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Boundary-Based Interval Newton’s

Method

L. Simcik and P. Linz

The boundary based method for approximating solutions to nonlinear systems

of equations has a number of advantages over midpoint based algorithms such

as Krawczyk’s method and the Hansen-Sengupta method. Our research shows

that for a certain class of problems the boundary-based method considerably

reduces the need for bisection, which is a major source of difficulty for midpoint

based methods.

Интервальный метод Ньютона,

основанный на границе

Л. Симчик, П. Линц

Метод аппроксимации решений нелинейных систем уравнений, основан-

ный на границе, имеет многие преимущества перед методами, основанны-

ми на средней точке, такими как алгоритм Кравчика и метод Хансена-

Сенгупты. Наши исследования показывают, что для некоторого класса

задач метод, основанный на границе, значительно сокращает число необ-

ходимых делений пополам, которые являются основным источником труд-

ностей для методов, основанных на средней точке.
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1 Introduction

1.1 Problem statement

We consider an n-dimensional nonlinear system:

f1(x1, x2, . . . , xn) = 0
... (1)

fn(x1, x2, . . . , xn) = 0

where f : R
n 7→ R

n has an interval extension F : I
n 7→ I

n, with the
corresponding interval Jacobian matrix J(X) : In 7→ I

n×n. Furthermore,
we restrict f(x) so that f ∈ C1. Using self-validating methods, the basic
problem is to bound the solution(s) to (1) starting with an arbitrary initial
domain X0 ∈ I

n.

1.2 Krawczyk’s method

For the purpose of illustration, we will use a simplified version of Krawczyk’s
method leaving out some details. We have the general form of the iteration:

Xk+1 = Xk ∩K(Xk)
(2)

K(X) = m(X)− Y f
(

m(X)
)

+
(

I − Y J(X)
)(

X −m(X)
)

.

If X0 is a “safe” starting region (for precise formulations, see, e.g., [5])
around a unique solution, then Krawczyk’s method will converge quadrati-
cally. Most Newton-like methods behave in this manner, but unfortunately
these methods lack a general theory that would allow a user to compute a

priori a safe region X0. For this reason, these schemes often rely upon some
auxiliary self-validating globally convergent bounding method that typically
has large storage requirements and a lower rate of convergence.

In (2), Y represents either an inverse Jacobian matrix, or its approxi-
mation. When J(X) is singular, a bounding method (as mentioned above)
must be used to split the domain into several sub-domain (thus splitting the
problem into many sub-problems), and eliminate regions until a safe starting
region is found.

There are many variations of (2) that use the trade-off between the com-
putational complexity of a single iteration step and convergence rate.
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2 Boundary based projection

Before describing the general method, the one-dimensional example will pro-
vide a good introduction to the concepts to follow.

2.1 One-dimensional example of a boundary-based me-

thod

Consider (1) with n = 1 and a simple solution in X0 = [a, b]. Let’s de-

note F ′(Xk) =
[

m
(k)
1 , m

(k)
2

]

. Without loss of generality, let f(x) be strictly
positive at the endpoints of X0 (other cases are similar). Then

Xk+1 = Xk − F
(

Xk
)

/m
(k)
1

X
k+1

= X
k − F

(

X
k)

/m
(k)
2 (3)

Xk+1 =
[

Xk+1, X
k+1]

.

This method converges quadratically to the solution in [a, b] despite the
possibility that f ′(γ) = 0 for some γ ∈ [a, b] such that f(γ) 6= 0 [6].

Consider the following equation:

f(x) = x2
(1

3
x2 +

√
2 sin x

)

−
√
3/19 (4)

which has a simple solution in [.1, 1]. When (3) is applied with X0 = [.1, 1],
the result is as follows:

Xk

[.100000000000, 1.00000000000]
[.117520751584, .720303378869]
[.152064870794, .532597677896]
[.215187624078, .430345925997]
[.303082397292, .396393057590]
[.371179468697, .392459492178]
[.391177285026, .392379718777]
[.392375589063, .392379507168]
[.392379507094, .392379507138]
[.392379507135, .392379507138]
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Figure 1: Region elimination

which bounds the real solution.

If there were two distinct solutions in X0 then the method would converge
to the convex hull containing both of them. By splitting the resulting interval
and applying the method again to each piece, the solutions can be isolated.

Now consider the problem

f(x) =
1

100
(x2 − 50x+ 625) + sin x+ 1 (5)

which has no real solutions on [0, 50]. When (3) is applied to this problem,
we get region elimination depicted in Figure 1. Figure 1 does not show the
details of the region elimination at the function’s global minimum, but the
algorithm did eliminate the entire domain piece-by-piece (on the grounds
that none of the eliminated regions could possibly contain a solution of the
equation f(x) = 0).
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Experiments described in [6] showed that in general, for functions f
of one variable, the number of iterations required for region elimination is
O
(

η log( 1
|α|)

)

, with η being the number of extrema over [a, b], and α be the

height of the extrema closest to the x-axis.

Using (3) means using a pessimistic bound on f ′(x) near the endpoints,
unless f(x) is monotonic over all of X0. The monotonicity of the inclusion
F ′(X) implies that for all X ⊂ X0 we have F ′(X) ⊂ F ′(X0). Thus using
some X at the boundary of X0 will provide a sharper bound on the range of
slopes near that particular boundary. Since this is a self-validating method,
for a given choice of X ⊂ X0 we can at most eliminate X as a region with
no solutions. In [6], we proved that if a region Xk contains a solution, then
at each boundary, there exists the largest interval X that can be reliably
eliminated in this manner. These largest intervals X at the left and right
endpoints are called the ideal steps. They represent the largest portion of
the region that can be eliminated at each end during one iteration if we use
the boundary-based method.

The program creating the data for Figure 1 used the ideal step boundary-
based interval method, finding the ideal step at the left and right side of the
interval during each iteration. The ideal steps can be found through a binary
search or estimated by using an interval Taylor expansion of F ′(X).

2.2 Algorithm description

The principal difference between an n-dimensional problem and the one-
dimensional case is that in order to eliminate a region in an n-dimensional
space, an algorithm must find a boundary in I

n where f(x) is guaranteed to
be non-zero.

The n-dimensional problem takes the form of (1) with an n-dimensional
rectangle X0. We define a face of an n-rectangle by fixing the value of one
variable (say, xj) either at its upper bound or at its lower bound (in both
cases, xj will thus be a constant). Let us denote this face by XF . Thus, for
each region Xk, there are 2n faces for which we have to evaluate Fi(XF),
i = 1 . . . n.

Note that we do not have to apply all n functions Fi to all the faces.
E.g., if for some i, the expression for Fi does not contain xj at all, then we
do not need to apply Fi to the corresponding face. Indeed, in this case, the
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range Fi(XF) of Fi for this face coincides with the range Fi(X
k) of Fi for

the entire region Xk, and thus (unless the initial problem has no solutions
at all) this range does contain 0.

If after searching over all the faces, we find i such that 0 6∈ Fi(XF), then
we can eliminate a region that is adjacent to this face by using ∂Fi

∂Xj
(i.e., by

using the corresponding entry in J(X)). This partial derivative evaluated
over the entire region can be used to bound the behavior of F (X) in the Xj

direction. Thus, in the same manner as the one-dimensional case, we can
eliminate a region that is adjacent to the boundaries.

Similar to the one-dimensional case, we can now prove the existence of
an ideal step at each face. To find an ideal step, we can either apply a
binary search, or we can use an interval Taylor expansion. Since a region is
eliminated in only one dimension at a time, we need only a one-dimensional
expansion: e.g., if we restrict ourselves to quadratic terms only, then we only
need to compute ∂2Fi

∂X2

j

, and the desired estimate for an ideal step follows from

solving a quadratic equation.

If 0 6∈ F (XF) at some face XF , and there is no ideal step from this face,
this means that the entire domain has no solutions (the proof of this fact
is rather simple). This fact demonstrates that the boundary-based method
with the ideal step is inherently a non-existence test.

Algorithm pseudo-code:

Start with n-dimensional vector X0.

1. Create a stack of vectors denoting each face of Xk, say XFp
, p = 1:2n.

2. For each entry of the interval Jacobian matrix that is not identically
zero, check the corresponding two faces for 0 6∈ Fi(XFp

), and if this
condition is true, raise a flag and link this face with the corresponding
Jacobian entry. If no faces are “flagged” during this check, then the
region Xk must be subdivided before any region elimination can begin
(a prudent choice of subdivision may be all that is necessary, rather
than a time-consuming complete bisection in each dimension).

3. At each face xj = const that was flagged and linked to a Jacobian
entry, a region can be eliminated in the jth dimension using the ith

function Fi analogously to the way it is eliminated in the one dimen-
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sional case. The ideal step can be found through binary search or
estimated using ∂2Fi

∂X2

j

.

4. Update Xk to take into consideration the region elimination accom-
plished at each flagged face, and increment k.

5. Repeat steps 1–4 until a convergence criterion is met.

Steps 2 and 3 above can be implemented in a parallel processing environ-
ment, since each check is an independent task; similarly, region eliminations
at different faces can be done in parallel.

2.3 Two-dimensional example

Consider the following nonlinear system:

g(x, y) = x2 + 6x+ y2 − 6y + 17,
(6)

h(x, y) = y2 − 6y − x2 − 6x− y sin 2x+ 3 sin 2x+
1

4
sin2 2x.

All solutions to (6) lie in
{

(x, y) : −10 ≤ x ≤ 10,−10 ≤ y ≤ 10
}

.

Figure 2 shows the contour lines of g(x, y) = 0 (circle) and h(x, y) = 0
(wobbly cross). The dashed rectangles outline the outer convergence of the
algorithm from X0 =

(

[−10, 10], [−10, 10]
)

to the minimal rectangular hull
containing all four solutions. In this example, the interval Jacobian matrix

is singular over most of the region except for the squares that contain each
solution and whose width is approximately equal to 1

5 . The next step is to
perform one bisection in each dimension to create four new problems. To
each of the resulting domains, we then apply the same boundary-based algo-
rithm. Figure 3 shows inner convergence of the algorithm to each solution.

3 Strategies for using boundary-based

methods

When a region is eliminated at a face XF the question arises concerning
whether or not a larger region could have been eliminated if we used a
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boundary based interval bisection technique instead. Actually, bisection here
is a misnomer for what more accurately should be called boundary-based
region elimination using only information from F (X). For our general class
of functions, there is no general theory that would recommend the choice of
one method over the other for region elimination. However, the boundary
based methods can be implemented in an adaptive scheme that dynamically
tests for every non-zero entry of J(X), which method will eliminate a larger
region per unit of work in each dimension with respect to each non-zero
entry of J(X).

For example, let’s consider the case when for a kth iterate of the

boundary based Newton method, in some dimension, Xk
j =

[

Xk
j , X

k

j

]

,

using Fi(X), and ∂Fi

∂Xj
, for one of the faces we eliminate a region γj. If

0 6∈ F (Xk
1 , X

k
2 , . . . , γj, . . . , X

k
n), this means that in this case, the boundary-

based ‘bisection’ would have eliminated a larger region in one iteration.

There is also a simple check that enables us to find out when bisection
method is worse: it is sufficient to check for the existence of an ideal step
in the region eliminated by bisection method. If there is no ideal step, then
the boundary-based interval Newton method would have eliminated a larger
region in one iteration.

The number of floating point operations for one iteration of Newton’s
method and a bisection method are known a priori allowing the computer
to decide which method is more computationally efficient (both methods
use the same amount of computer memory, so when deciding which of the
methods to use, we do not have to take memory into consideration).

The above tests can be used in a decision strategy that can adaptively
choose one of the boundary-based methods. Thus, an algorithm might be
using boundary-based Newton’s method in one dimension using one Fi, and
bisection in the same dimension using a different Fi. There are many pos-
sibilities for a decision process based upon local region elimination. Ad-
ditionally, the boundary-based methods can be adaptively combined with
Krawczyk’s method using known tests for safe-starting regions.
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4 Advantages and disadvantages

The main advantage is that boundary-based methods do not require the
inversion of a Jacobian matrix, and do not even require that we know an
approximation to this inverse matrix. Additionally, the methods tend to
rely upon bisection far less than Krawczyk’s method; this fact reduces the
storage requirements and the need for ‘rejoining’ regions that were previously
split up. The boundary-based methods have inherent adaptive strategies
that allow dynamic choices between Newton’s, bisection, and Krawczyk’s
method. Finally, there appears to be the potential for levels of parallelism,
since region elimination at each face can be considered a separate problem.

The main disadvantage of the boundary based Newton’s method and
bisection is the need to find the faces where 0 6∈ Fi(XF) and the subsequent
reliance upon interval bisection when there are no suitable faces available.

5 Future research

The boundary-based interval Newton’s method needs a generalized conver-
gence theory for the multi-dimensional problem. To make a significant im-
provement in current methods, the boundary-based techniques must elim-
inate regions more efficiently than traditional bisection and the Hansen-
Sengupta method [3]. If this cannot be proven, then we must at least
demonstrate adaptive schemes with the previously mentioned algorithms
to augment their performance. Additionally, we need to demonstrate par-
allelism and quantify its contribution to the rate of convergence. Also, we
need to uncover which classes of nonlinear systems and possibly sparse un-
patterned linear systems are best suited for the boundary based methods.
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