
Interval Computations
No 4, 1993

Neural Networks That Are Not
Sensitive To The Imprecision of

Hardware Neurons
Ongard Sirisaengtaksin, Vladik Kreinovich∗

It has been proved that 3-layer neural networks can approximate any contin-
uous function with any given precision (Hecht-Nielsen, Cybenko, Funahashi,
Hornik, Stinchcombe, White).

These theorems mean, in particular, that for a plant whose state can be
described by finitely many parameters x1, . . . , xn, for an arbitrary control u =
f(x1, . . . , xn), and for an arbitrary precision ε > 0, we can implement this
control with a given precision using a 3-layer neural network. However, they
are based on the assumption that the neurons themselves are ideal. What if
they are not?

In the present paper, we prove that such realistic (non-precise) neurons
are also universal approximators. Namely, we prove that it is possible for an
arbitrary continuous function f , and a real number ε > 0, to produce a design
(scheme) of a neural network and the necessary precision δ in such a way that
even if all the neurons are built with this precision δ, the in-out characteristics
of the resulting network will be ε-close to f .

Нейронные сети,
нечувствительные к погрешностям
аппаратно реализованных нейронов

О. Сирисенгтаксин, В. Крейнович
Доказано, что трехслойная нейронная сеть может вычислить приближен-
ное значение любой непрерывной функции с любой заданной точностью
(Хехт-Нильсен, Цыбенко, Фунахаши, Хорник, Стинчкомб, Уайт).

Этот результат, в частности, означает, что для объекта, состояние кото-
рого описывется конечным числом параметров x1, . . . , xn, и для произволь-
но заданной точности ε > 0 управляющее воздействие u = f(x1, . . . , xn)
можно реализовать с помощью трехслойной нейронной сети. Эта теорема,

*This work was supported in part by NSF Grant No. CDA-9015006, NSF Research Opportunity
Award (for O.S.), NASA Research Grant No. 9-482, and a grant from the Institute for Materials and
Manufacturing Management. The authors are thankful to S. Aityan, A. Neumaier, and anonymous
referees for valuable comments.

c© O. Sirisaengtaksin, V. Kreinovich, 1993



Neural Networks That Are Not Sensitive To The Imprecision. . . 101

однако, предполагает, что сами нейроны являются идеальными. Как же
обстоит дело в обратном случае?

Нами доказано, что такие <реальные> (неточные) нейроны также при-
годны для универсальной аппроксимации. Конкретно, мы доказываем,
что для произвольной непрерывной функции f и действительного чис-
ла ε > 0 возможно построить схему нейронной сети и задать точность δ
так, что даже если все нейроны построены с этой точностью δ, выходная
характеристика сети будет отличаться от f не более чем на ε.

1 Introduction

Neural networks are often used for control design. For non-linear
systems, it is often very difficult to find an explicit analytical expression
for a control that satisfies certain given goals. It is even more difficult to
design a control that is optimal in some reasonable sense (e.g., uses the
minimal amount of fuel, attains its goals in the shortest time, etc). One of
the methods that (in many cases) helps to design such a control is to train
a neural network in such a way that for a given input ~x, its output is close
to the ideal control value u.

What are the limits of this methodology? Sometimes this method
helps, sometimes it does not. If after, say, 3000 iterations the network is
still not appropriately trained, does it mean that it cannot be trained in
principle, or that we were not sufficiently patient (and after more iterations,
we would have got the desired control)?

Neural networks are universal approximators. An answer to this
question was given by several authors who proved that 3-layer neural net-
works can approximate any continuous function f(~x) with any given pre-
cision [2–6]. These results are extremely valuable for control: they show
that for a plant whose state can be described by finitely many parameters,
for an arbitrary control u(~x), and for an arbitrary precision ε > 0, we can
implement this control with a given precision using 3-layer neural networks.
In other words, these results mean that, in principle, an arbitrary control
can be obtained by using neural networks.

These results are based on idealized neurons. Actual hardware
neurons are not precise. We said and arbitrary control can be “in prin-
ciple” obtained by using neural networks, because these results are based
on the assumption that we can design neurons with precisely known in-out



102 O. Sirisaengtaksin, V. Kreinovich

characteristics s(x). In reality, however, it is technically impossible to design
a hardware device whose in-out characteristics s̃(x) precisely coincides with
a prescribed function s(x). What we can guarantee is as follows: we can fix
a precision δ > 0, and the biggest possible signal X, and guarantee that the
in-out characteristics s̃(x) of a manufactured (hardware) neuron belongs to
an interval [s(x)− δ, s(x) + δ] for all x from −X to X.

Our main result is that with these non-precise (“interval”) neurons, it
is possible for an arbitrary continuous function f , and a real number ε > 0,
to produce a design (scheme) of a neural network and the necessary precision
δ in such a way that even if we build all the neurons with this precision δ,
the in-out characteristics of the resulting network will be ε-close to f .

This result first appeared in a Technical Report [7]. In this report, we
also show how to build designs that are not sensitive to the parameters of
the neurons, for plants with distributed parameters (in which the state of
the plant is described by a function, and the control takes that function as
an input), and for several other control problems.

How this result is related to interval computations. One of the
main goals of interval computations is to provide guaranteed results for
numerical computations, i.e., to provide the users with intervals that are
guaranteed to contain the desired result. To achieve this goal, we must use
only hardware for which some accuracy is guaranteed.

Neural networks are inherently parallel and, therefore, fast. Hence, if
we want to design a computational device that computes a given function
f(x1, . . . , xn) with a given accuracy ε > 0 faster than a standard (sequential)
computer, then a hardware neural network is one of the most promising
approaches.

The main result of our paper is that neural networks are indeed a uni-
versal tool for this problem, i.e., that we can really design a hardware neural
network tool for an arbitrary function f , and for an arbitrary accuracy ε.

The structure of the paper is as follows: in Section 2, we present the
above-mentioned classical result. In Section 3, we explain its importance for
control theory. In Section 4, we describe the design that is not sensitive to the
parameters of the neuron. The proof of this result (for reader’s convenience)
is given in Section 5.



Neural Networks That Are Not Sensitive To The Imprecision. . . 103

2 Classical result: neural networks are univer-
sal approximators for functions

Let us first recall the classical result that neurons are universal approxima-
tors for functions.

Definition 1. Suppose that a monotonic continuous function s(x) : R →
(0, 1) is given such that

lim
x→−∞

s(x) = 0, lim
x→∞

s(x) = 1.

We say that a function f(x1, . . . , xn) : Rn → Rp is representable by a 3-layer
neural network if

fl(x1, . . . , xn) =
K∑
k=1

βkls
( n∑

i=1

wkixi + bk

)
for some integer K, and real numbers βkl, wki, and bk, where 1 ≤ k ≤ K,
1 ≤ i ≤ n, and 1 ≤ l ≤ p.

Comments.

• This definition describes a network with 3 layers: an input layer,
a hidden layer, and an output layer. The input layer consists of
n neurons that read n input values x1, . . . , xn. The hidden layer
consists of K neurons that input xi and generate the signals yk =
s
(∑n

i=1wkixi + bk
)
, 1 ≤ k ≤ K. Finally, the output layer consists of

p linear neurons that combine the signals yk into the outputs
∑

k βklyk.

• In Definition 1, parameters βkl, wki, and bk, can be arbitrary real num-
bers (of any sign). This definition describes a model of a neuron that
is most widely used in artificial neural networks [5]. This model is an
oversimplified description of a biological neuron. For more biologically
relevant neurons, see, e.g., [1, 8].

In particular, biological neural networks have more than 3 layers. In
this paper, we restrict ourselves to 3-layer networks only. The reason
is that in the majority of applications to control and to numerical
computations, time is a crucial factor. The more layers we have, the



104 O. Sirisaengtaksin, V. Kreinovich

bigger the processing time. Therefore, 3-layer networks guarantee the
fastest data processing.
Other models used in artificial neural networks include radial basis
functions, for which the output of a neuron is y = s

(√∑
x2i
)
for

some function s (see, e.g., [9, 10]).

• It is known [2, 3, 6] that thus defined neural networks are universal
approximators for functions. Namely, the following result is true:

Definition 2. Suppose that S ⊂ Rn is a set, and ε > 0 is a real number.
We say that functions f and g from S to Rp are ε-close on S if∣∣fl(x1, . . . , xn)− gl(x1, . . . , xn)

∣∣ ≤ ε

for all (x1, . . . , xn) ∈ S and all l from 1 to p.

Theorem [Hornik, Stinchcombe, White]. Assume that n and p are positive
integers, S ⊂ Rn is a compact set, f : S → Rp is continuous, and ε >
0 is a real number. Then, there exists a function f̃(x1, . . . , xn) that is
representable by a 3-layer neural network and that is ε-close to f on S.

Comment. The number K of neurons in the hidden layer that is necessary
to get an ε-approximation to f , depends on f and on ε. In general, the
better accuracy we seek (i.e., the smaller ε > 0 we take), the more neurons
we need.

3 This classical result is very important for
control theory but is not directly applicable
to hardware neurons

This result is very important for control. The theorem that we just
described is very important for applications of neural networks to control.
Namely, suppose that we consider a plant, whose state can be described
by finitely many parameters x1, . . . , xn, and whose possible controls can be
characterized by p control parameters u1, . . . , up. For such a system, to
design a control means to find a way to describe proper control values ul
for each state of the plane (x1, . . . , xn). In mathematical terms, a control
strategy is a function from Rn to Rp.



Neural Networks That Are Not Sensitive To The Imprecision. . . 105

In real-life situations, for every physical parameter xi, there is an a priori
bound on its value: velocity cannot take the value that exceed the speed of
light, position cannot take the values that exceed the size of the area that
we are analyzing, etc. If we denote by Xi the biggest possible value of |xi|,
then we must consider only the values xi ∈ [−Xi, Xi], and therefore, only
the states (x1, . . . , xn) from a compact set

S = [−X1, X1]× [−X2, X2]× · · · × [−Xn, Xn]

are physically possible. Therefore, we can consider only functions from S to
Rp.

Every real-life device, no matter how fast it is, produces a continuous
change of parameters: we cannot immediately change the position, cannot
change the velocity in no time (with infinite acceleration), and even the
change in the electric current (that occurs, e.g., when we switch something on
or off) is continuous. Therefore, any real (hardware) control is a continuous
function from S to Rp.

Since we are talking about a hardware control, and hardware devices
cannot be absolutely precise, we cannot guarantee that the actual control
will precisely coincide with the function f : S → Rp that is prescribed by
the optimal control theory. However, by imposing more and more strict
restrictions on the quality of the hardware parts, we can try to guarantee
that the resulting hardware control is as close to the theoretical one as
possible.

Hardware neurons are not precise, so this result is not directly
applicable to them. In the above approximation theorem, we design a
neural network that approximates f if the neurons are precisely described
by the function s(x). But if we want to implement the neural network in
hardware, then, of course, the characteristics of the actual hardware neurons
will be only approximately equal to s(x). In view of that, it is necessary to
design an approximating network so that it will provide the desired approx-
imation for actual neurons as well.



106 O. Sirisaengtaksin, V. Kreinovich

4 A design that is not sensitive to the param-
eters of a neuron

4.1 Motivation: neurons can be only approximately
implemented in hardware

In-out characteristic of a neuron can be only approximately im-
plemented in hardware. It is technically impossible to design a hardware
device whose in-out characteristics s̃(x) coincides (precisely coincides) with
a prescribed function s(x). What we can expect is that whatever precision
δ > 0 we require, it will be possible to create a hardware neuron whose
response for all x that do not exceed some level X is δ−close to s(x)∣∣s̃(x)− s(x)

∣∣ ≤ δ.

This can be done by tuning the device for all values x from this interval
(−X,X).

An actual hardware neuron can only process signals of limited
size (|x| ≤ X for some X). It is, of course, impossible, to tune for all
possible x, for one reason that the ability of the existing testers to gener-
ate big signals is limited. Even if we overcome this difficulty by making
an improvement each time, then, in finite time, we can still generate only
finitely many signals X1, . . . , XN , and so there is no way to directly check
our hardware neuron for |x| > max

(
|X1|, . . . , |XN |

)
.

We can check a neuron indirectly: by designing a hardware neuron in
such a way that any signal x > X simply unleashes a generator that gen-
erates an output signal that is “equal” to 1 (in reality, we cannot make it
actually equal 1, but we can make it δ-close to 1). Likewise, we can design
−X as another threshold so that for x < −X, the generated signal is close
to 0.

To guarantee the continuity of the resulting piece-wise defined trans-
formation, we must choose δ and X in such a way that s(−X) ≤ δ and
s(X) ≥ 1− δ. We will call such values δ and X consistent.

Thus, although we cannot design a hardware neuron that gives precisely
s(x), for every consistent pair of values δ and X, we can (in principle)
design a neuron whose output s̃(x) satisfies the following inequalities: |s̃(x)−



Neural Networks That Are Not Sensitive To The Imprecision. . . 107

s(x)| ≤ δ for x ∈ [−X,X], |s̃(x)| ≤ δ for x < −X, and |1 − s̃(x)| ≤ δ for
x > X.

In hardware, the values of the coefficients can be implemented
only approximately. Likewise, it is impossible to get the precise values of
the coefficients βkl, wki, and bk, so, we can only guarantee these values with
some precision δ > 0.

Now, we are ready to formulate the results. We restrict them to the
case when the basic function s(x) is continuous, because, as we have already
mentioned, in real life all functions are continuous.

4.2 Definitions

Definition 3. Assume that s(x) is a monotonic continuous function s :
R→ (0, 1) such that

lim
x→−∞

s(x) = 0, lim
x→∞

s(x) = 1

andK, n, and p are positive integers. By a design of a 3-layer neural network
(or design for short) we mean a tuple µ =

(
{βkl}, {wki}, {bk}, X, δ

)
, where:

• βkl, wki, and bk are real numbers, 1 ≤ k ≤ K, 1 ≤ i ≤ n, 1 ≤ l ≤ p,
and

• X and δ are positive real numbers such that s(−X) ≤ δ and s(X) ≥
1 − δ (real numbers X and δ that satisfy these inequalities will be
called consistent).

The pair (X, δ) will be called a manufacturing precision of a design µ.

Definition 4. A function s̃ : R → R is called an implementation of a
neuron with a manufacturing precision (X, δ) if for x ∈ [−X,X], |s̃(x) −
s(x)| ≤ δ; for x < −X, |s̃(x)| ≤ δ; and for x > X, |s̃(x)− 1| ≤ δ.

Definition 5. By implementation of a design µ =
(
{βkl}, {wki}, {bk}, X, δ

)
we mean a function

f̃l(x1, . . . , xn) =
K∑
k=1

β̃kls̃k

( n∑
i=1

w̃kixi + b̃k

)



108 O. Sirisaengtaksin, V. Kreinovich

where each function s̃k is an implementations of a neuron with manufactur-
ing precision (X, δ), and β̃kl, w̃ki, and b̃k satisfy the following inequalities:

|β̃kl − βkl| ≤ δ, |w̃ki − wki| ≤ δ, and |b̃k − bk| ≤ δ.

Definition 6. Suppose that S ⊂ Rn. We say that a function f : S → Rp is
ε-approximated by a design µ if, for every implementation f̃ of this design,
|fl(x)− f̃l(x)| ≤ ε for all x ∈ S.

4.3 Main result

Main theorem. Assume that n and p are positive integers, S ⊂ Rn is a
compact set, f : S → Rp is continuous, and ε > 0 is a real number. Then,
there exists a design µ that ε-approximates f(x).

5 Proof of the main theorem

1o. According to the classical approximation theorem, there exists a function
g that is representable by a 3-layer neural network, and that is (ε/3)-close to
f . Let us take the parameters βkl, wki, and bi of this network as parameters
of our design. To complete the description of the design, it is necessary to
describe X and δ.

2o. We want to find such X and δ that for every implementation f̃ , we have∣∣f̃l(x1, . . . , xn)− fl(x1, . . . , xn)
∣∣ ≤ ε.

We already have the inequality |fl(x1, . . . , xn) − gl(x1, . . . , xn)| ≤ ε/3. So,
we will be able to prove the desired inequality, if we can guarantee that∣∣f̃l(x1, . . . , xn)− gl(x1, . . . , xn)

∣∣ ≤ 2

3
ε.

3o. The difference between f̃ and g is due to two reasons: neurons are non-
ideal, and coefficients of f̃ can be different from the coefficients from g. Let
us separate the effects of non-ideal neurons and of non-ideal coefficients.



Neural Networks That Are Not Sensitive To The Imprecision. . . 109

To perform this separation, let us consider auxiliary functions

hl(x1, . . . , xn) =
K∑
k=1

β̃kls
( n∑

i=1

w̃kixi + b̃k

)
and try to find such X and δ that for manufacturing precision
(X, δ), |f̃l(x1, . . . , xn) − hl(x1, . . . , xn)| ≤ ε/3, and |hl(x1, . . . , xn) −
gl(x1, . . . , xn)| ≤ ε/3.

4o. Let us first find the conditions, under which the first inequality will be
guaranteed, i.e., under which |f̃l(x1, . . . , xn)− hl(x1, . . . , xn)| ≤ ε/3.
4.1o. The difference between the function

f̃l(x1, . . . , xn) =
K∑
k=1

β̃kls̃k

( n∑
i=1

w̃kixi + b̃k

)
and hl(x1, . . . , xn) can be represented as

f̃l(x1, . . . , xn)−hl(x1, . . . , xn) =
K∑
k=1

β̃kl

[
s̃k

( n∑
i=1

w̃kixi+b̃k

)
−s
( n∑

i=1

w̃kixi+b̃k

)]
.

Therefore, if we can find an estimate ∆ for |s̃(x) − s(x)| for all x, we can
guarantee that∣∣f̃l(x1, . . . , xn)− hl(x1, . . . , xn)

∣∣ ≤ (∑
k

|β̃kl|
)

∆.

So, let us find such an estimate ∆.

4.2o. Suppose that δ > 0 is given. Then, since s(x) → 1 as x → ∞, we
conclude that there exists an X+ such that for x > X+, we have |s(x)−1| ≤
δ. Likewise, from s(x)→ 0 as x→ −∞, we conclude that there exists a X−
such that for x < X−, we have |s(x)| ≤ δ. Let us take X = max(X+, |X−|).
Then, if x > X, then |s(x) − 1| ≤ δ. If x < −X, then |s(x)| ≤ δ. So, the
values δ and X are consistent in the sense of Definition 3.

If s̃(x) is an implementation of a neuron s(x) with a manufacturing
precision (X, δ), then, for x ∈ [−X,X], we have |s̃(x) − s(x)| ≤ δ. For
x < −X, we have |s̃(x)| ≤ δ, hence |s̃(x) − s(x)| ≤ |s̃(x)| + |s(x)| ≤ 2δ.
For x > X, we have |1− s̃(x)| ≤ δ and |1− s(x)| ≤ δ, hence∣∣s̃(x)− s(x)

∣∣ =
∣∣(1− s̃(x)

)
−
(
1− s(x)

)∣∣ ≤ ∣∣1− s̃(x)
∣∣+
∣∣1− s(x)

∣∣ ≤ 2δ



110 O. Sirisaengtaksin, V. Kreinovich

In all three cases, |s̃(x)− s(x)| ≤ 2δ. So, for this choice of X, we can take
∆ = 2δ.
4.3o. Since |s̃(x)− s(x)| ≤ 2δ, we can conclude that∣∣f̃l(x1, . . . , xn)− hl(x1, . . . , xn)

∣∣ ≤ 2
∑
k

|β̃kl|δ.

Now, from |β̃kl − βkl| ≤ δ, we conclude that |β̃kl| ≤ |βkl| + |β̃kl − βkl| ≤
|βkl|+ δ, therefore, ∑

k

|β̃kl| ≤
∑
k

|βkl|+Kδ

and∣∣f̃l(x1, . . . , xn)−hl(x1, . . . , xn)
∣∣ ≤ 2δ

(∑
k

|β̃kl|+Kδ
)
≤ 2δ

(
max

l

∑
k

|βkl|+Kδ
)
.

The expression in the right hand side of this inequality tends to 0 as
δ → 0, therefore, there exists a δ0 such that if 0 ≤ δ ≤ δ0, then

2δ
(∑

k

|βkl|+Kδ
)
≤ ε

3
.

For such δ, |f̃l(x1, . . . , xn)− hl(x1, . . . , xn)| ≤ ε/3.

4.4o. So, we will choose δ in such a way that δ ≤ δ0, and X as in 4.2o.

5o. Let us now find for what δ the second inequality

|hl(x1, . . . , xn)− gl(x1, . . . , xn)| ≤ ε/3

is true.
5.1o. The expression

hl(x1, . . . , xn) =
K∑
k=1

β̃kls
( n∑

i=1

w̃kixi + b̃k

)
can be viewed as a function of xi, β̃kl, w̃ki and b̃k: hl(x1, . . . , xm) = G(ν),
where we denoted ν =

(
{xi}, {β̃kl}, {w̃ki}, {b̃k}

)
. Since s(x) is continuous,

this function G is also continuous.



Neural Networks That Are Not Sensitive To The Imprecision. . . 111

In particular, for ν = ν(0) =
(
{xi}, {βkl}, {wki}, {bk}

)
, we have

G(ν(0)) = gl(x1, . . . , xn).

Therefore, in terms of G, the difference∣∣hl(x1, . . . , xn)− gl(x1, . . . , xn)
∣∣

takes the form |G(ν)−G(ν(0))|. So, we will use the continuity of G to find
such δ, for which this difference is ≤ ε/3.
5.2o. Let us first prove that the domain of G is compact.

Indeed, since |β̃kl − βkl| ≤ δ ≤ δ0, we conclude that the possible values
of β̃kl are all from the interval [βkl − δ0, βkl + δ0]. Likewise, w̃ki ∈ [wki −
δ0, wki + δ0] and b̃k ∈ [bk − δ0, bk + δ0]. The values of x belong to a compact
set S. So, the possible values of xi, β̃kl, w̃ki, and b̃k form a compact set. Let
us denote this compact set by K.

On this set K, we can introduce a max−metric as follows: if

ν(1) =
(
{x(1)i }, {β̃

(1)
kl }, {w̃

(1)
ki }, {b̃

(1)
k }
)

and
ν(2) =

(
{x(2)i }, {β̃

(2)
kl }, {w̃

(2)
ki }, {b̃

(2)
k }
)

then
d(ν(1), ν(2)) =

max(max
i
|x(1)i − x

(2)
i |,max

k,l
|β̃(1)

kl − β̃
(2)
kl |,max

k,i
|w̃(1)

ki − w̃
(2)
ki |,max

k
|b̃(1)k − b̃

(2)
k |).

5.3o. So, the function G is continuous on a compact set K. Therefore,
G is uniformly continuous on K. This means that for every α > 0, there
exists a β > 0 such that d(ν(1), ν(2)) ≤ β, then |G(ν(1))− G(ν(2))| ≤ α. In
particular, such a β exists for α = ε/3.

Then, for
ν =

(
{xi}, {β̃kl}, {w̃ki}, {b̃k}

)
and

ν(0) =
(
{xi}, {βkl}, {wki}, {bk}

)
if the manufacturing precision is (X, δ), we have d(ν, ν(0)) ≤ δ. So, if we
choose δ ≤ β, then we can guarantee that∣∣G(ν − ν(0))| = |hl(x1, . . . , xn)− gl(x1, . . . , xn)

∣∣ ≤ α = ε/3



112 O. Sirisaengtaksin, V. Kreinovich

for all xi.

6o. Summarizing: we have found the values δ0 and β > 0 such that if δ ≤ β
and δ ≤ δ0, and X is determined as in 4.2o, then∣∣fl(x1, . . . , xn)− gl(x1, . . . , xn)

∣∣ ≤ ε

3
,

∣∣f̃l(x1, . . . , xn)− hl(x1, . . . , xn)
∣∣ ≤ ε

3
,

and ∣∣hl(x1, . . . , xn)− gl(x1, . . . , xn)
∣∣ ≤ ε/3.

Therefore, if we take δ = min(δ0, β), we conclude that for every implemen-
tation f̃ ,∣∣f̃l(x1, . . . , xn)− fl(x1, . . . , xn)

∣∣ ≤ ∣∣f̃l(x1, . . . , xn)− hl(x1, . . . , xn)
∣∣+∣∣hl(x1, . . . , xn)−gl(x1, . . . , xn)

∣∣+∣∣fl(x1, . . . , xn)−gl(x1, . . . , xn)
∣∣ ≤ ε.Q.E.D.

References

[1] Carpenter, G. and Grossberg, S. Pattern recognition by self-organizing
neural network. MIT Press, 1991.

[2] Cybenko, G. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and System 2 (1989), pp. 303–314.

[3] Funahashi, K. On the approximate realization of continuous mappings
by neural networks. Neural Networks 2 (1989), pp. 183–192.

[4] Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence the-
orem. In: “IEEE International Conference on Neural Networks”, San
Diego, SOS Printing, 1987, pp. 11–14.

[5] Hecht-Nielsen, R. Neurocomputing. Addison-Wesley, Reading, MA,
1990.

[6] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedfor-
ward networks are universal approximators. Neural Networks 2 (1989),
pp. 359–366.



Neural Networks That Are Not Sensitive To The Imprecision. . . 113

[7] Kreinovich, V. and Sirisaengtaksin, O. 3-layer neural networks are uni-
versal approximators for functionals and for control strategies. Uni-
versity of Texas at El Paso, Computer Science Department, Technical
Report UTEP–CS–92–27, 1992.

[8] Levine, D. Introduction to neural and cognitive modeling. Lawrence El-
baum, 1991.

[9] Poggio, T. and Girosi, F. Regularization algorithms for learning that
are equivalent to multilayer networks. Science 247 (1990), pp. 978–981.

[10] Powell, M. J. D. The theory of radial basis function approximation. In:
Light, W. A. (ed.) “Advances in numerical analysis. II”, Oxford, Oxford
University Press, 1992.

[11] Sprecher, D. A. Elements of real analysis. Dover Publ., N.Y., 1987.

O. Sirisaengtaksin
Department of Computer and
Mathematical Sciences
University of Houston-Downtown
Houston, TX 77002
USA

V. Kreinovich
Computer Science Department
University of Texas at El Paso
El Paso, TX 79968
USA


