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This paper presents an algorithm for evaluating the functions of reciprocal,
square root, 2x, and log2(x) with special purpose hardware. For these func-
tions, the algorithm produces correctly rounded results, according to a speci-
fied rounding mode. This algorithm can be used to implement directed round-
ing which is essential for interval arithmetic, or exact rounding which min-
imizes the maximum error of the result. Hardware designs based on this
algorithm are discussed. These designs use a polynomial approximation in
which the coefficients are originally selected based on the Chebyshev series
approximation and are then adjusted to ensure correctly rounded results for
all inputs. The terms in the approximation are generated in parallel and are
then summed using a high-speed, multi-operand adder. To reduce the number
of terms in the approximation, the input interval is partitioned into subinter-
vals of equal size and different coefficients are used for each subinterval. Range
reduction techniques that maintain correct rounding are presented. Area and
delay comparisons are made based on the degree of the polynomial and the
accuracy of the final result. For single-precision floating point numbers, the
correctly rounded value of the function can be computed in approximately
103 ns on a 70 mm2 chip.

Проектирование параллельного
аппаратного обеспечения для

вычисления корректно округленных
элементарных функций

М. Й. Шульте, Е. Е. Шварцландер, мл.

Представлен алгоритм для вычисления функций 1
x
,
√
x, 2x и log2(x) с

помощью специализированного аппаратного обеспечения. Алгоритм обес-
печивает корректное округление этих функций в соответствии с заданным
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режимом округления и может применяться для реализации как направ-
ленного округления в интервальной арифметике, так и точного округле-
ния с целью минимизации погрешности результата. Обсуждаются спо-
собы аппаратной реализации этого алгоритма, использующие приближе-
ние многочленами, коэффициенты которых сначала выбираются на основе
приближения ряда Чебышева, а затем корректируются для обеспечения
корректного округления результатов при любых входных данных. Члены
ряда вычисляются параллельно и затем суммируются высокоскоростным
многооперандным сумматором. Для уменьшения числа членов входной
интервал делится на подынтервалы одинакового размера, в каждом из ко-
торых применяются различные коэффициенты. Представлена методика
понижения ранга, обеспечивающая корректное округление. Приводятся
сравнительные данные о времени вычислений и требуемой площади кри-
сталла для различных степеней многочлена и точности результата. Для
чисел с плавающей точкой одинарной точности корректно округленное
значение функции вычисляется приблизительно за 103 нс на кристалле
площадью 70 мм2.

1 Introduction

The rapid and accurate evaluation of the elementary functions (e.g., recip-
rocal, square root, exponential, logarithm, etc.) is important for a number
of scientific applications. Computation of these functions is often performed
by software routines which employ various techniques including polynomial
approximation, rational expressions, and continued fraction expansion [1].
The disadvantage of most software routines is that they do not guarantee last
bit accuracy and are often too slow for numerically intensive applications.
To overcome the speed disadvantage of software routines, several algorithms
have been developed for approximating the elementary functions with spe-
cial purpose hardware. These algorithms include the CORDIC algorithm
[2], Newton-Raphson iteration [3], rational approximations [4], and polyno-
mial approximations [5]. While hardware algorithms typically have a speed
advantage over software routines, they often produce even less accurate re-
sults. In addition, their speed advantage is limited because they are usually
implemented iteratively and a large number of iterations may be required.

The IEEE 754 standard [9] requires correct rounding for addition, sub-
traction, multiplication, division, square root, remainder, and conversion
between integer and floating point formats. Correct rounding requires the
rounded result to be identical to the result obtained if the infinitely precise
value of the function is rounded according to a specified rounding mode.
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The IEEE 754 standard specifies four rounding modes: round to nearest,
round toward +∞, round toward −∞, and round toward zero. Round to
nearest, also known as exact rounding, is the default rounding mode. The
other three rounding modes, the directed rounding modes, are often used
for interval arithmetic [7, 8]. The IEEE 754 standard, however, does not
require correct rounding for the elementary functions. This is largely due to
a problem known as the Table Maker’s Dilemma [10, 11]. This problem and
a solution to it are discussed in Section 6.

Interval arithmetic provides a systematic technique for keeping track
of rounding errors and errors that occur due uncertainly in initial values.
As discussed in [6], providing hardware platforms which support directed
rounding improves the speed and efficiency of interval arithmetic. Further-
more, depending on the instruction set of the computer, it can be difficult,
or impossible, to implement correct rounding of the elementary functions in
software. In most cases, several extra bits of precision are required for inter-
nal computation. Software routines can also be orders of magnitude slower
than hardware implementations. As a result, most existing mathematical
libraries do not provide directed rounding for the elementary functions. Be-
cause there is a lack of hardware and software support for directed rounding
of the elementary functions, it is often difficult to implement interval arith-
metic for applications which use these functions.

To illustrate the use of directed rounding of the elementary functions,
suppose the result of a function f(x) is required for the interval X = [a, b]
and f(x) is monotonically increasing on [a, b]. If we denote round toward
+∞ as ∆ and round toward −∞ as ∇, then the resultant interval is Y =
[∇f(a),∆f(b)]. Without directed rounding modes, optimal bounds on the
resultant interval cannot be established.

In addition to the benefits offered for the interval arithmetic, evaluating
the elementary functions with an algorithm that produces correctly rounded
result has several other advantages. Correct rounding limits the maximum
error to one unit in the last place (ulp) for the directed rounding modes
and half an ulp for round to nearest. If x is a positive normalized floating
point number, then the ulp of x is the difference between x and the next
larger floating point number. Correct rounding also ensures that machines
which have the same floating point format will produce the same results
for a given computation. This improves software portability and allows the
correctness of floating point algorithms to be verified for a standardized sys-
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tem. Correct rounding with round to nearest (i.e., exact rounding) is useful
in elementary function evaluation because it minimizes the error between
the rounded result and the exact value of the function. Exact rounding also
preserves several desirable properties of the functions such as symmetry and
monotonicity [12]. Other advantages of having an specified standard for the
elementary functions are given in [13].

Because of the advantages offered, much research has been performed
to develop software routines which produce correctly rounded results for
the elementary functions. In [12], software routines are described that use
accurate range reduction techniques, followed by an iterative polynomial
approximation to compute the elementary functions for floating point num-
bers in the IEEE double precision format. Although most of these routines
achieve correct rounding for over 99.8 percent of the elementary functions,
they require more than 70 machine cycles to execute on a general purpose
computer. Routines which are expected to produce correctly rounded results
for elementary functions in the IEEE double precision format are described
in [14]. For the first iteration, the result is computed using double preci-
sion arithmetic. If the pre-rounded result of this routine does not meet a
specified error criterion, the result is recomputed using a higher precision
routine which may be orders of magnitude slower than the original routine.
This is repeated using slower and more precise routines at each iteration
until a correctly rounded result is guaranteed. The goal is that the average
time to compute the elementary functions will be relatively low since most
input values will require only a single iteration. This approach, however,
is not practical for real time computations, since hundreds of cycles may
be required to compute results which are not correctly rounded after the
first iteration. For numerically intensive applications, hardware support for
elementary function generation is often required.

This paper presents a parallel hardware algorithm for computing the
functions of reciprocal, square root, 2x and log2(x). Because this algorithm
performs the computation in parallel and division is not required, it is faster
than existing hardware and software algorithms. In addition, the results
produced by this algorithm are correctly rounded, making it useful for inter-
val arithmetic. In Section 2, polynomial approximations are discussed with
an emphasis on the Chebyshev series approximation. Section 3 presents a
novel algorithm by which the coefficients of the polynomials are adjusted
to guarantee correctly rounded results. Section 4 presents range reduction
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techniques which maintain correct rounding. In Section 5, hardware designs
which produce correctly rounded results for floating point numbers with 16
and 24 bit significands are given. Section 5 also examines the reduction
in delay and area when the results are allowed to have last bit errors. In
Section 6, the difficulty of obtaining correctly rounded results is discussed,
and the reduction in delay and area obtained by adjusting the coefficients is
examined.

2 Polynomial approximations

The algorithm discussed in this paper uses polynomial approximations to
compute the elementary functions. Polynomial approximations have the
form

f(x) ≈ qn−1(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 =
n−1∑
i=0

aix
i (1)

where f(x) is the function to be approximated, qn−1(x) is a polynomial of
degree n − 1, and ai is the coefficient of the i-th term. The function is
approximated on a specified input interval [xmin, xmax) and range reduction
is employed for values outside this interval.

The accuracy of the approximation is dependent on the number of terms
in the approximation, the size of the interval on which the approximation
is performed, and the method for selecting the coefficients. To reduce the
number of terms, the input interval is divided into a set of equally sized
subintervals and different coefficients are used for each subinterval. This
is done by separating the p-bit input value into two parts: a k bit most
significant part xm and a (p − k) bit least significant part xl, as shown in
Figure 1.

If x is on the input interval [0, 1), then

x = xm + xl · 2−k (2)

where 0 ≤ xm < 1 and 0 ≤ xl < 1. Equation (1) then becomes

pm(x) = a0(xm) + a1(xm) · xl + · · ·+ an−1(xm) · xn−1l =
n−1∑
i=0

ai(xm) · xil (3)
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where pm(x) is the approximating polynomial of degree n−1 for subinterval
m. The ai’s are obtained by a table look-up based on xm. The value of
xm determines the subinterval on which the approximation occurs and the
value of xl specifies the point on the subinterval at which the approximation
is made. Figure 2 illustrates the effect of dividing the input interval into
subintervals. Figure 3 shows the approximation for a single subinterval.
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For formalized IEEE floating point numbers [9], the input interval is
often [1, 2). For these numbers, xm consists on the (k − 1) most significant
bits of x, excluding the most significant bit which is always 1. Numbers of
this form are specified by the equation

x = 1 + xm + 2−k · xl. (4)

Originally, an approximation to the minimax polynomial, the Chebyshev
series approximation, is used to select the coefficients for each of the subin-
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Figure 3: A single subinterval

tervals. The coefficients are then adjusted to obtain correctly rounded re-
sults for all values on each subinterval. The Chebyshev series approximation
pm(x) is computed on the subinterval [xm, xm + 2−k) by the following algo-
rithm [15]:

1. The Chebyshev nodes on [−1, 1) are computed using the formula

ti = cos

(
(2 · i+ 1) · π

2 · n

)
(0 ≤ i < n) (5)

where ti is the i-th Chebyshev node on [1,−1).

2. The Chebyshev nodes are transformed from [−1, 1) to [xm, xm + 2−k)
through the equation

xi = xm + (ti + 1) · 2−k−1 (0 ≤ i < n) (6)

where xi is the i-th Chebyshev node on [xm, xm + 2−k).

3. The Lagrange polynomial pm(x) is formed which interpolates the Cheby-
shev nodes on [xm, xm + 2−k)

pm(x) = y0 · L0(x) + y1 · L1(x) + · · ·+ yn−1 · Ln−1(x) (7)

where

Li(x) =
(x− x0)× · · · × (x− xi−1)× (x− xi+1)× · · · × (x− xn−1)

(xi − x0)× · · · × (xi − xi−1)× (xi − xi+1)× · · · × (xi − xn−1)
(8)
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and
yi = f(xi). (9)

4. pm(x) is expressed in the form given in equation (3) by combining
terms in pm(x) with equal powers of xl.

5. The coefficients of pm(x) are rounded to finite precision using round-
to-nearest-even.

The maximum error between a function and its Chebyshev series ap-
proximation on an interval [a, b) is

En(x) ≤
(
b− a

4

)n

· 2 · f
n(x)

n!
, a ≤ x < b. (10)

Since the input interval is divided into subintervals of size 2−k, the maximum
error is

En(x) ≤ 2−n(k+2)+1 · fn(x)

n!
, xm ≤ x < xm + 2−k. (11)

This compares favorably with the Taylor series approximation which has a
maximum error of

En(x) ≤ 2−n·k · fn(x)

n!
, xm ≤ x < xm + 2−k. (12)

For the Chebyshev series approximation, increasing the number of bits in
xm by one decreases the maximum error by a factor of 2−n, but this doubles
the number of coefficients. In comparison, increasing the number of terms
by one decreases the maximum error by a factor of approximately 2−(k+2),
but this increases the required number of multiplies and adds and the width
of the table for storing the coefficients.

3 An algorithm for adjusting the coefficients

Polynomial approximations provide a high-speed method for computing the
elementary functions. However, to obtain correctly rounded results either
the size of the table look-up or the number of terms in the approximation
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must be very large. This section describes an algorithm by which the co-
efficients are adjusted to obtain correctly rounded results. This leads to a
significant reduction in the amount of hardware and the overall delay for
computing the elementary functions. This algorithm may not be applicable
to large word-length numbers (e.g. double-extended precision), because it
requires an exhaustive test of all the values on the input interval. The al-
gorithm fro adjusting the coefficients is shown in Figure 4. Array variables
are shown in bold face type.

set the best coefficients to the coefficients of the Chebyshev approximation
for (i = 1 to number of coefficients) do
for (j = 1 to number of subintervals) do
compute the number of incorrect approximations [j] using the best coefficients;
for (k = 1 to number of iterations [i]) do
for sign = −1 to 1 step 2 do
modify coefficient i on subinterval j by

a[i][j] = a[i][j] + sign∗k∗2−pi ;
compute the number of incorrect approximations [j]
using the best coefficients and a[i][j];
if (the number of incorrect approximations [j] is reduced) then
a[i][j] becomes the best coefficient for this subinterval;
remember the number of incorrect approximations;

if (the number of incorrect approximations [i][j] is zero) then
exit this subinterval (exit j);

end sign
end k

end j
if (the number of incorrect approximations on all subintervals is zero) then
exit modifying coefficients (exit i);

end i

Figure 4: Adjusting the coefficients

To determine the required numbers of iterations, the following two obser-
vations are made. It is assumed that the difference between the exact value
of the function and the pre-rounded result is less than 2−q. The rounded
result has an ulp of 2−p, and the ulp of the coefficient of the i-th term is
2−pi, where p ≤ q < pi.

1. For a given a1, a2, . . . , an, the maximum number of iterations needed
to select the optimal value of a0 is 2p0−q. This is verified by observing
that adjusting a0 by 2−q increases the value of every approximation by
an amount 2−q. Adjusting a0 by 2−q requires 2p0−q iterations. After
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this adjustment, every approximation on the subinterval will be above
the corresponding value of the function, since the maximum error was
originally less than 2−q. Further adjustment of the coefficients will not
reduce the number of incorrect approximations. A similar argument
holds if a0 is adjusted by −2−q.

2. For a given a0, a1, . . . , ai−1, ai+1, . . . , an−1, the maximum number of
iterations needed to select the optimal value of ai is 2pi−p. Adjusting
ai by 2−pi changes the value of each approximation on the subinterval
by an amount 2−pi · xil. After 2pi−p iterations, the approximation at
xl is adjusted by 2−p · xil. Since it is require that |p(x)− f(x)| ≤ 2−p,
more than 2pi−p iterations will lead to results which are not correctly
rounded for some value of xl.

4 Range reduction transformations

Before performing the polynomial approximation, it is necessary to trans-
form the original input value so that it falls within a specified input interval.
The value of the function is then computed for the transformed input. This
is followed by a second transformation which compensates for the original
transformation and normalized the result. The input and output transfor-
mation are commonly referred to as range reduction. The range reduction
transformations presented in this section maintain correct rounding. Thus,
if the results computed over the input interval are correctly rounded, all
results will be correctly rounded.

The steps needed to compute each of the elementary functions are shown
in Figure 5. In this figure, it is assumed that the numbers are in the IEEE
floating point format for normalized numbers, which take the form:

x = (−1)Sx ·Mx · 2Ex (1 ≤Mx < 2). (13)

The exponent is assumed to have no bias. The following notation is used:

Mx and Ex The original significand and exponent
Mx
′ and Ex

′ The transformed values before the function is computed
My
′ and Ey

′ The results of the function before the output transformation
My and Ey The final output values
Sx and Sy The sign bits of the input and output values
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reciprocal:
1

Mx · 2Ex
=

1

Mx

· 2−Ex

(1) Sy = Sx

(2) Mx
′ = Mx Ex

′ = Ex

(3) My
′ = 1

Mx
′ Ey

′ = −Ex
′

(4a) if (My
′ = 1) My = My

′ Ey = Ey
′

(4b) else (My
′ < 1) My = 2 ·My

′ Ey = Ey
′ − 1

square root:
√
Mx · 2Ex =

{ √
Mx · 2Ex/2 if Ex mod 2 = 0√
2 ·Mx · 2(Ex−1)/2 if Ex mod 2 = 1

(1a) if (Sx = 1) ERROR
(1b) else (Sx = 0) Sy = 0
(2a) if (Ex mod 2 = 0) Mx

′ = Mx Ex
′ = Ex

(2b) else (Ex mod 2 = 1) Mx
′ = 2 ·Mx Ex

′ = Ex − 1

(3) My
′ =
√
Mx
′ Ey

′ = Ex
′

2
(4) My = My

′ Ey = Ey
′

log2(x): log2(Mx · 2Ex) =

{
log2(Mx) + Ex if Ex 6= 0
log2(Mx)

1−Mx
· (1−Mx) if Ex = 0

(1) if (Sx = 1 or x = 0) ERROR
if (Ex ≥ 0) Sy = 0
else (Ex < 0) Sy = 1
(2) Mx

′ = Mx Ex
′ = Ex

(3a) if (Ex
′ = 0) My

′ = log2(Mx
′)

Mx
′−1

Ey
′ = 0

(4a) ∆ = bMy
′ ·(log2(Mx

′−1)c
My = My

′ · (Mx
′ − 1)2−∆ Ey = ∆

(3b) else (Ex
′ 6= 0) My

′ = log2(Mx
′) Ey

′ = Ex
′

(4b) ∆ = blog2(|Ey
′|)c

My = |My
′ + Ey

′| · 2−∆ Ey = ∆

2x:
2Mx·2Ex

= 2Mx
′ · 2Ex

′
,

where Mx
′ = Mx · 2Ex − bMx · 2Exc and Ex

′ = bMx · 2Exc.
(1) Sy = 0
(2) Mx

′ = Mx·2Ex−bMx·2Exc Ex
′ = bMx · 2Exc

(3a) if (Sx = 0) My
′ = 2Mx

′
Ey
′ = Ex

′

(4a) My = My
′ Ey = Ey

′

(3b) else (Sx = 1) My
′ = 2−Mx

′
Ey
′ = −Ex

′

(4b) if (My
′ = 0.5) My = 2 ·My

′ Ey = Ey
′ − 1

(4c) else (My
′ < 0.5) My = 4 ·My

′ Ey = Ey
′ − 2

Figure 5: Range reduction for the elementary functions
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For the range reduction formulas, multiplication by 2b corresponds to a
b bit left shift, and division by 2b corresponds to a b bit right shift. Since
the input and output transformations for inverse, reciprocal and 2x do not
modify the bit values of the significand, ensuring correctly rounded results
on the input interval guarantees correctly rounded results for all inputs. For
the output transformation of log2(x), if Ex is nonzero, it is necessary to add
Ey
′ to the result and then normalize by a right shift of blog2(|Ey

′|)c bits.
Correct rounding is maintained if the normalized result is rounded using the
specified rounding mode. If Ex is equal to zero, leading zeros may appear
in log2(Mx

′) which leads to a loss of precision. Since 1 ≤ log2(Mx
′)

Mx
′−1 < 2

computing this value, instead of log2(Mx
′), eliminates the leading zeros. In

the next cycle, this result is multiplied by the normalized value of (Mx
′− 1)

and the exponent is adjusted to account for the normalization of (Mx
′− 1).

5 Hardware designs

This section presents hardware designs for elementary function evaluation,
along with their area and delay estimates. Our hardware designs for eval-
uating the elementary functions are similar to the designs discussed in [5]
and [20]. Our designs, however, make use of specialized multipliers, multi-
operand adders, and squaring circuits which are designed for elementary
function approximation. In addition, the size of the table-lookup and the
size of the arithmetic units have been tailored to minimize the hardware
requirements, while still guaranteeing correct rounding of the elementary
functions. The hardware designs presented in [5] and [20] do not guarantee
correct rounding.

Once the input transformation has been performed, a polynomial ap-
proximation is computed on the input interval in three steps:

(1) Obtain the coefficients ai(xm) and the powers xil.

(2) Compute the terms ai(xm) · xil.

(3) Sum together the terms from Step 2.

The terms in the approximation are independent of one another, and are
generated in parallel. They are then summed together with a high-speed,
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multi-operand adder. Figure 6 shows a block diagram for a polynomial
approximation of degree n.

Figure 6: Block diagram of an elementary function generator

To reduce the hardware complexity and area requirements of the ele-
mentary function generator, special purpose parallel multipliers and a high-
speed, multi-operand adder are designed which take advantage of the char-
acteristics of the polynomial approximations. Since the xil’s are guaranteed
to be positive and the ai’s can be either positive or negative, each term is
computed with an n-bit by m-bit multiplier in which the multiplicand is a
two’s complement number and the multiplier is always positive. The partial
products for this multiplier are shown in Figure 7. To avoid sign extension,
the sign bit of each partial products is complemented and a one is added to
the N -th column. This is similar to the method of sign extension presented
in [16]. As developed in [17] by Wallace, pseudo adders are applied in par-
allel to reduce the partial products to two numbers whose sum is equal to
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the product of the two inputs. The resulting two numbers are then added
together with a carry look-ahead adder to form the product. This method
of multiplication yields delays that are proportional to the logarithm of the
size of the input values.

Figure 7: Partial products of a parallel N -bit by M -bit multiplier

The multi-operand adder sums together two’s complement numbers. The
high order terms in the approximation will have leading ones or zeros. Sign
extension of these terms is performed as shown in Figure 8, where W, X,
Y, and Z are the four terms to be added. For a cubic approximation W, X,
Y, and Z correspond to a3 · x3l , a2 · x2l , a1 · xl, and a0, respectively. A par-
allel reduction process, followed by carry look-ahead addition, is employed
to compute the result. Instead of using extra hardware to add the ones
during the computation, they are added to the coefficient a0 when its value
is originally determined.

Figure 8: Two’s complement multi-operand adder
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An alternative to the design shown in Figure 6 is to merge the multi-
plications and their summation. With this approach, only a single carry
look-ahead adder is needed and the overall delay and area are reduced. Im-
plementations of merged arithmetic and a discussion of its advantages are
given in [18].

The amount of hardware required to obtain exactly rounded results for
the four functions was determined through computer simulation. The simu-
lation first determines the coefficients of the Chebyshev series approximation
for each subinterval. It then simulates the computation of each function for
all values on the input interval and adjusts the coefficients using the al-
gorithm presented in Section 3. For the hardware requirements shown in
this section, the correctly rounded value of the function is determined by
rounding the IEEE double precision value of the function using round to
nearest even. Similar results are expected for the other rounding modes.
The simulation was performed for numbers with 16 and 24 bit significands
using linear, quadratic and cubic approximations.

The hardware requirements for each design are given in Table 1. For the
multipliers, the number of bits in the multiplicand and multiplier are given,
and the number of bits in the rounded product is shown in parenthesis.
The number of input bits and output bits is given for the Square and Cube
circuits. For the multi-operand adder, the number of bits in each of the
inputs is given. The lengths of the coefficients and the memory requirements
are shown in Table 2.

Approx. Mult1 Mult2 Mult3 Square Cube Adders
linear(16) 15× 5(16) 24, 16

quad(16) 19× 8(21) 12× 10(14) 8(10) 24, 21, 14

cubic(16) 22× 10(23) 17× 16(18) 12× 12(13) 10(16) 10(12) 25, 23, 18, 13

linear(24) 21× 6(22) 36, 22

quad(24) 31× 12(33) 19× 16(21) 12(16) 40, 33, 21

cubic(24) 35× 15(37) 27× 24(29) 18× 14(20) 15(24) 14(14) 41, 37, 29, 20

Table 1: Hardware requirements for correctly rounded results
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Coefficient lengths Table size
Approx. a0 a1 a2 a3 Words Bits/word Total bits
linear(16) 24 15 6656 39 253.5 K
quad(16) 24 19 12 832 55 44.7 K
cubic(16) 25 22 17 12 208 76 15.4 K
linear(24) 36 21 851, 968 57 46.3 M
quad(24) 40 31 19 17, 408 90 1.49 M
cubic(24) 41 35 27 18 1, 920 121 226.9 M

Table 2: Memory requirements for correctly rounded results

Delay and area estimates for implementing the four functions are shown
in Figures 9 and 10. These estimates are based on data from a 1.0 micron
CMOS standard cell library [19], and do not take into account the delay
and area needed to perform range reduction. The estimates for obtaining
correctly rounded results are in black. The cubic-1 estimates are for an ele-
mentary function generator in which x3l is obtained by a table look-up on xl.
For the estimates corresponding to cubic-2, x3l is computed by multiplying
xl by x2l . The cubic-1 design uses more area, but has shorter delay time than
the cubic-2 design. As the number of terms in the approximation increases,
the area required for the table look-up decreases, while the area needed for
the multipliers and the multi-operand adder increases.

For the numbers with 16 bit significands, the quadratic approximation
requires the lowest area, while the linear approximation has the lowest delay.
For numbers with 24 bit significands, the cubic-2 approximation requires the
lowest area and the quadratic approximation has the lowest delay. The linear
approximation cannot be practically implemented for numbers with 24 bit
significands due to its huge memory requirements. If the delay-area product
is used as the design criterion, then the quadratic and cubic-2 approxi-
mations are the best designs for numbers with 16 and 24 bit significands,
respectively. The delay-area product for each design is shown in Figure 11.
In comparison, a 24 by 24-bit multiply in the same technology has a de-
lay of 34 ns, requires an area of 16 mm2 and has an delay-area product of
544 ns ·mm2.
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Figure 9: Delay estimates

Figure 10: Area estimates
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Figure 11: Delay ∗ area estimates

Correct rounding produces approximations with a maximum error of one
ulp for the directed rounding modes and half an ulp for round to nearest.
If the maximum error is allowed to be two ulps, the delay is reduced by 5
to 30 percent and the area is reduced by 33 to 37 percent. These estimates
correspond to the shaded bars in Figure 9, 10, and 11. For approximations
which have a maximum error of two ulps, the best designs are obtained
with linear and quadratic approximations for numbers with 16 and 24 bit
significands, respectively.

6 Sufficient accuracy for exactly rounded re-
sults

This section presents a method for determining the accuracy that is sufficient
to guarantee exactly rounded results. The results presented here are used to
show the advantages that are realized by adjusting the coefficients, instead
of using a traditional Chebyshev series approximation.
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For most elementary functions there is no known theoretical method to
determine in advance the accuracy of the pre-rounded result which is re-
quired to guarantee that the final answer will be exactly rounded. This
problem is known as the Table Maker’s Dilemma. For example, suppose
the value of a function f(x) when computed to 4 bits is .00102. It cannot
be determined whether the 3 bit exactly rounded result should be .0012 or
.0102. If f(x) computed to 5 bits is .001002, the 3 bit exactly rounded re-
sult still cannot be determined. For transcendental functions, an arbitrary
number of accurate bits may need to be computed before it can be deter-
mine whether f(x) is .00100 . . . 001XXX or .000111 . . . 111XXX. Due to this
problem [1] and [3] claim that it is not practical to require that the results of
elementary functions are exactly rounded. As described below, however, the
accuracy which is sufficient to guarantee exact rounding can be determined
analytically for a given floating point format.

To ensure exact rounding for the elementary functions, it is sufficient to
guarantee the following: (1) the pre-rounded result is less than 0.5 ulps from
the exactly rounded value of the function and (2) the pre-rounded result is
rounded using round to nearest. If f(x) is the exact value of the function
and p(x) is the value of the pre-rounded result, the following statements
holds:

IF |p(x)− f(x)| < 0.5 · ulp− |[f(x)]p − f(x)| THEN
|p(x)− [f(x)]p| < 0.5 · ulp

AND
[p(x)]p = [f(x)]p (14)

where [x]p is the value of x rounded to p bits using round to nearest. Thus,
if the distance between the pre-rounded result and the exact value of the
function is less than Y (x), where

Y (x) = 0.5 · ulp− |[f(x)]p − f(x)| (15)

exact rounding is guaranteed. This is equivalent to requiring that f(x) is
closer to p(x) than it is to the midpoint of the two nearest floating point
numbers. Figure 12 illustrates this requirement.

Based on the previous discussion, the accuracy in the pre-rounded result
which will guarantee exact rounding can be determined by finding the min-
imum value of Y (x) for all numbers on the input interval. The minimum
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Figure 12: Exactly rounded answers

value of Y (x) for floating point numbers with 16 and 24 bit significands,
along with the required number of accurate bits in the normalized, pre-
rounded result is shown in Table 3. The number of accurate bits required is
d− log2(Y (x)min)e.

16 bit significand 24 bit significand
Function Y (x)min Accurate bits Y (x)min Accurate bits
reciprocal 2.33 · 10−10 32 3.56 · 10−15 48

square root 2.33 · 10−10 32 3.56 · 10−15 48

log2(x) 3.69 · 10−11 35 6.11 · 10−16 51

2x(x ≥ 0) 2.37 · 10−9 29 6.21 · 10−15 48

Table 3: Required accuracy for 16 and 24 bit numbers

It is important to note that the condition given in (14) is sufficient, but
not necessary to ensure exactly rounded results. If the distance between the
pre-rounded result and the rounded value of the function is less than the
distance between the exact value of the function and the exactly rounded
value of the function, then exactly rounded results will be obtained even if
(14) does not hold.

Table 4 shows the maximum error and the minimum number of accurate
bits in the pre-rounded result for each of the designs. Comparing these
values to those given in Table 3, shows that our algorithm requires much less
accuracy in the pre-rounded result. This is because it uses knowledge about
the exactly rounded result to adjust the coefficients. For example, Table 3
shows that for reciprocal, 48 bits of accuracy are sufficient to guarantee
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exactly rounded results for floating point numbers with 24 bit significands.
However, our algorithm requires only 35, 39, and 40 bits of accuracy for the
linear, quadratic and cubic designs, respectively.

reciprocal square root log2(x) 2x

Approx. Max error Bits Max error Bits Max error Bits Max error Bits
linear(16) 3.12 · 10−7 22 1.32 · 10−7 23 1.64 · 10−7 23 1.32 · 10−7 23

quad(16) 1.23 · 10−7 23 9.14 · 10−8 24 7.75 · 10−8 24 8.52 · 10−9 24

cubic(16) 4.36 · 10−8 25 2.58 · 10−8 26 2.36 · 10−8 26 3.22 · 10−8 25

linear(24) 2.90 · 10−11 35 2.01 · 10−11 36 1.90 · 10−11 36 1.88 · 10−11 36

quad(24) 2.94 · 10−12 39 3.45 · 10−11 39 3.83 · 10−12 38 2.40 · 10−12 39

cubic(24) 1.55 · 10−12 40 9.45 · 10−13 40 9.62 · 10−13 40 9.15 · 10−13 40

Table 4: Maximum error and minimum number of accurate bits

Estimations were made to determine the overall delay and area required
to produce exactly rounded results with a Chebyshev series approximation
in which the coefficients have not been adjusted. For numbers with 16 bit
significands, the design for a quadratic approximation has a delay of 65 ns
and an area of 39 mm2. Compared the design in which the coefficients are
adjusted, this design has an increase in delay of 27 percent and an increase
in area of 95 percent. For numbers with 24 bit significands, the design for
a cubic approximation has a delay of 128 ns and an area of 165 mm2. This
is an increase in delay of 24 percent and an increase in area of 136 percent,
compared to the cubic-2 approximation with adjusted coefficients.

7 Conclusion

A parallel algorithm has been presented which produces correctly rounded
results for the functions of reciprocal, square root, 2x, and log2(x). It is
useful for interval arithmetic, because it allows directed rounding of the
elementary functions. Area and performance estimates illustrate the feasi-
bility of obtaining exactly rounded results with special purpose hardware.
By adjusting the coefficients based on the error in the original approxima-
tion, correctly rounded results are obtained with much less hardware than
designs which use traditional Chebyshev series approximations. Allowing
the results to have a maximum error of 2 ulps decreases the area and delay,
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and is suitable for applications in which stringent control of the error is not
required.
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