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Precise Zeros of Analytic Functions
Using Interval Arithmetic

Mark J. Schaefer

An interval arithmetic algorithm for the computation of the zeros of an analytic
function inside a given rectangle is presented. It is based on the argument
principle in the set of complex numbers C, is guaranteed to converge, and
delivers its answers to a prespecified accuracy. The precision of computation
is varied dynamically to maximize efficiency.

Вычисление точных нулей
аналитических функций с помощью

интервальной арифметики

М. Й. Шефер

Предлагается алгоритм на базе интервальной арифметики, вычисляющий
нули аналитической функции на заданном прямоугольнике. Данный
метод, основанный на принципе аргумента на множестве комплексных
чисел C, гарантированно сходится и дает результаты с заранее заданной
точностью. Разрядность вычислений может динамически изменяться с
целью достижения максимальной эффективности.
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1 Introduction

We develop a practical algorithm for the computation of all zeros of a func-
tion f inside a given rectangle, to an accuracy requested by the user at the
start of the program. The function f must be analytic inside the rectangle
and on its boundary, and must not have any zeros on the boundary. Further-
more, we assume that values of f and its derivative can be computed to any
desired (finite) accuracy, which for instance holds true when f is an analytic
elementary function. By this we mean a function expressed using a finite
number of the binary operations of addition, subtraction, multiplication,
and division, the unary operations defined by unary minus, the exponential
function, and the trigonometric and hyperbolic functions, and basic terms
consisting of complex constants and the identity term z (cf. [1], p. 153).

It is well known that interval methods are generally not capable of iden-
tifying a zero of multiple order as such, regardless of the precision of com-
putation. For this reason, a zero of order m is printed m times and hence
produces the same result as a tight cluster of m first-order zeros whose
printed coordinates at the requested accuracy are identical. Such a cluster
would eventually break up if the desired accuracy were chosen sufficiently
large, but for a zero of multiple order we can never verify multiplicity.

The core of the algorithm consists of a routine for determining the num-
ber of zeros of f (counting multiplicities) inside a rectangle and is based on
the argument principle obeyed by analytic functions. The evaluation of f
at intervals along the boundary of such a rectangle plays a crucial part in
this routine. We test a rectangle for zeros. If it is known not to contain
any zeros, it is discarded. Otherwise, we bisect it and put the subrectangles
on a list for later processing. Our general strategy has two major charac-
teristics. First, it avoids non-termination from cases where the number of
zeros cannot possibly be determined, which happens if a zero lies directly
on the boundary of a rectangle. Second, it sets the precision sufficiently
high to avoid the accumulation of too many rectangles for which the num-
ber of contained zeros is not determined due to a lack of precision, since
this would jeopardize convergence of the algorithm. A detailed description
of the algorithm follows in Sections 2 and 3.

The algorithm is designed for a variable-precision interval arithmetic
whose precision of computation can be adjusted dynamically. In Section 4
we prove convergence of the algorithm, assuming that it is carried out using
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this kind of arithmetic and that memory constraints can be ignored. Range
arithmetic (see [1] and [2]) belongs to this category of arithmetic and was
used to implement the algorithm. We mention in passing that our recent
implementation of range arithmetic [2] assumes that programs based on it
are written in the programming language C++. Section 5 concludes with
some numerical examples used to test the algorithm in several different ways.

The general approach here is similar to that of a bisection algorithm
presented by G. Collins and W. Krandick for infallible polynomial complex
root isolation [6]. Both algorithms compute winding numbers to test rect-
angles for enclosed zeros of a function f or polynomial p, but their approach
is based on exact methods from computer algebra and cannot easily be ex-
tended to analytic functions. Also related to our work is an older paper
by P. Henrici and I. Gargantini for the simultaneous approximation of all
zeros of a polynomial [7], tested in floating-point arithmetic but analyzed
assuming the use of exact arithmetic.

2 Description of the basic algorithm

We first describe a basic version of the algorithm, followed in the next sec-
tion by three enhancements to make it more efficient. The extent of these
improvements will be demonstrated experimentally in Section 5.

Initially, the algorithm starts with just one rectangle RS which is entered
by the user and referred to below as the starting rectangle. We first attempt
to obtain the number of zeros contained in RS following a procedure de-
scribed below. It is clear, however, that this attempt will fail if a zero of f
lies on the boundary of RS or even just very close to it; a sufficiently high
precision setting would resolve the latter case, but we do not usually know
which case prevails. In the Introduction we assumed that f has no zeros
on the boundary of RS, but from a practical point of view, it is certainly
possible that the user has inadvertently entered a starting rectangle which
violates this assumption. The starting rectangle is special in the sense that
the algorithm cannot proceed in a sound way unless it has verified that no
zeros of f lie on the boundary of RS, since in part the problem is to locate
only zeros inside this rectangle. Therefore, if we fail to determine the num-
ber of zeros inside RS, the user is given a choice between trying again in
higher precision or else reentering a different rectangle.
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We permit the coordinates of RS to be entered in the form of arithmetic
expressions

(
such as

√
2 + i ∗ cos(π/8)

)
, which means that their interval

representations may have positive width. Of course these widths decrease
as the precision at which the associated expressions are evaluated increases.
Therefore, a renewed attempt to compute the number of zeros inside RS

at higher precision always starts with a reevaluation of such expressions.
Once the count for the number of zeros in RS is successful, the coordinates
of the two corner points used to represent RS are assigned the midpoints
of their respective interval values. All subsequent rectangles will also have
exact coordinates, by which we mean intervals of width zero. The bisection
of rectangles is done in exact arithmetic to obtain well-defined subrectangles
independent of the current precision.

The most important component of the algorithm is the routine that de-
termines the number of zeros contained inside a rectangle R and is based on
the well known argument principle, which for completeness’ sake is repeated
here:

Argument Principle. Let S be a simple closed contour described in the
positive sense, and let f be a function which is analytic inside and on S.
Also, let f have no zeros on S. Then

1

2π
∆S arg f(z) = N

where N is the number of zeros of f , counting multiplicities, interior to S.
The term 1

2π∆S arg f(z) represents the number of times the point f(z) winds
around the origin in the image plane as z follows S once in the positive di-
rection, and is often called the winding number of f with respect to S. For
a proof of this theorem (and more general versions of the argument princi-
ple which take into account poles of f) see any standard text on complex
variables, such as [5].

The precision of computation is not varied during the execution of the
zero counting routine, but only in between separate calls, according to a
scheme explained later in this section. The routine may return unsuccess-
fully, or it may report a positive number of zeros in R, or no zeros in R. In
the latter case, we may safely discard R. Otherwise, we bisect R and put
the resulting subrectangles on a list where they await further processing. To
better explain the details of the zero counting routine, we will illustrate the
individual steps with the following simple example: f(z) = z2−(1+2i)z+ i
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and R defined by the four corner points: A = −i, B = 2 − i, C = 2 + i,
and D = i. The function f has one zero inside R.

Our method begins by computing (interval) values of f at the corners
of R and classifies each value according to its location: entirely within one
of four quadrants, overlapping one of four half-axes (but not zero), or over-
lapping zero. In general, nine possibilities exist for each value, the last of
which causes an unsuccessful return to the calling function because a func-
tion value overlapping zero prevents us from resolving the winding behavior
of f with respect to R. An unsuccessful return will also result in the rare
event that the computation of a value itself fails. In Section 4 we shall prove
that this cannot occur provided the precision is sufficiently high. In our ex-
ample, f(A) = −3 + 2i is contained in the interior of the second quadrant,
f(B) = −1 − 6i in the interior of the third quadrant, and f(C) = 3 and
f(D) = 1 overlap the positive real axis.

Next, for each side L of R we consider the relative locations of the values
of f at L’s two endpoints to determine if there exists a rectangle covering
these values with sides parallel to the coordinate axes which does not contain
the origin. In the example, this is true only for sides AB and CD. If no such
rectangle exists, we cannot hope to enclose the image f(L) in a rectangle not
containing zero; this is a consequence of inclusion monotonicity of interval
arithmetic. On the other hand, if such a rectangle exists, an attempt is
made to compute a rectangle CL enclosing f(L), using the mean value form
of interval extensions:

CL = f
(
mid(L)

)
+ f ′I(L)

(
L−mid(L)

)
.

Here mid(L) refers to the midpoint of L, and f ′I is an interval extension of
f ′. It is interesting to note that although the mean-value theorem does not
carry over to the complex domain, the mean-value scheme for computing
interval extensions does, provided the function to be extended is analytic.
The proof is a simple application of the Cauchy-Riemann equations and is
omitted. For our example, using the natural extension of f ′ for f ′I (see [8],
Section 3.3), we obtain for side AB the interval CAB = [−6, 0] + i[−6, 2]
and for side CD the interval CCD = [−2, 4].

In general, the attempt to compute CL may fail: for example, we might
encounter a division by a zero-overlapping interval. In Section 4 we show
that this will not occur for sufficiently high settings of the precision and
sufficiently short intervals. In any case, if a rectangle CL enclosing f(L)
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has been determined and does not cover the origin, then the net amount by
which f(z) winds around the origin as z moves along L is well defined by the
previously computed values of f at the endpoints of L. In all other cases, L
is recursively bisected in exact arithmetic, and the above computations for
each half are repeated. This includes the computation of the value of f at
the midpoint of L, the analysis of its location, and possibly an unsuccessful
return to the calling function in case this value overlaps zero. If the net
winding amounts for the two halves of L can be determined (if necessary
through deeper recursion) they are added together to obtain the net winding
amount for L itself. Finally, the net winding amounts for the four sides of
R are summed to obtain the winding number for R.

Returning to our example, we see that since both CAB and CCD overlap
the origin, it is necessary to bisect all four sides of R. Let MAB = 1 − i,
MBC = 2, MCD = 1 + i, and MDA = 0 be the midpoints of the four sides
of R. We find f(MAB) = −3 − 2i, f(MBC) = 2 − 3i, f(MCD) = 1, and
f(MDA) = i. Among the eight subintervals now under consideration, only
that with endpointsD andMDA cannot possibly yield a rectangle containing
the image f(DMDA) without also containing zero. Furthermore, for each
of the other seven intervals, the mean-value scheme produces a rectangle
not overlapping zero. For example, CAMAB

= [−3.75,−2.75] + i[−2, 2].
The interval from D to MDA is split once more. Let MDMDA

= 1
2i be the

midpoint between D and MDA, and note that f(MDMDA
) = 3

4 + 1
2i. The

two new subintervals DMDMDA
and MDMDA

MDA are eligible for the mean-
value test. Applying this test to each gives a rectangle not overlapping zero
in both cases. It now follows from the locations of f(A), f(MAB), f(B),
f(MBC), f(C), f(MCD), f(D), f(MDMDA

), and f(MDA) that f has exactly
one zero in the interior of R.

In the general case it is necessary to enforce some kind of limit on the
maximum permissible depth of recursive bisections of boundary elements,
and to make this limit dependent on the current precision of computation.
Given a particular precision setting, we do not obtain value intervals of ar-
bitrarily small width by supplying argument intervals of sufficiently small
width. Therefore, it is not useful to allow the argument intervals to become
arbitrarily small without consideration of the current precision. In our im-
plementation the depth is (somewhat arbitrarily) limited by the value of the
precision setting as expressed in decimal digits. If this limit is reached, the
result is once more an unsuccessful return to the calling function. This com-
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pletes our discussion of the zero counting routine which we summarize in
the following pseudo-code program. The program contains three functions
using a C-like syntax (local declarations are omitted).

/* for each function, a return value of FAIL indicates failure */
/* first, two auxiliary functions */

int function locate_function_value(point P)
{

attempt to compute f(P);
if (computation of f(P) failed) return FAIL;
if (f(P) overlaps 0) return 0;
if (f(P) overlaps positive real axis) return 1;
if (f(P) is contained in first quadrant) return 2;
if (f(P) overlaps positive imaginary axis) return 3;
if (f(P) is contained in second quadrant) return 4;
if (f(P) overlaps negative real axis) return 5;
if (f(P) is contained in third quadrant) return 6;
if (f(P) overlaps negative imaginary axis) return 7;
if (f(P) is contained in fourth quadrant) return 8;

}

int function winding_amount(interval I, integer f1, integer f2)
/* f1 and f2 are the locations of the values of f

at the endpoints of I */
{

if (f1 and f2 can be covered by a rectangle not overlapping 0) {
attempt to compute C(I); /* mean-value estimate of f(I) */
if (computation of C(I) succeeded

&& C(I) does not contain 0)
return net winding amount for I;
/* example: f1 is 2, f2 is 4

=> net winding amount for I is 2 */
}
if (bisection limit reached) return FAIL;
P = midpoint(I);
loc = locate_function_value(P);
if (loc == FAIL || loc == 0) return FAIL;
I1 = one_half(I); I2 = other_half(I); /* split interval I */
wind1 = winding_amount(I1, f1, loc); /* recursive call */
wind2 = winding_amount(I2, loc, f2); /* recursive call */
if (wind1 == FAIL || wind2 == FAIL) return FAIL;
return (wind1 + wind2);

}
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int function zero_count(rectangle R)
/* use of appropriate indices for array loc[] is assumed below */
{

for each corner P of R {
loc[*] = locate_function_value(P);
if (loc[*] == FAIL || loc[*] == 0) return FAIL;

}
winding_number = 0;
for each side L of R {

wind = winding_amount(L, loc[*], loc[*]); /
if (wind == FAIL) return FAIL;
winding_number += wind;

}
return (winding_number / 8);

}

We now discuss the question of when to increase the precision of compu-
tation. Initially, the precision is set at the equivalent of 20 decimal digits,
but this is more or less arbitrary, and other settings would also work. In
the course of testing and bisecting rectangles, the number nr of rectangles
awaiting further processing can grow formidably. This slows down the algo-
rithm and often indicates that the current precision of computation is too
low, because a rectangle for which the number of contained zeros is not de-
termined (either because of insufficient precision or because a zero lies on
the boundary) is split in two and each half is stored for later processing,
even if in reality such a rectangle covers no zeros. Let nz be the number
of zeros known to be covered by all rectangles awaiting further processing.
Periodically, nr and nz are compared and the precision increased (somewhat
arbitrarily) by the equivalent of eight decimal digits if nr > 4 ∗ nz, since in
that case at least one rectangle exists for which the number of zeros cov-
ered (namely, none) could have been obtained had the precision been higher.
This is because in the worst case, each zero lies on the coincident corners
of four adjacent rectangles, and a rectangle covering no zeros can always be
verified to have this property provided the precision is sufficiently high (this
is proved in Section 4).

From time to time, the remaining rectangles are inspected to determine
whether they still represent a connected region. If not, and if the mutually
disjoint regions can be enclosed within nonoverlapping rectangles, the origi-
nal list is split into two or more independent lists, one each for each isolated
region. For each new list, the number of zeros covered by its rectangles is
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determined by calling the zero counting routine for a surrounding rectangle
whose boundary is free of zeros, and by increasing the precision if repeated
calls prove necessary. Of course, these new lists may themselves split up at a
later time. If the region covered by the rectangles of a particular list becomes
sufficiently small, the associated rectangles need no longer be processed.

3 Improvements to the basic algorithm

In this section we discuss three enhancements of the basic algorithm as pre-
sented in the previous section. The beneficial effect of these improvements
will be demonstrated in Section 5.

The first improvement is made possible by recognizing that the explicit
calculation of CI according to the mean value scheme is frequently not re-
quired. Actually, the only reason for computing CI lies in the hope of pro-
ducing a rectangle which contains f(I) but not zero. We may carry out a
monotonicity test which often indicates that such a rectangle must exist.
This test takes advantage of the fact that in our case the interval I is al-
ways one-dimensional and either horizontal or vertical, and that a rectangle
already exists that contains the values of f at the endpoints of I but not
zero (otherwise I would have been bisected). We illustrate the test for a
horizontal interval I. Analogous results are obtained for vertical intervals
by using the Cauchy-Riemann equations. Let I = [a+ ic, b+ ic] with a < b,
f(z) = u(x, y) + iv(x, y), and f ′I(I) = U + iV . If neither U nor V contain
zero, then the monotonicity of u and v over I implies that f(I) is contained
in a rectangle with diagonal corner points f(a + ic) and f(b + ic). This
rectangle does not contain zero. Hence CI need not be obtained. If 0 /∈ U
but 0 ∈ V , we may still be lucky. In that case, f(I) is contained in a rectan-
gle whose left side coincides with x = min

(
u(a, c), u(b, c)

)
, and whose right

side coincides with x = max
(
u(a, c), u(b, c)

)
. Therefore, if both f(a + ic)

and f(b+ic) lie on the same side of the imaginary axis, this rectangle cannot
contain zero, and again CI need not be obtained. Similarly, if 0 ∈ U but
0 /∈ V , then if both f(a+ ic) and f(b+ ic) lie on the same side of the real
axis, it follows that f(I) can be enclosed in a rectangle not containing zero.
Again CI need not be obtained.

The second improvement stems from a better organization and storage
of results to avoid repeating identical computations. Each rectangle R main-
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tains four pointers to binary trees that store the results of recursive interval
bisections along the four sides of R, i.e. the net winding amounts for all the
subintervals processed. The net winding amount of f for a subinterval I is
stored in terms of an integer value that counts the net number of times f(z)
enters a new quadrant or crosses a new half-axis as z moves from one end of
I to the other. Two adjacent rectangles will share a tree if their overlapping
sides are of equal length; otherwise the shorter of the two will point to a
subtree of the other’s tree. This change in the algorithm introduces the fol-
lowing slight subtlety: results stored from a time when the precision setting
was less than the current value may have to be adjusted. Specifically, if
one of the (interval) values of f at the endpoints of I was formerly found
to overlap an axis, it may no longer do so. The value must be recomputed
and reclassified. If the result is different from what it used to be, the net
winding amount for I needs to be incremented or decremented by one.

The third improvement comes from applying Newton’s method when
working with a list whose rectangles cover only a single (first order) zero.
An attempt is made to locate the zero rapidly. Once the iteration appears to
have converged sufficiently, we attempt to verify its location by surrounding
the point in question by a small square S and counting zeros inside. The
size of S is chosen to satisfy the user’s accuracy requirements. During the
iteration of Newton’s method, the precision may have to be repeatedly in-
creased. What is actually done is to compare the width of the most recently
computed iterate with the size of the future square S. Unless the former
is an order of magnitude smaller than the latter, the precision is increased
(in our program by the equivalent of four decimal digits, but this amount is
somewhat arbitrary). The new iterate is subsequently assigned its current
midpoint value. The iteration is also checked to ensure that it stays in the
general vicinity of the region made up by the rectangles in this list. If it
‘runs off’, bisection is resumed for a while until the next application of New-
ton’s method. Whenever the program returns to the bisection strategy, the
precision is reset to its former value at the point when the Newton iteration
first began.

4 Proof of convergence

We proceed to prove convergence of the basic algorithm as presented in
Section 2. Specifically, we prove the following: let η > 0 be given, define
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Uη as the union of the open disks of radius η centered on the zeros of f
located inside the starting rectangle RS, and let Kη = RS − Uη. Let a
rectangle R ⊂ Kη be given, and assume that the precision of computation
is sufficiently high. Then the verification that R contains no zeros of f will
succeed.

We begin with a few definitions to establish the properties needed of a
variable-precision interval arithmetic system in order to prove convergence
of the algorithm. In the following, p and i are integer indexes with values
greater than or equal to one. We will work with the set of complex intervals
(rectangles) I(C) and its associated topology (see [3], Chapters 5 and 6).

Definition. Given z ∈ C, let
(
I
(i)
z

)
denote any nested sequence of complex

intervals containing z such that width
(
I
(i)
z

)
→ 0 as i→∞.

Definition. Let w be a continuous complex-valued function defined on an
open domain D ⊂ C. A family of interval approximations for w, denoted(
w

(i)
I

)
, is a sequence of functions with domain in I(C) and range in I(C)

which satisfies the following properties:

• (1) Given z ∈ D, a sequence
(
I
(i)
z

)
, and p sufficiently large, then

w
(p)
I

(
I
(p)
z

)
exists, w(z) ∈ w

(
I
(p)
z

)
⊂ w

(p)
I

(
I
(p)
z

)
, and

lim
p→∞

width
(
w

(p)
I

(
I
(p)
z

))
= 0 .

• (2) The functions in
(
w

(i)
I

)
are inclusion monotonic. Given complex

intervals I1z ⊂ I2z ⊂ D, integers i1 ≥ i2 ≥ 1, and the existence of
w

(i2)
I (I2z), then

w
(i1)
I (I1z) exists, and w(i1)

I (I1z) ⊂ w
(i2)
I (I2z) .

Informally, the idea is to think of
(
w

(i)
I

)
as being defined by some variable-

precision interval arithmetic routine designed to approximate an interval ex-
tension wI of w, where i equals the precision setting. Note that the functions
in
(
w

(i)
I

)
need not be true interval extensions of w in the sense of Moore (see

[8], Section 3.3), as we do not require w(p)
I (z) = w(z) for z ∈ D and any

p ≥ 1 (here we use the same notation for degenerate intervals and corre-
sponding complex numbers). Indeed, in practice it is often impossible to
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compute exact function values. Also note that we do not in general assume
the existence of w(p)

I (Iz) for any interval Iz ⊂ D and any p ≥ 1. In practice,
if Iz is close to a singularity of w and p small, this computation could fail
even if wI(Iz) exists. Following the next definition, we will state a theorem
which can be viewed as an extension of Dini’s Theorem from real analysis
(see [4], p. 173), and which is key to proving convergence of the bisection
algorithm.

Definition. Let Lp be a lattice of points in C whose real and imaginary
coordinates can be expressed exactly with mantissas of at most p decimal
digits, and with no restriction on the size of the exponents. Given any z ∈ C,
the interval Z(p) 3 z represents an interval defined by four (distinct) lattice
points in Lp. The interval’s sides are chosen as short as possible, but z must
be contained in the interior of Z(p).

Theorem. Let w be a continuous complex-valued function defined on an
open set D ⊂ C,

(
w

(i)
I

)
a family of interval approximations for w, and K a

compact set contained in D. On K define for p ≥ 1

r(p)(z) =

{
width

(
w

(p)
I

(
Z(p)

))
, if w(p)

I

(
Z(p)

)
exists

1, otherwise.

Then r(p) → 0 uniformly on K as p→∞.

Proof. First we show that for sufficiently large p , w(p)
I

(
Z(p)

)
exists for all z ∈

K. If this were not so, there would exist a sequence (zk) with accumulation
point z in K and an increasing sequence (mk) of positive integers such that
w

(mk)
I

(
Z

(mk)
k

)
never exists. Clearly, w(p)

I

(
Z

(p))must exist for sufficiently large
p, say p > p. Here we obtain a contradiction of inclusion monotonicity as
defined for families of interval approximations. Choose an integer i such that
mi > p and Z(mi)

i ⊂ Z
(p). Then w(mi)

I

(
Z

(mi)
i

)
must exist and be contained

in w(p)
I

(
Z

(p)).
We now restrict our attention to those values of p for which w(p)

I

(
Z(p)

)
exists for all z ∈ K. It is clear that

(
r(p)
)
is a monotone sequence that

converges pointwise to zero on K. Assume now that the convergence is not
uniform. Then there exist ε > 0 and sequences (zl) and (ml) such that
r(ml)(zl) > ε for all l. The sequence (zl) has an accumulation point in K,
call it z∗. This time note the fact that width

(
w

(p)
I

(
Z∗(p)

))
→ 0 as p→∞;



34 M. J. Schaefer

in particular, choose p∗ such that width
(
w

(p∗)
I

(
Z∗(p

∗)
))

< ε
2 . Again we

obtain a contradiction by choosing i such that mi > p∗ and Z(mi)
i ⊂ Z∗(p

∗),
for then

r(mi)(zi) = width
(
w

(mi)
I

(
Z

(mi)
i

))
≤ width

(
w

(p∗)
I

(
Z∗(p

∗))) < ε

2
.

Hence, the convergence must be uniform and our proof is complete.

To prove the convergence of the bisection algorithm, we now assume
that an algorithm can be specified which computes the values of a family
of interval approximations for f , and the values of another such family for
f ′. For example, this is possible when f belongs to the class of analytic
elementary functions mentioned in the Introduction. If f has open domain
D ⊃ RS, it follows from the previous Theorem that there exists a number
pη with the property that if p ≥ pη, then for any z ∈ Kη, f

(p)
I

(
Z(p)

)
exists,

has uniformly bound width, and does not overlap the origin. (The modulus
function |f(z)| is continuous and hence achieves a minimum positive value
on the compact set Kη.) In the algorithm, the input to f (p)I is always exact.
Since by inclusion monotonicity f (p)I (z) ⊂ f

(p)
I

(
Z(p)

)
, one cause for failure

of the zero counting routine has thus been eliminated.

The second cause relates to the computation of complex rectangles con-
taining the image f(I) for intervals I ⊂ RS, which in our algorithm is based
on the mean value scheme for intervals. These rectangles are computed
according to the formula

C
(p)
I = f

(p)
I

(
mid(I)

)
+ f ′I

(p)
(I)
(
I −mid(I)

)
where mid(I) denotes the midpoint of interval I ⊂ RS. It follows again
from the previous Theorem, now applied to the function f(z)−f ′(z)(z−z),
that there exist numbers qη and lη > 0 with the property that if p ≥ qη and
width(I) ≤ lη, then for any z ∈ Kη, C

(p)
I exists, has uniformly bound width,

and does not overlap the origin. This eliminates the other cause for failure
of the zero counting routine. Of course, the same argument could have
been used to prove convergence using the much less effective formula C(p)

I =

f
(p)
I (I). However, the mean-value formula has second order approximation

properties with respect to the smallest rectangle containing f(I) (see [3],
Chapter 3) and is especially useful for small intervals.
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5 Numerical examples

As mentioned in the Introduction, we chose the Range Arithmetic pack-
age [2] to implement this algorithm. The complete program, written in the
C++ programming language, is quite complex and consists of over 1000
statements. Much of the complexity is due to the improvements proposed in
Section 3 but, as is apparent from the data in Table 1, these enhancements
are necessary to get a program of greater practical value. The CPU times

Accuracy: 5 Starting Zeros CPU Times CPU Times
Function Rectangle Found Versions A / B / C Version D

NE: 2 + 2i

z20 + 1 SW: 0 + 0i 5 13.7 s / 9.4 s / 4.7 s 2.8 s
NE: 1 + i

5z20 − cos(z) SW: 1
10
− 1

10
i 5 43.9 s / 30.4 s / 15.4 s 7.4 s

NE: 1 + 4i

cosh(zez) SW: −1− i 5 123.6 s / 99.1 s / 44.2 s 24.8 s
NE: 3 + 2i

sin(z2) SW: −4− i 10 172.6 s / 105.1 s / 44.7 s 19.7
NE: 10 + 10i

sin
(

z2+π2

z+π(2i−3)

)
SW: −10− 5i 27 971.2 s / 799.3 s / 233.5 s 173.9 s

Table 1

were obtained on an Intel 80486 microprocessor (50 MHz) using Syman-
tec’s 32 bit ZORTECH C++ compiler (Version 3.1). Table 1 compares the
performance of four different versions of the algorithm: Version A is the
basic algorithm as described in Section 2, Version B is the basic algorithm
with monotonicity test, Version C adds to Version B the idea of shared bi-
nary trees, and Version D is the full-fledged version which also implements
Newton’s method. Next to each function appears the starting rectangle (its
northeast and southwest corner points), the number of zeros found in that
rectangle, as well as CPU times in seconds for each of the four versions. In
all cases shown, 5 correct decimal places were requested at the start of pro-
gram execution. When the same problems were run requesting 10 correct
decimal places instead of 5, versions A, B, and C required substantially more
time than before whereas version D required only slightly more time (except
for problem four). This is not surprising since only version D incorporates
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Newton’s method whereas the other three versions converge linearly to the
zeros. Notice also that problem four has a second order zero at the origin
which does not benefit from Newton’s method. The times for version D
when 20 correct decimal places were requested are shown in Table 2.

Accuracy: 20 Rectangles Memory Max/Ave Max/Ave CPU Times
Function Processed Required Depth Precision Version D

z20 + 1 64 10.9 KB 7 / 4.1 36 / 21.8 3.0 s

5z20 − cos(z) 51 8.3 KB 6 / 3.4 36 / 22.5 8.1 s

cosh(zez) 47 12.5 KB 8 / 4.4 40 / 22.1 26.5 s

sin(z2) 773 17.4 KB 8 / 2.1 52 / 29.5 32.7 s

sin
(

z2+π2

z+π(2i−3)

)
329 111.2 KB 19 / 6.3 40 / 20.4 176.2 s

Table 2
Table 2 also contains other data obtained when running version D on

the same five test cases and the same starting rectangles as before (these
rectangles and the numbers of zeros found were the same as in Table 1 and
are not repeated here). The table shows for each function the total number
of rectangles processed and the maximum amount of dynamically allocated
memory needed to hold the shared binary trees (in units of 1024 bytes). Also
shown are the maximum depth of recursive bisections that occurred during
a call to the zero counting routine and the average depth of recursive bisec-
tions. For the calculation of the latter two values, only those subintervals I
were considered for which it was determined that a rectangle exists which
contains f(I) but not zero. Also shown are the maximum precision of com-
putation and the average precision, obtained by averaging over time, in units
of decimal digits. The initial precision setting was always 20 decimal dig-
its. Two observations can be made: as one would expect, more complicated
functions (such as the fifth problem) require relatively small subintervals to
resolve the winding behavior, and multiple zeros require greater amounts of
high precision computations. The first of these observations is related to
the fact that complex intervals in the form of rectangles suffer from rapid
overestimation (see [9], Remarks to Chapter 1), while the second is a simple
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consequence of the algorithm’s slow convergence to multiple zeros on the
one hand, and the need for higher precison in the vicinity of a zero on the
other.

Actually, higher order multiple zeros often prove troublesome not only
because of slow convergence, but because of the frequent need for very fine
subdivisions of rectangle sides near such a zero. We illustrate this with the
example f(z) = z5−5z4+10z3−10z2+5z−1, which has a zero of order five
at z = 1, and w ∈ C a point whose distance from 1 is 10−2. Then |f(w)| =
10−10. If I is an interval containing w such that width(I) = 10−s, it is easy
to verify that width(CI) ≈ 10−2s, where CI is obtained using the mean value
form of interval extensions and Horner’s scheme to evaluate f and f ′I . The
aim is to get a rectangle CI which does not contain zero. Since f(w) ∈ CI ,
we can expect that s ≥ 5 will usually be necessary to achieve this. A
rectangle side containing w and of length 2 · 10−2 can then be expected to
require a bisection depth of − log2(10−5/(2 · 10−2)) ≈ 11. This is consistent
with the observation that this function required an average bisection depth
of 11.1 to verify that the input square centered at z = 1 and with sides of
length 2 · 10−2 contains 5 zeros (counting multiplicities). The same problem
took 387 kilobytes of dynamic memory and 48 seconds computing time. It
is clear that the algorithm is inadequate for the computation of such zeros.
Of course in the case of polynomials, a Euclidean-type algorithm could have
been used to eliminate multiple zeros at an early stage, but this was not done
because our algorithm is not primarily designed for polynomials and more
efficient and specialized techniques exist for handling them (for example, see
[1], Chapter 6 and [6]).

The data we obtained is of course influenced by our choice of variable-
precision interval arithmetic (range arithmetic). Different interval arithmetic
implementations differ in their representation of intervals (e.g., midpoint or
endpoint representation) and in the balance they reach between efficiency
of arithmetic operations and optimality of resulting interval width. Nev-
ertheless, we expect that the general behavior of our algorithm would be
similar when programmed on the basis of another interval implementation.
In this context it is interesting to note that even within range arithmetic
there is the option of representing real intervals with two ranged numbers
as opposed to one and complex intervals with four ranged numbers instead
of two, with the benefit of sharper intervals for the results of arithmetic op-
erations, especially in the case of intervals whose width is of the same order



38 M. J. Schaefer

of magnitude as their distance from the origin. Naturally, the operations
on such intervals are more expensive than on ordinary ranged numbers, not
unlike the difference between operations on intervals represented by pairs
of floating point numbers and on single floating point numbers. We tested
a version of our algorithm (version E) in which the mean-value calculation
was implemented using the more expensive interval representation. In some
of the example problems, this resulted in reduced dynamic memory require-
ments due to shorter binary trees and different CPU times (both shorter
and longer) when compared to version D. We believe that overall version
E is slightly preferable to version D, but more examples would have to be
considered to possibly establish a clear preference of one over the other.

References

[1] Aberth, O. Precise numerical analysis. Wm. C. Brown Publishers,
Dubuque, Iowa, 1988.

[2] Aberth, O and Schaefer, M. J. Precise computation using range arith-
metic via C++. ACM Transactions on Mathematical Software (Decem-
ber 1992).

[3] Alefeld, G. and Herzberger, J. Introduction to interval computations.
Academic Press, New York, 1983.

[4] Bartle, R. G. The elements of real analysis. John Wiley & Sons, New
York, 1976.

[5] Churchill, R. V., Brown, J. W., and Verhey, R. F. Complex variables
and applications. McGraw-Hill, New York, 1974.

[6] Collins, G. E. and Krandick, W. An efficient algorithm for infallible
polynomial complex root isolation. Proceedings of ISSAC’92.

[7] Henrici, P. and Gargantini, I. Uniformly convergent algorithms for the
simultaneous approximation of all zeros of a polynomial. In: Dejon, B.
and Henrici, P. (eds) “Constructive Aspects of the Fundamental Theo-
rem of Algebra”, Wiley-Interscience, London, 1969, pp. 77–113.

[8] Moore, R. E.Methods and applications of interval analysis. SIAM Stud-
ies in Applied Mathematics, SIAM, Philadelphia, 1979.



Precise Zeros of Analytic Functions Using Interval Arithmetic 39

[9] Neumaier, A. Interval methods for systems of equations. Cambridge
University Press, 1990.

Universität Tübingen
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