defining the scalar product

(f, g) :=

b∫
a

w(x)f(x)g(x) dx

on the real vector space C[a, b] of continuous functions on [a, b], we obtain

Theorem 2. There exist uniquely determined, orthogonal polynomials p̃j
of degree j with

(p̃i, p̃k) = 0 for i 6= k.

They satisfy the recursive relation

p̃0(x) := 1, p̃−1(x) = 0,

p̃i+1(x) := (x− α̃i+1)p̃i(x)− β̃2
i+1p̃i−1(x) for i ≥ 0

(1)

with
α̃i+1 := (xp̃i, p̃i)/(p̃i, p̃i) for i ≥ 0

β̃2
i+1 :=

{
0 for i = 0
(p̃i, p̃i)/(p̃i−1, p̃i−1) for i ≥ 1.

(2)

The polynomials p̃i are the orthogonal polynomials corresponding to the
weight function w(x). If we arrange the coefficients α̃i and β̃i in a tridiagonal
matrix Ã in the following way

Ã =

α̃1 β̃2

β̃2
.
. β̃n

β̃n α̃n

the eigenvalues of Ã are equal to the nodes xi.

We obtain the weights from the eigenvectors v(i), i = 1, . . . , n via

wi = (v
(i)
1)2

Verified Calculation of the Nodes and Weights. . . 117

with v(i) := (v
(i)
1 , . . . , v(i)n)T which is normed by (v(i))Tv(i) = (p0, p0) =

b∫
a

w(x) dx.

Finally, the error coefficient is given by

1/k2n =
(
p̃n(x), p̃n(x)

)
.

The determination of α̃i and β̃i by (1) and (2) leads to an ill-conditioned
problem (see [1]). The performance of (1) and (2) with interval arithmetic
(even with multiple precision) results in rapid growth in overestimation of
the enclosures and unacceptable results.

3 The new algorithm

Our new algorithm is based on the determination of the orthonormal poly-
nomials corresponding to the weight function. By using the coefficients of
these orthonormal polynomials pi(x), we can compute the coefficients αi, βi,
and kn.

If we employ interval arithmetic, tight enclosures of the coefficients of
pi must be obtained. We first assume that tight enclosures of the moments

µi =
b∫
a

xiw(x) dx for i = 0, . . . , 2n are given. They enable us to calcu-

late enclosures of the scalar products (pj, pk) with 0 ≤ j, k ≤ n, since the
polynomials are linear combinations of the monomials. Then, by a modifi-
cation of the orthogonalization algorithm of Gram-Schmidt, tight enclosures
of the orthonormal polynomials are obtained. The Gram-Schmidt algorithm
is presented here:

for (n+1) linearly independent polynomials qi, i = 0, . . . , n, the algorithm:

for i = 0, . . . , n

pi = qi −
i−1∑
j=0

(qi, pj)pj (3)

pi = pi/
√
(pi, pi) (4)

leads to (n+ 1) orthonormal polynomials pi.

118 U. Storck

If we use floating-point operations in this algorithm, we will not get or-
thonormal polynomials in general. On the other hand, if we use interval
arithmetic the results will soon become unacceptably large overestimations.
In order to avoid this, we introduce two iteration procedures. In the first
iteration procedure, Step (3) followed by the substitution qi := pi is it-
erated several times and performed with multiple precision floating-point
operations. Therefore, we obtain good approximations of the orthogonal
polynomials. Then, in the second iteration procedure, each iteration step
consists of (3), (4), and the substitution ♦qi := ♦pi or ♦qi := ♦pi ∩ ♦qi,
and is executed with multiple interval precision.

After having determined the enclosures of the orthonormal polynomials,
we calculate enclosures of αi and βi by (see [1])

p−1(x) = 0, and
βi+2pi+1(x) = (x− αi+1)pi(x)− βi+1pi−1(x).

The ♦αi and ♦βi we obtained have to be arranged in a matrix

A =

♦α1 ♦β2
♦β2

. ♦βn
♦βn ♦αn

whose eigenvalues and eigenvectors yield the nodes and weights as in the
traditional method. The error coefficient kn is equal to the coefficient of xn
in pn(x) (see [9]).

Thus, we get an algorithm which is presented here in a simplified form.
We only assume tight enclosures of the moments ♦µk that are required for
the calculation of the scalar products ♦(♦pj,♦pi).
Enclosure algorithm for ♦xi, ♦wi, ♦kn:

1) input(♦µi, i = 0, . . . , 2n)

2) p0 = 1/
√

(1, 1) = (µ0)
−1/2

for i =1, . . . , n do
begin

pi = 0, pi,i = 1

Verified Calculation of the Nodes and Weights. . . 119

repeat (floating-point iteration)
pi_old = pi
pi = pi −

∑i−1
j=0(pj, pi)pj

until (|pi − pi_old| < eps)

♦pi = ♦
(
pi −

∑i−1
j=0♦(♦pj, pi)♦pj

)
♦/♦
√

(pi, pi)

repeat (interval iteration)
♦pi_old = ♦pi
♦pi = ♦

(
♦pi −

∑i−1
j=0♦(♦pj,♦pi)♦pj

)
∩ ♦pi

♦pi = ♦pi♦/♦
√

(♦pi,♦pi)
until (diam(♦pi) < eps) or (♦pi_old = ♦pi)
determine ♦αi, ♦βi by use of the orthonormal polynomials:
♦βi+1 = ♦pi−1,i−1♦/♦pi,i,
♦αi = (♦pi−1,i−2♦−♦βi+1♦pi,i−1)♦/♦pi−1,i−1

end

3) determine enclosures of the eigenvalues and eigenvectors of the
corresponding tridiagonal matrix A

4) determine ♦xi, ♦wi, i = 1, . . . , n and ♦kn = ♦pn,n

5) output(♦xi, ♦wi, ♦kn)

Some implementation hints:

• The polynomials pi with degree i are represented as one-dimensional
arrays: pi(x) = pi,0 + pi,1 · x+ pi,2 · x2 + · · ·+ pi,i · xi.

• The linearly independent polynomials given at the beginning of the
algorithm are the monomials pi = xi, except for p0 which is calculated
directly. This guarantees that the space spanned by these polynomials
does not change during floating-point iteration. (This would happen
otherwise.)

• The optimal scalar product (see [3]) and multiple precision (interval)
arithmetic (see [5]) are needed. Therefore the algorithm was imple-
mented in Pascal-XSC (see [2]).

120 U. Storck

• We use an algorithm to determine enclosures of the eigenvalues and
eigenvectors of a tridiagonal matrix. This algorithm consists of the two
procedures developed in [4, 7]. The first one, implemented in single
precision, delivers good approximations of the eigenvalues and eigen-
vectors. These approximations serve as inputs for the second proce-
dure (see [7]), which was implemented with multiple interval precision
and leads to results with high accuracy.

The precision of the computed enclosures of the weights and nodes
depends on the precision of the algorithm, on the degree n, and on the
Gaussian Quadrature formula. In order to obtain enclosures for the degree
n = 2, . . . ,m which are consistent with an error bound given by the user,
we use an adaptive algorithm for the choice of the precision:

1) n := 2

2) While n ≤ m do

(a) Determine♦x(n)i , ♦w(n)
i , i = 1, . . . , n by our enclosure algorithm.

Determine

log_max_error[n]:= log10 (maximal relative error of
{♦x(n)i ,♦w(n)

i |i = 1, . . . , n})

(b) With log_max_error[j], j = 2, . . . , n calculate
app := approximation of log_max_error[m]
by performing the Neville algorithm (see [8]),

(c) If approx > log10(error bound)
then mantissa length := mantissa length

+(app−log10(error bound))
determine ♦x(n)i , ♦w(n)

i , i = 1, . . . , n,
log_max_old := log_max_err[n]
determine log_max_error[n] analogously to (0a)
log_max_err[j]:= log_max_err[j] +

(log_max_old− log_max_err[n])
for j = 2, . . . , n− 1.

Verified Calculation of the Nodes and Weights. . . 121

Some implementation hints:

• The precision in our algorithm is enlarged by increasing the mantissa
length by at least of the difference (approx − log10 (error bound)),
assuming the mantissa length is expressed in base 10.

• The increasement of log_max_err[j] in (0c) is necessary for further
calculations of the approximations of log_max_err[m] by the Neville
algorithm.

• At the beginning of our algorithm, we choose for the mantissa length
approximately the value (m+ constant) with constant ≈ 100.

4 Some numerical results

We give numerical examples for two different weight functions. The following
tables contain

• the degree, i,

• the number of floating-point iterations, nfl,

• the number of interval iterations, nit,

• the maximal diameter of the enclosures of the scalar products
♦(♦pi,♦pj), j = 0, . . . , i− 1; denoted by diam sc., and

• some weights and nodes, wj, xj with 1 ≤ j ≤ i.

Example 1. For Gauss-Legendre quadrature (w(x) = 1, a = −1, and b = 1),
enclosures of the nodes and weights for n = 2, . . . , 20 and with a maximal
relative error of 1e−16 were determined. For n = 2, 3, and 4, the algorithm
was executed with approximately 128 decimal digits, and for n = 5, . . . , 20
with approximately 350 decimal digits. We get the following information
about the orthonormal polynomials:

122 U. Storck

i 4 5 10 15 20
nfl 2 1 2 2 2
nit 1 1 1 1 1
diam. sc. 8.2E-136 2.6E-311 9.8E-272 6.4E-207 2.4E-112

and the weights and nodes:

i 15 20
w1 3.07532419961172

(
7
6

)
6E − 002 1.76140071391521

(
2
0

)
E − 002

w2 7.03660474881081
(
4
2

)
E − 002 4.06014298003869

(
6
3

)
E − 002

w3 1.0715922046717
(
20
19

)
E − 001 6.26720483341090

(
8
5

)
E − 002

x1 −9.87992518020485
(
3
5

)
E − 001 −9.9312859918509

(
61
47

)
E − 001

x2 −9.3727339240070
(
58
60

)
E − 001 −9.63971927277913

(
6
9

)
E − 001

x3 −8.48206583410427
(
2
4

)
E − 001 −9.1223442825132

(
61
58

)
E − 001

Example 2. For Gauss-Laguerre quadrature
(
w(x) = e−x, a = 0, b = ∞

)
,

enclosures of the nodes and weights up to degree 10 were calculated with
a maximal relative error of 1e − 14. At the beginning of the algorithm,
the calculations were performed using a mantissa length of approximately
100 digits. For n = 4, the mantissa length was increased to 172, and for
n = 7 to 224. We get the following information about the orthonormal
polynomials:

i 3 6 8 10
nfl 2 2 2 2
nit 1 1 1 1
diam. sc. 2.6E-126 5.2E-168 8.6E-162 1.0E-111

and the weights and nodes:

Verified Calculation of the Nodes and Weights. . . 123

i 8 10
w1 3.69188589341637

(
6
5

)
E − 001 3.08441115765020

(
2
0

)
E − 001

wi−1 8.48574671627253
(
3
1

)
E − 007 1.83956482397963

(
1
0

)
E − 009

wi 1.04800117487151
(
1
0

)
E − 009 9.9118272196090

(
11
08

)
E − 013

x1 1.7027963230510
(
11
9

)
E − 001 1.37793470540492

(
5
4

)
E − 001

xi−1 1.57406786412780
(
1
0

)
E + 001 2.19965858119807

(
7
6

)
E + 001

xi 2.28631317368892
(
7
6

)
E + 001 2.9920697012273

(
90
89

)
E + 001

However, numerical experiences have shown that a mantissa length with
more than 350 digits does not yield more significant precision in the results.

5 Higher dimensions

The construction of orthonormal polynomials in higher dimensions is the
same as in one dimension (assuming each polynomial is represented as a
one-dimensional array, that is, every monomial has a corresponding array
element for its coefficient).

References

[1] Gautschi, W. On the construction of Gaussian quadrature rules from
modified moments. Math. Comp. 24 (1970), pp. 245–260.

[2] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch. Pascal-
XSC. Springer, Berlin, 1992.

[3] Kulisch, U. and Miranker, W. (eds) Computer arithmetic in theory and
practice. Academic Press, New York, 1981.

[4] Lohner, R. Enclosing all eigenvalues of symmetric matrices. In: Ull-
rich, Ch. and Wolff von Gudenberg, J. (eds) “Accurate Numerical Al-
gorithms”, Research Reports ESPRIT, Springer, Berlin, 1989.

124 U. Storck

[5] Lohner, R. Interval arithmetic in staggered correction format. In:
Adams, E. and Kulisch, U. (eds) “Scientific Computing with Automatic
Result Verification”, Academic Press, New York, 1993.

[6] Rall, L. B. Automatic differentiation: techniques and applications. Lec-
ture Notes in Computer Science 120, Springer, Berlin, 1981.

[7] Rump, S. M. Solving algebraic problems with high accuracy. In:
Kulisch, U. and Miranker, W. (eds) “A New Approach to Scientific
Computation”, Academic Press, New York, 1983.

[8] Stoer, J. Einführung in die Numerische Mathematik I. Springer, Berlin,
1983.

[9] Stroud, A. H. Approximative calculation of multiple integrals. Prentice-
Hall, Englewood Cliffs, N. J., 1971.

Institute for Applied Mathematics
University of Karlsruhe
Kaiserstr. 12
D-76128 Karlsruhe
Germany

