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Cheap and Tight Bounds:
The Recent Result by E. Hansen
Can Be Made More Efficient

Jǐŕı Rohn

Improving the recent result by Eldon Hansen, we give cheap and tight bounds
on the solution of a linear interval system as well as on the inverse interval
matrix.
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1 Introduction

It follows from the general theory [2] that up to 2n systems of linear equa-
tions need to be solved to compute the exact bounds on the solution of a
system of linear interval equations in n unknowns. Eldon Hansen has re-
cently published in [1] a remarkable result showing that this number can be
reduced to 2n for linear interval systems whose midpoint matrix is the unit
matrix. In this paper we prove that Hansen’s result can be reformulated
in such a way that inverting only one matrix is needed, and we apply this
result to bounding solutions of linear interval systems and inverting interval
matrices. The bounds on the inverse interval matrix are shown to be better
in general than the classical ones derived via Neumann series.

2 Hansen’s result improved

Hansen considered in [1] a linear interval system of the form

[I −∆, I + ∆]x = [bc − δ, bc + δ] (1)

where I is the n×n unit matrix, ∆ is a nonnegative n×n matrix, bc, δ ∈ Rn,
δ ≥ 0 and [I−∆, I+∆] = {A; |A−I| ≤ ∆}, [bc−δ, bc+δ] = {b; |b−bc| ≤ δ}.
He used diagonal dominance as a sufficient regularity condition; however, it
follows from the assertion (C3) of Theorem 5.1 in [2] that [I −∆, I + ∆] is
regular (i.e., all the matrices contained therein are nonsingular) if and only
if

%(∆) < 1 (2)

holds (% is the spectral radius). Let us note that this condition implies
existence and nonnegativity of the matrix

M = (I −∆)−1 = (mij).

As is well known, the exact bounds on the solution of (1) are defined by

xi = min
x∈X

xi

xi = max
x∈X

xi



Cheap and Tight Bounds: The Recent Result by E. Hansen. . . 15

(i = 1, . . . , n), where X is the so-called solution set:

X =
{
x; Ax = b for some A ∈ [I −∆, I + ∆], b ∈ [bc − δ, bc + δ]

}
.

Hansen showed in [1] that these quantities can be computed by solving only
2n systems of linear equations sharing the same coefficient matrix. We shall
prove here a reformulation of his result in which only one matrix inversion
is needed:

Theorem 1. Let (2) hold. Then for each i ∈ {1, . . . , n} we have

xi = min{x
˜
i, νix

˜
i}

xi = max{x̃i, νix̃i}

where

x
˜
i = −x∗i +mii(bc + |bc|)i
x̃i = x∗i +mii(bc − |bc|)i
x∗i = (M(|bc|+ δ))i

and
νi =

1

2mii − 1
∈ (0, 1].

Proof. Let i ∈ {1, . . . , n} be fixed. We shall prove: 1) xi ≤ max{x̃i, νix̃i}
for each x ∈ X, 2) x̃i = x′i, νix̃i = x′′i for some x′, x′′ ∈ X; this will prove
that xi = max{x̃i, νix̃i}, 3) the formula for xi using the result for xi.

1) First notice that for M = (I −∆)−1 we have M∆ = ∆M = M − I
and mii ≥ 1, implying 2mii − 1 ≥ 1 and νi ∈ (0, 1]. Define a diagonal
matrix D by

Djj =

 1 if j 6= i and (bc)j ≥ 0
−1 if j 6= i and (bc)j < 0

1 if j = i

(j = 1, . . . , n), and let
b̃ = Dbc + δ.

Then we have
x̃i = x∗i +mii(bc − |bc|)i = (Mb̃)i.
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Now, let x ∈ X, so that Ax = b for some A ∈ [I − ∆, I + ∆] and b ∈
[bc − δ, bc + δ]. Put

x′ = (|x1|, . . . , |xi−1|, xi, |xi+1|, . . . , |xn|)T .

We shall prove that x satisfies the inequality

M(x′ − |x|) + |x| ≤Mb̃. (3)

In fact, x′i = xi = bi + ((I−A)x)i ≤ (bc + δ)i + (∆|x|)i = (b̃+ ∆|x|)i, and if
j 6= i, then x′j = |xj| ≤ |bj|+|((I−A)x)j| ≤ |bc|j+δj+(∆|x|)j = (b̃+∆|x|)j,
which together gives

x′ ≤ b̃+ ∆|x|
and premultiplying this inequality by the nonnegative matrix M yields
Mx′ ≤ qMb̃ + M∆|x| = Mb̃ + (M − I)|x|, which implies (3). Now, if
xi ≥ 0, then x′ = |x| and from (3) we have

xi = |xi| ≤ (Mb̃)i = x̃i

and if xi < 0, then from (3) we obtain

(2mii − 1)xi ≤ (Mb̃)i = x̃i

which implies
xi ≤ νix̃i

hence in both the cases we have

xi ≤ max{x̃i, νix̃i}.

2) Put
x′ = DMb̃

x′′ = DM(b̃− 2νix̃i∆ei)

where ei is the i-th column of I. We shall prove that x′ and x′′ belong to X.
Since (I −D∆D)x′ = DMb̃−D(M − I)b̃ = Db̃ = bc +Dδ, we see that x′
satisfies

(I −D∆D)x′ = bc +Dδ

where I−D∆D ∈ [I−∆, I+∆] and bc +Dδ ∈ [bc−δ, bc +δ], which proves
that x′ ∈ X. Furthermore, define a diagonal matrix D′ by D′ii = −1 and
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D′jj = Djj otherwise. Then (I −D∆D′)DM = DM −D∆(I − 2eie
T
i )M =

DM−D(M−I)+2D∆eie
T
i M = D+2D∆eie

T
i M , hence (I−D∆D′)x′′ =

(D+2D∆eie
T
i M)(b̃−2νix̃i∆ei) = Db̃+2x̃iD∆ei(−νi+1−2νi(mii−1)) =

Db̃ = bc + Dδ, which again gives that x′′ ∈ X. Now, since eTi D = eTi , we
have

x′i = eTi DMb̃ = x̃i

x′′i = x̃i − 2νix̃i(mii − 1) = νix̃i

which in conjunction with 1) proves that

xi = max{x̃i, νix̃i}.

3) To prove the formula for xi, consider the linear interval system [I −
∆, I + ∆]x = [−bc − δ,−bc + δ] with the solution set X0 = −X. Then,
applying the formula for xi to it, we have

xi = min
X

xi = −max
X0

xi = −max{˜̃xi, νi˜̃xi}

where ˜̃xi = x∗i +mii(−bc− |bc|)i = x∗i −mii(bc + |bc|)i = −x
˜
i, which finally

gives
xi = −max{−x

˜
i,−νix

˜
i} = min{x

˜
i, νix

˜
i}.

3 Solving linear interval systems

Consider a linear interval system

[Ac −∆, Ac + ∆]x = [bc − δ, bc + δ] (4)

and its solution set

X0 =
{
x; Ax = b for some A ∈ [Ac −∆, Ac + ∆], b ∈ [bc − δ, bc + δ]

}
.

Let R be an arbitrary n×n matrix. If Ax = b for some A ∈ [Ac−∆, Ac+∆]
and b ∈ [bc − δ, bc + δ], then we have RAx = Rb and

|RA− I| = |RAc − I +R(A− Ac)| ≤ GR
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|Rb−Rbc| ≤ |R|δ
where we have denoted

GR = |RAc − I|+ |R|∆.

Thus we can see that the solution set X0 of (4) is contained in the solution
set X of the system

[I −GR, I +GR]x = [Rbc − |R|δ, Rbc + |R|δ] (5)

which is of the form (1). Now, if the condition

%(GR) < 1 (6)

is satisfied, then we can apply Theorem 1 to the system (5) to obtain the
exact bounds xi, xi (i = 1, . . . , n) on X. Since X0 ⊂ X, this implies that

xi ≤ xi ≤ xi (i = 1, . . . , n)

holds for each x ∈ X0. In this way we have obtained an interval enclosure
of the solution set X0 of (4). This enclosure is generally not sharp, but can
be expected to be very tight if the radii ∆ and δ are narrow; cf. Neumaier
[3] for a detailed discussion.

The procedure described is performable if we can find a matrix R satis-
fying (6). It follows from Theorem 4.1.2 in [3] that such a matrix exists if
and only if [Ac−∆, Ac +∆] is strongly regular (i.e., if Ac is nonsingular and
%(|A−1c |∆) < 1); if this is the case, then R := A−1c has the required property.
Therefore, for practical purposes it is recommendable to set R equal to the
computed value of A−1c .

4 Inverting interval matrices

For an interval matrix [I − ∆, I + ∆], consider its interval inverse [B,B]
defined by

Bij = min{(A−1)ij; A ∈ [I −∆, I + ∆]}
Bij = max{(A−1)ij; A ∈ [I −∆, I + ∆]}

(i, j = 1, . . . , n). Applying Theorem 1 to the systems [I − ∆, I + ∆]x =
[ej, ej], where ej is the j-th column of I (j = 1, . . . , n), we obtain this
explicit form of the inverse (where, as before, M = (I −∆)−1):
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Theorem 2. Let (2) hold. Then we have

Bij = mij

Bij =

{
−mij if i 6= j
mii

2mii−1 if i = j

(i, j = 1, . . . , n).

It may seem surprising that Bii >
1
2 (since mii ≥ 1). This, however, is a

consequence of a more general result ([2], Thm. 5.1, (C5)).
For a general square interval matrix [Ac−∆, Ac + ∆], employing Theo-

rem 2 to the preconditioned matrix as in Section 3, we obtain the following
result (where we employ matrices R and K to avoid the use of exact inverses
A−1c and (I −GR)−1):

Theorem 3. For a given interval matrix [Ac−∆, Ac+∆], letK = (kij) ≥ 0
and R be any matrices satisfying

KGR + I ≤ K (7)

where
GR = |RAc − I|+ |R|∆.

Then for each A ∈ [Ac −∆, Ac + ∆] we have

|A−1 − TR| ≤ (K − T )|R| (8)

where T is the diagonal matrix with diagonal entries

Tii =
k2ii

2kii − 1
(i = 1, . . . , n).

Proof. Premultiplying (7) by the nonnegative matrix GR, we obtain GR +
I ≤ KGR + I ≤ K and by induction∑̀

j=0

Gj
R ≤ K

for each ` ≥ 0, hence %(GR) < 1 and (I−GR)−1 =
∑∞

j=0G
j
R ≤ K. Now, for

each A ∈ [Ac−∆, Ac+∆] we have |RA−I| = |RAc−I+R(A−Ac)| ≤ GR,
hence RA ∈ [I −GR, I +GR], which implies that A is nonsingular and

B ≤ A−1R−1 ≤ B
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where B and B are as in Theorem 2, withM := (I−GR)−1. Define matrices
B
˜

and B̃ by B̃ = K and

B
˜

ij =

{
−kij if i 6= j
kii

2kii−1 if i = j

(i, j = 1, . . . , n), then from M ≤ K we obtain B
˜
≤ B and B ≤ B̃, hence

B
˜
≤ A−1R−1 ≤ B̃

which implies that

|A−1R−1 − T | = |A−1R−1 − 1

2
(B

˜
+ B̃)| ≤ 1

2
(B̃ − B

˜
) = K − T

and consequently

|A−1 − TR| = |(A−1R−1 − T )R| ≤ |A−1R−1 − T | · |R| ≤ (K − T )|R|.

To explain what is new in this result, let us notice that the classical
argument using Neumann series (see e.g. [2], proof of Thm. 4.4) yields the
estimate

|A−1 −R| ≤ (K − I)|R|. (9)

However, since

Tii − 1 =
(kii − 1)2

2kii − 1
≥ 0

for each i, we have T ≥ I and hence

(K − T )|R| ≤ (K − I)|R|.

This shows that (8) is at least as good as (9), but for each i, j with kii > 1
and Rij 6= 0 the estimate (8) gives a result which is better than (9) by the
amount of

(kii − 1)2

2kii − 1
|Rij|.

Thus for the particular choice R := A−1c and K := (I − |A−1c |∆)−1, the
estimate (8) gives a better result than (9) for each i, j such that (|A−1c |∆)ii >
0 and (A−1c )ij 6= 0. Let us note that Herzberger and Bethke proved in [4] that
two well-known methods for bounding the inverse interval matrix cannot
improve on the bound (9).
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