
Interval Computations
No 3, 1993

Guaranteed Intervals for Kolmogorov’s
Theorem (and Their Possible Relation

to Neural Networks)
Mitsumi Nakamura, Ray Mines, and Vladik Kreinovich∗

In the article we prove a constructive-mathematics version of Kolmogorov’s
theorem. In 1957 a solution to one of Hilbert’s problems was proved by Kol-
mogorov.

It actually shows that an arbitrary function can be implemented by a 3-
layer neural network with appropriate activation functions. Such a solution
has been transformed to the fast iterative algorithm, converges well, but does
not provide a guaranteed approximation accuracy.

In 1991 Kurkova proposed another algorithm that ensures a given accuracy,
however, by means of increasing the number of neurons while the accuracy
ε→∞ and so does the complexity of the approximating network.

In this paper we describe algorithms that generate the activation functions
with guaranteed accuracy and keep number of hidden neurons independent
on ε.

Гарантированные интервалы для
теоремы Колмогорова и их

возможная связь с сетями нейронов
М. Накамура, Р. Майнс, В. Крейнович

В 1957 г. Колмогоров доказал теорему, являющуюся решением одной из
проблем Гильберта. В этой статье мы доказываем конструктивно-мате-
матический вариант теоремы Колмогорова.

Нами доказано, что произвольная функция может быть реализована
трехслойной сетью нейронов при подходящих функциях активации. Ре-
шение, преобразованное в быстрый итерационный алгоритм, хорошо схо-
дится, но не обеспечивает достижения заданной точности приближения.

*This work was supported by NSF Grant No. CDA-9015006, NASA Research Grant No. 9-482, and
a grant from the Materials Research Institute. We are also greatly thankful to Chitta Baral, Andrew
Bernat, and to all the participants of the International Conference on Numerical Analysis with Automatic
Result Verification, Lafayette, LA, February–March 1993, especially to Drs. V. Kurkova and S. Markov,
and to the anonymous referees for valuable discussions.

c© M. Nakamura, R. Mines, V. Kreinovich, 1994

184 M. Nakamura, R. Mines, V. Kreinovich

В 1991 г. Куркова предложила другой алгоритм, который обеспечива-
ет заданную точность, однако, при точности ε → ∞, в нем возрастает
количество нейронов, а вместе с ним и сложность сети.

В данной статье мы описываем алгоритмы, которые производят функ-
ции активации с заданной точностью и, вместе с тем, сохраняют количе-
ство скрытых нейронов независящим от ε.

1 A little bit of history, and a formulation of
a problem

Before Hilbert [3]. Since ancient times, people know how to solve lin-
ear equations a0 + a1x = 0. Starting from Babylonians, we can also solve
quadratic equations a0 + a1x + a2x

2 = 0. In the 16th century, Tartaglia,
Cardan, and Ferrari showed how to solve cubic and quartic equations. Nu-
merous attempts to find a general solution for algebraic equations

a0 + a1x+ · · ·+ anx
n = 0 (1)

of 5th and higher order resulted in a famous proof by Galois that there
is no way to express such solutions in terms of basic algebraic operations
(+,−,×, :, n

√).

In other words, if n ≥ 5, then a function f that maps (a0, . . . , an) into
a solution of equation (1), cannot be represented as a superposition of basic
algebraic operations.

1900: Hilbert’s 13th problem. David Hilbert noticed that all basic
algebraic operations are functions of one or two variables. So, he formu-
lated a natural hypothesis: that not only one cannot express the solution of
higher-order algebraic equations in terms of basic algebraic operations, but
no matter what functions of one or two variables we add to these operations,
we still won’t be able to express the general solution.

Hilbert even included this hypothesis (under No. 13) into the list of
23 major problems that he formulated in 1900 as a challenge for the 20th
century.

1957: Kolmogorov’s solution. This problem remained a challenge until
1957, when (rather unexpectedly) Kolmogorov [9] proved that an arbitrary
continuous function f(x1, . . . , xn) on an n-dimensional cube (of arbitrary

Guaranteed Intervals for Kolmogorov’s Theorem 185

dimension n) can be represented as a composition of addition and some
functions of one variable.
Formulation of Kolmogorov’s theorem. We will take it from [13], where
the original Kolmogorov’s theorem was simplified and improved (further
improvement was later described in [14]).

Definition 1. A function f(x) belongs to a Lipschitz class Lip[α] if there
exists a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y|α.
Theorem [13]. For every integerN ≥ 2, there exists a monotonic increasing
function ψ : [0, 1] → [0, 1] such that ψ ∈ Lip[ln 2/ ln(2N + 2)], and having
the following property: For each δ > 0, there exists a real number λ > 0
and a rational number ε, 0 < ε ≤ δ, such that for 2 ≤ n ≤ N , every real
continuous function f : [0, 1]n → R, has a representation as

f(x1, . . . , xn) =
∑

0≤q≤2n
χ

[∑
1≤p≤n

λpψ(xp + εq) + q

]

for some continuous function χ.
Kolmogorov’s proof is not completely algorithmic in the following sense.

It proves that an arbitrary function can be represented as the desired su-
perposition, but it does not provide us with a ready-to-use algorithm for
computing the corresponding functions ψ and χ.

To be more precise: this proof contains explicit formulas for the functions
χ and ψ, but these formulas cannot be immediately implemented step-by-
step on a computer. For example, in order to construct ψ, in [13], two
sequences of intervals Ek(i) and Hk(i) are defined, and then, for every real
number x, the value ψ(x) is defined ([13], p. 350) as an intersection of all
the intervals Hkν(jkν(iν)) for all infinite sequences {kν} and {iν} for which
x belongs to the intersection ⋂

ν

Ekν(iν).

There is no way for a computer to handle infinite sequences. Therefore, in
order to compute ψ and χ, we must somehow transform the definitions from
[13] and [14] (that are not completely algorithmic) into computer algorithms.
1957–1987: interesting math, but of no use. This was a usual attitude
to this theorem.

186 M. Nakamura, R. Mines, V. Kreinovich

Hecht-Nielsen, 1987: Kolmogorov’s theorem describes. . . neural
networks. In 1987, R. Hecht-Nielsen noticed that this result has an inter-
pretation in terms of neural networks [7].

A neural network is a way to perform computations using networks of
interconnected computational units vaguely analogous to neurons simulating
how our brain solves them. A neuron is a device with n real inputs x1, . . . ,
xn and an output y = g(w1x1 + · · ·+ wnxn − w0). Here, g(x) is a function
that is called an activation function, and parameters wi are called weights
(w0 is also called a threshold). If we send the output of some neurons as
inputs to others, we get a neural network.

This network is used as follows: we know several values of input signals
and the desired output. So, we send the input signals to the network, and
if the result is different from the desired output, we change the weights
(train the network). After we are done with the training, we freeze (fix) the
weights, and use a networks to generate an output from given inputs.

The fundamental question is: can we train a network so that it would
compute an arbitrary input-output function?

Hecht-Nielsen noticed that the above Theorem describes the following
neural network: its first layer consists of n(2n+1) neurons Npq, 1 ≤ p ≤ n,
0 ≤ q ≤ 2n, with an activation function ψ(x) and weights wp = 1, w0 =
−εq. The next layer consists of 2n+1 neuronsN 1

q with activation function χ,
weights λp, and thresholds w0 = −q. Its 3rd layer consists of a linear neuron
that just adds its inputs.

Therefore, this theorem actually proves that an arbitrary function can
be represented by a 3–layer neural network.
1989: First algorithmic version of Kolmogorov’s result. We have
already noticed that Kolmogorov’s proof is not completely algorithmic in
the sense that it does not explicitly contain algorithms for computing ψ and
χ. So, in order to apply this result to actual computations, we must provide
such algorithms.

Such algorithms were proposed in [5] and turned out to be surprisingly
fast (see also [12]). Namely, the authors of [5] presented an iterative pro-
cedure that converges to ψ and χ as the number of iterations N increases
(i.e., as N → ∞). Computer experiments show that this convergence is so
fast that it can even help in solving practical problems.
The drawbacks of this algorithm (from the viewpoint of interval

Guaranteed Intervals for Kolmogorov’s Theorem 187

computations). The main goal of interval computations is to provide
computations results with guaranteed accuracy.

The algorithm from [5] converges when N → ∞. So, if we want to
represent f with a given accuracy ε, then after sufficiently many iterations
the resulting expression will be ε−close to f . But this algorithm does not
provide us with a guaranteed accuracy. In other words, we can run as many
iterations as we want, and still there will be no guarantee that we have
achieved the desired goal. So, this algorithm cannot be applied to the case
when we need a guaranteed result, with guaranteed accuracy.

Comment. What we view as a drawback depends on what our goal is. From
the viewpoint of interval computations, the main drawback of the first al-
gorithmic version of Kolmogorov’s theorem is that it does not guarantee
any approximation accuracy. From the practical viewpoint ([6, 10]), an-
other problem surfaces as a main drawback: the functions ψ and χ from
Kolmogorov’s theorem are highly non-smooth functions (their graphs are
fractal [6, 10]) and therefore, they are difficult to compute and even more
difficult to implement in hardware.

This is not the drawback of a particular proof or algorithm, but the in-
herent property of the approach itself: if we take smooth ψ and χ, then the
input-output function f will also be smooth. So, if we want to represent
non-smooth functions f as well, we must take non-smooth ψ and/or χ.

Second algorithmic version of Kolmogorov’s result: main idea. In
Kolmogorov’s theorem, for every function f , there is a single design that
fits f perfectly (ε = 0). Of course, in real life, we cannot manufacture the
neurons with exactly the characteristics ψ(x) and χ(x), but we know that
the more precisely we manufacture, the closer is the resulting superposition
to f . The design is the same, no matter how precisely we manufacture: the
number of neurons in the hidden layer is the same, and the weights are the
same.

So, for every function f , we have a single design (independent on the
desired accuracy ε).

If we cannot efficiently generate a design that will serve for all ε, then
maybe we can algorithmically generate separate designs for each ε?

In other words, we want to be able, given f and ε > 0, to generate a
neural network for which the input-output function f̃ is ε−close to f , i.e.,

188 M. Nakamura, R. Mines, V. Kreinovich

for which for all xi ∈ [0, 1],

f̃(x1, . . . , xn) ∈
[
f(x1, . . . , xn)− ε, f(x1, . . . , xn) + ε

]
.

The existence of a neural network that approximates any given function
with a given precision, was proved by Hornik et al. [8]. This proof itself is
non-algorithmic: it uses a Stone-Weierstrass theorem.
1989–92: Second algorithmic version of Kolmogorov’s result. In
principle, one can apply a constructive version of the Stone-Weierstrass the-
orem [1, 4, 2] and produce an algorithmic version of the result from [8]. The
resulting algorithm will be, however, very complicated and thus impractical.

An efficient approximation algorithm has been proposed by V. Kurkova
in [10, 11]. She has also given estimates for the number of hidden neu-
rons. These estimates are reasonably low, and overall, her algorithm is very
practical.
Remaining problem. In Kolmogorov’s theorem, for every function f ,
there is a single design that fits f perfectly (ε = 0). In real life, as we
have already mentioned, we cannot manufacture the neurons with exactly
the characteristics ψ(x) and χ(x), but we know that the more precisely we
manufacture, the closer is the resulting superposition to f . The design is the
same, no matter how precisely we manufacture, and the number of hidden
neurons is the same for all ε.

Using Kurkova’s algorithm, for different ε, we get different designs, and
the number of hidden neurons in an approximating network increases when
ε→ 0 (this number actually tends to ∞).

Switching to Kurkova’s algorithm, we gain guaranteed approximation
property, but we lose in elegance: namely, to get better approximation, we
cannot just fine-tune the existing networks; we must add more and more
hidden neurons. Is this necessary? Is it possible to find an algorithmic
design with guaranteed approximation accuracy that will work for all ε?
What we are planning to do. Our answer is “yes”. Crudely speaking, we
will prove that we can algorithmically construct a single design that guar-
antees the approximation accuracy for all ε. We thus give a new algorithmic
version of Kolmogorov’s theorem.
It is necessary to give some definitions. In order to formulate our
result, we must give definitions of what “algorithmic” means when we talk

Guaranteed Intervals for Kolmogorov’s Theorem 189

about functions and numbers that can be computed with a guaranteed accu-
racy. These definitions are more or less standard in the so-called constructive
mathematics (see, e.g., [1, 2]), but we decided to give them, because these
definitions are somewhat different from what we use in computer languages.

2 Definitions and the main result

In this paper, we assume that the readers already know what an algorithm is:
crudely speaking, it is a computer program that transforms a finite sequence
of symbols (e.g., an integer) into another finite sequence of symbols. We
also assume that a reader is well acquainted with the notion of a subroutine
(procedure). In computation theory, if a program A calls another program
B as a subroutine, it is sometimes said that A uses B as an oracle.

Definition 2. We say that an algorithm U computes a real number x if
for every natural number k, it generates a rational number rk such that
|rk − x| ≤ 2−k. We say that we have a computable real number if we have
an algorithm U that computes it.

Definition 3. We say that an algorithm V computes a function f : R→ R
if V includes calls to an (unspecified) algorithm U so that when we take as U
an algorithm that computes a real number x, V will compute a real number
f(x). We say that we have a computable real function f(x) if we have
an algorithm that computes this function. We will also say that f(x) is
computable from x.
Comments.

1. This algorithm V takes k as input, and generates a rational number sk
such that |sk−f(x)| ≤ 2−k. In course of computations, it may generate
an auxiliary number l, and ask U for a value rl that is 2−l−close to x.

2. In a similar manner, one can define a constructive function of n real
variables: it just calls n programs Ui, 1 ≤ i ≤ n.

Definition 4. We say that a computable function f is constructively con-
tinuous on a set S if there exists an algorithm, that for every ε > 0, generates
δ > 0 such that if |x− y| ≤ δ, then |f(x)− f(y)| ≤ ε.

190 M. Nakamura, R. Mines, V. Kreinovich

Comment. In Kolmogorov’s theorem, a function ψ does not depend on f , so
Definition 3 explains what we mean by computing it. As for χ, it depends
on f , so we must explain what we mean by being able to compute it from f .

Definition 5. We say that an algorithm W computes a function g : R→
R from a function f : R→ R ifW includes calls to (unspecified) algorithms
U and V so that when we take as U an algorithm that computes a real
number x, and as V , an algorithm that computes f , W will compute a real
number g(x). We say that a real function g(x) is computable from f(x) if
we have an algorithm that computes g from f .

Constructive–mathematics version of Kolmogorov’s theorem.
There exists an algorithm U that for every integer N ≥ 2, generates a
monotonic increasing function ψ : [0, 1]→ [0, 1] such that

ψ ∈ Lip[ln 2/ ln(2N + 2)]

and having the following property: For each δ > 0, there exists a real number
λ > 0 and a rational number ε, 0 < ε ≤ δ (both computable from δ), such
that for 2 ≤ n ≤ N , every real continuous function f : [0, 1]n → R, has a
representation as

f(x1, . . . , xn) =
∑

0≤q≤2n
χ

[∑
1≤p≤n

λpψ(xp + εq) + q

]

for some continuous function χ that is computable from f .
Comment. The algorithms that we construct in the proof are very compli-
cated and not yet ready for practical usage. However, we believe that our
result (proving that such algorithms are possible) is a necessary first step
towards more practical future algorithms.

3 Proof

3.1 An algorithm that computes ψ

We will show how to compute the function defined in [13]. For that, we
will analyze step-by-step how this function is constructed in [13], and show
how to modify each step to make it algorithmic (in more precise terms, to

Guaranteed Intervals for Kolmogorov’s Theorem 191

make it algorithmic with guaranteed accuracy of the result). We will be thus
referring to [13] a lot, so we will try to make our notations as close to the
ones from [13] as possible.

In [13], ψ is defined in terms of two families of intervals: Ek(i) andHk(i).
So, let us first show how to compute endpoints of these intervals.
1. First, we compute γ = 2n + 1 ([13], p. 351) and λ = n

√
2 ([13], p. 348).

Then, for every integers k ≥ 0 and i, we can compute rational endpoints of
an interval Ek(i) = [e−k (i), e

+
k (i)] ([13], p. 347), where e

−
k (i) = iγ−k, and

e+k (i) = e−k (i) + ((γ − 2)/(γ − 1))γ−k.

For a fixed k > 0, these intervals follow the order of i, i.e.,

· · · < e−k (i) < e+k (i) < e−k (i+ 1) < e+k (i+ 1) < · · ·

2. Now, we must describe an algorithm that computes βk for given k ([13],
p. 348). We take β1 = 1. According to [13], if βk is already chosen, we
choose an integer βk+1 so that βk+1 ≥ nβk + 1 and

γ−βk+1 < γ−βk−1min
Hk

∣∣∣∣∣ ∑
1≤p≤n

hpλ
p

∣∣∣∣∣ (2)

where Hk denotes the set of all non zero-vectors (h1, . . . , hn), with compo-
nents hp from the set Hk =

{
−γβk , . . . , −γ,−1, 0, 1, γ, . . . , γβk

}
.

This value can be computed as follows: all the sums in the right-hand
sides are constructive numbers (see, e.g., [1, 2]). The minimum of finitely
many computable numbers is also computable, and hence, the right-hand
side X of (2) is computable. So, there is an algorithm that for every m,
generates a 2−m-approximation rm toX. We know ([13], p. 348) thatX > 0.
Therefore, X > 2−m for some integer m. Hence, from |X−rm+1| ≤ 2−(m+1),
we conclude that rm+1 > 2−(m+1). Vice versa, if rl > 2−l for some l, this
means that X ≥ rl − 2−l > 0.

So, to find βk+1, we compute the approximations r1, r2, . . . , to X, and
compare each approximation rm with 2−m (this comparison is algorithmic
because both rm and 2−m are rational numbers). According to what we
have just proved, there will be an m for which rm > 2−m. As soon as we
get this m, stop. Now, we must find βk+1 for which βk+1 ≥ nβk + 1 and
γ−βk+1 < rm − 2−m (since rm − 2−m ≤ X, this inequality will guarantee

192 M. Nakamura, R. Mines, V. Kreinovich

that γ−βk+1 < X). Such βk+1 can be obtained, e.g., by taking p = nβk + 1,
nβk + 2, nβk + 3, . . . and comparing rational numbers γ−p and rm − 2−m;
as soon as we have γ−p < rm − 2−m, we can stop and take this p as βk+1.
3. Now, we must show how to compute εk ([13], p. 348). According to [13],
formula (4.9),

εk = (γ − 2)
∞∑
l=0

γ−βk+l.

Due to βk+1 ≥ nβk+1 > βk+1, we have βk+l > βk+ l. Therefore, γ−βk+l ≤
γ−β

k

γ−l. So, from the constructive convergence of the geometric progression
γ−l [1, 2], we conclude that this sum also converges constructively, so we can
compute εk.
4. Now, let us find an algorithm that computes jk(i, t) ([13], p. 349) for all
k ≥ 1, i, and t. For k = 1, jk(i, t) = 1. Formula (4.14) from [13] is already
algorithmic, because it reduces computations of jk to jk−1, . . . :

jk+1(i, t) =

{
jk(i, t)γ

βk+1−βk + t if 0 ≤ t ≤ γ − 2⌊
1
2 [jk+1(i, γ − 2) + jk+1(i+ 1, 0)]

⌋
if t = γ − 1

where b c denotes an integer part.
5. Let us now show how to compute H̃k(i) =

[
h−k (i), h

+
k (i)

]
(see [13],

pp. 348–349, where this interval is denoted by Hk(jk(i))): first, we compute
i′ = bi/γc and t = i − i′γ (in PASCAL notations, i′ = i div γ, and t =
i mod γ). Then, we take h−k (i) = jk(i

′, t)γ−βk and h+k (i) = h−k (i) + εk. For
fixed k, the order of these intervals also follows the order of i.
6. [13] defines ψ(x) in terms of Ek(i) and Hk(i). However, as we have
already notices in the main text, the formulas from [13] are not completely
algorithmic. Let’s design an algorithm.
Motivations. Part 1. According to ([13], (4.16)), if x ∈ Ek(i), then
ψ(x) ∈ H̃k(i). Since ψ is monotonic, this means that if x ≥ e−k (i), then
ψ(x) ≥ h−k (i), and if x ≤ e+k (i), then ψ(x) ≤ h+k (i).

We cannot directly use this property to compute ψ(x), because even for
computable real numbers a and b, there is no way to check whether a ≤ b
or not, and therefore, no way to check whether a given computable number
belongs to an interval with computable endpoints [1, 2].

However, if a < b, then there exists an algorithm that for every com-
putable c, generates 0 or 1 so that if 0 then c < b, and if 1 then c > a.

Guaranteed Intervals for Kolmogorov’s Theorem 193

To explain how it works: compute the rational approximations cl and rl
to c and (a + b)/2 with precision 2−l < (b − a)/4. Then, if cl ≤ rl, we
generate 0. In this case, c ≤ cl + 2−l ≤ rl + 2−l ≤ (a + b)/2 + 2 · 2−l <
(a + b)/2 + 2(b − a)/4 = b, and c < b. Likewise, if cl > rl, we generate 1,
and conclude that c > a.
Algorithm. Part 1. If a < b and c are given, we compute l such that
2−l < (b−a)/4, and compute 2−l-approximations cl and rl to c and (a+b)/2.
Then, we compare rl and cl. If cl ≤ rl, we generate 0, else 1.
Motivations. Part 2. We want to compute ψ(x) for a given x. So, we
take c = x, a = e−k (i), b = e+k (i), and apply this algorithm. If we fix x
and k, then for i→∞, x < e−k (i). So, for sufficiently small i, this algorithm
cannot return 0. Likewise, for i→ −∞, x > e+k (i), so the algorithm cannot
return 1. So, we arrive at the following algorithm.
Algorithm. Part 2. Assume that x is a computable real number, and
K > 0 is an integer. We want to produce rK such that |ψ(x)− rK | ≤ 2−K .
Let’s first take k = 1 and i = 1. We can apply the above algorithm to c = x,
a = e−k (i), b = e+k (i). If this algorithm generates 0, then x < e+k (i); in this
case, repeat this procedure for i = 0,−1,−2, . . . , until it generates 1. If for
i = 1, this algorithm generates 1, meaning that x > e−k (i), then try i = 2,
3, . . . until we get 0.

As a result, we get two consequent values of i for which answers are 1
and 0, i.e., for which x > e−k (i) and x < e+k (i + 1). Therefore, h−k (i) ≤
ψ(x) ≤ h+k (i+ 1).
Motivations. Part 3. The difference d(k) = h+k (i + 1) − h−k (i) between
two computable numbers is computable [1, 2]. Therefore, for each k =
1, 2, 3, . . . , we can compute the 2−(K+2)-approximation sK+2(k) to this
difference. When k →∞, d(k)→ 0 ([13], p. 349). This means, in particular,
that for some k, |d(k)| ≤ 2−(K+1). For this k, |sK+2(k)| ≤ |d(k)|+2−(K+2) ≤
2−(K+1) + 2−(K+2). Vice versa, if |sK+2(k)| ≤ 2−(K+1) + 2−(K+2), then

|d(k)| ≤ |sK+2(k)|+ 2−(K+2) ≤
(
2−(K+1) + 2−(K+2)

)
+ 2−(K+2) = 2−K .

Likewise, one can easily check that if |d(k)| ≤ 2−K , then a 2−(K+1)-
approximation mK+1 to the midpoint m =

(
h−k (i) + h+k (i + 1)

)
/2 satisfies

the inequality |ψ(x)−mK+1| ≤ 2−K : indeed, since ψ(x) ∈
[
h−k (i), h

+
k (i+1)

]
,

we have |ψ(x)−m| ≤ 2−(K+1) and, therefore,

|ψ(x)−mK+1| ≤ |ψ(x)−m|+ |m−mK+1| ≤ 2−(K+1) + 2−(K+1) = 2−K .

194 M. Nakamura, R. Mines, V. Kreinovich

So, we arrive at the following algorithm:
Algorithm. Part 3. After Part 2, compute a 2−(K+2)-approximation
sK+2(k) to the difference d(k) = h+k (i + 1) − h−k (i), and check whether
|sK+2(k)| ≤ 2−(K+1) + 2−(K+2). If this inequality is not true, repeat Part 2
for k = 2, 3, . . . , until finally, we get this inequality. Then, compute a
2−(K+1)-approximation mK+1 to the midpoint m =

(
h−k (i) + h+k (i + 1)

)
/2.

This mK+1 is the desired 2−K-approximation to ψ(x).
7. This ψ is not only computable, but also constructively continuous, be-
cause one can easily extract an explicit formula for δ in terms of ε from [13,
p. 351].

3.2 An algorithm that computes χ from f

Like in the previous subsection, we will show step-by-step how the construc-
tion from [13] can be modified so that each step will be algorithmic.
1. First [13, p. 342], we must find an integer k0 such that

(γ − 1)−1γ−k0 ≤ δ.

This inequality is equivalent to k0 ≥ ln
(
δ(γ − 1)

)
/ ln(γ). Since ln is a

computable function, we can compute the 1/2-approximation r1 to the right-
hand side of this inequality, and take k0 = dr1e+1. After that, we compute
ε = (γ − 1)−1γ−k0.
2. Then, for r = 0, 1, 2, . . . , we must compute an integer kr and a con-
tinuous function χr(x) ([13], pp. 344–345). We will also show that χr is
constructively continuous.
2.1 For r = 0, k0 = 1 and χ0(x) = 0. Assume now that we have already
produced kr−1, and generated an algorithm that computes χr−1. Let’s show
how to compute kr and χr.
2.2 We know that ψ is computable and constructively continuous. It is
also known that a superposition of constructively continuous functions is
constructively continuous [1, 2]. Therefore, for q = 0, . . . , 2n (in this case,
m = n in [13]), the following functions are constructively continuous:

hq(x1, . . . , xn) =
∑

1≤p≤n
λpψ(xp + εq) + q

and

Guaranteed Intervals for Kolmogorov’s Theorem 195

fr−1(x1, . . . , xn) =
∑

0≤q≤2n
χr−1

[
hq(x1, . . . , xn)

]
.

Both functions f and fr−1 are constructively continuous on the unit
cube [0, 1]n, therefore, their difference dr−1(~x) = f(~x) − fr−1(~x) is also
constructively continuous.

According to [13], to find kr, we must know the least upper bound
(= supremum) of the function dr−1 on a special set. Let us start computing
that set.
2.3 Computing a special set. First, for every k ≥ k0, and for every i
and q ≤ 2n, we can compute an interval Eq

k(i) = [e−k (i) − εq, e+k (i) − εq]
([13], (5.1)). Therefore, for each k, q, and for each set (i1q, . . . , inq), we can
compute the coordinates of a cube Sqk(i1q, . . . , ipq) = Eq

k(i1q) × E
q
k(i2q) ×

· · · × Eq
k(inq) ([13], (5.5)). According to [13], Lemma 1, for each i1, . . . , in

such that 0 ≤ ij ≤ γk ([13], (5.2)), the intersection

Sk(i1, . . . , in) =
2n⋂
q=0

Sqk(i1q, . . . , inq)

where ijq = ij +
(
1 + ε(γk − 1)

)
q, is non-empty ([13], p. 352). The co-

ordinates of this intersection can be also easily computed: indeed, the in-
tersection of Cartesian products is actually the Cartesian product of inter-
sections ∪Eq

k(ijq), and for each j, the intersection of intervals Eq
k(ijq) with

computable endpoints e−k (ijq) − εq, e+k (ijq) − εq is an interval with com-
putable endpoints max

(
e−k (ij1), . . . , e

−
k (ij,2n)

)
− εq and min

(
e+k (ij1), . . . ,

e+k (ij,2n)
)
− εq.

There exist finitely many combinations (i1, . . . , in), where 0 ≤ ij ≤ γk.
Therefore, a union Sk = ∪Sk(i1, . . . , in) ([13], (3.1)) of all such sets is a
constructive compact in the sense of [1, 2].

The intersection of Sk with a unit cube is also a constructive compact:
Indeed, Sk is a union of parallelepipeds, i.e., Cartesian products of intervals.
The endpoints of all these intervals are rational; so, for them, we can algo-
rithmically decide for each a and b, whether a < b or not. Therefore, the
intersection with a unit cube is a constructive operation.
2.4 Computing the supremum. It is known that we can compute a
supremum of any constructively continuous function over any constructive
compact [1, 2]. In particular, we can compute the supremum of a construc-

196 M. Nakamura, R. Mines, V. Kreinovich

tively continuous function |dr−1(~x)| over Skr−1
∩ [0, 1]n. Following [13, 3.3],

we will denote this supremum by µr−1.
2.5 Computing kr. By definition of constructive continuity, we can com-
pute δ′ > 0 such that if |~x− ~y| ≤ δ′ then∣∣dr−1(~x)− dr−1(~y)∣∣ ≤ µr−1/(2n+ 1).

Now, according to [13], p. 345, we can choose kr such that γ−kr ≤ δ′, or
kr ≥ | ln(δ′)|/ ln(γ). This value can be computed using the same way as we
computed k0.

Let’s now start computing χr.
2.6 Computing χr(x) for x from a union of intervals. For each q,
and each (i1q, . . . , inq), the cube Sqkr(i1q, . . . , inq) is a constructive compact,
and therefore, we can compute the supremum and infimum of hq over this
cube. In other words, the endpoints of an interval hq

(
Sqkr(i1q, . . . , inq)

)
are

computable.
Each set Skr(i1, . . . , in) is a non-empty parallelepiped, namely, it is a

Cartesian product of intervals with computable endpoints. For each of these
intervals, a midpoint xj(i1, . . . , in) is thus also computable. Therefore, we
have a computable point ~x(i1, . . . , in) =

(
x1(i1, . . .), . . . , xn(i1, . . .)

)
in

this set.
Now, for the values that belong to the intervals hqSqkr(i1q, . . . , inq), we

define χr(x) as χr(x) = χr−1(x) + dr−1(~x(i1, . . . , in)) ([13], (3.5)). This
function is computable and constructively continuous on the union of these
(non-intersecting) intervals, and for all such x, it satisfies the inequality
([13], (3.6)): |χr(x)− χr−1(x)| ≤ µr−1/(2n+ 1).
2.7 Computing χr(x) for all x. Using the constructive version of the Ti-
etze extension theorem ([4], Theorem 10.1), we can extend it to a computable
function χ′(x) that is defined on the entire interval. For the values x outside
the intervals, this extension can differ radically from χr−1. To avoid large
positive differences, we take χ′′(x) = min

(
χr−1(x) + µr−1/(2n + 1), χ′(x)

)
.

This χ′′ is also a computable and constructively continuous extension of
χr−1, and it satisfies the inequality χ′′(x) ≤ χr−1 + µr−1/(2n + 1). To
guarantee that there are no large negative differences, we take χr(x) =
max

(
χ′′(x), χr−1(x)−µr−1/(2n+1)

)
. This function χr is a computable and

constructively continuous extension of χr−1, and it satisfies the inequality
(3.6) from [13] for all x.

Guaranteed Intervals for Kolmogorov’s Theorem 197

2.8 Computing χ(x). According to [13], χ(x) = limχr(x), where |χr(x)−
χr−1(x)| ≤ ν0(2n + 1)−r ([13], (3.9)), and ν0 is a supremum of |d0(x)| over
a unit cube ([13], (3.3)).

Since d0 is computable and constructively continuous, so is |d0|, so ν0 is
a computable real number.

For s > r, χs(x)−χr(x) =
(
χs(x)−χs−1(x)

)
+ · · ·+

(
χr+1(x)−χr(x)

)
,

therefore, |χs(x) − χr(x)| ≤ |χs(x) − χs−1(x)| + · · · + |χr+1(x) − χr(x)|.
When s → ∞, the left-hand side tends to |χ − χr|. Using the inequality
([13], 3.9) to estimate the terms in the right-hand side, we conclude that

∣∣χ(x)− χr(x)∣∣ ≤ ∞∑
p=r+1

ν0
(2n+ 1)p

.

The right-hand sum is a sum of a geometric progression, and is thus easy to
compute. So, |χ(x) − χr(x)| ≤ (ν0/(2n))(2n + 1)−r. This means that the
sequence χr constructively uniformly converges to χ (i.e., for every ε′, we
can compute an N ′ such that for r ≥ N ′, |χr(x) − χ(x)| ≤ ε′). According
to [1, 2], from this we can conclude that the limit χ(x) of this sequence is
also a computable and constructively continuous function. Q.E.D.

References

[1] Bishop, E. Foundations of constructive analysis. McGraw-Hill, 1967.

[2] Bishop, E. and Bridges, D. S. Constructive analysis. Springer, N.Y.,
1985.

[3] Boyer, C. B. and Merzbach, U. C. A history of mathematics. Wiley,
N.Y., 1991.

[4] Bridges, D. S. Constructive functional analysis. Pitman, London, 1979.

[5] Frisch, H. L., Borzi, C., Ord, G., Percus, J. K., and Williams, G. O.
Approximate representation of functions of several variables in terms
of functions of one variable. Physical Review Letters 63 (9) (1989),
pp. 927–929.

198 M. Nakamura, R. Mines, V. Kreinovich

[6] Girosi, F. and Poggio, T. Representation properties of networks: Kol-
mogorov’s theorem is irrelevant. Neural Computation 1 (1989), pp. 465–
469.

[7] Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence the-
orem. In: “IEEE International Conference on Neural Networks”, San
Diego, SOS Printing 2 (1987), pp. 11–14.

[8] Hornik, K., Stinchcombe, M., andWhite, H. Multilayer feedforward net-
works are universal approximators. Neural Networks 2 (1989), pp. 359–
366.

[9] Kolmogorov, A. N. On the representation of continuous functions of
several variables by superposition of continuous functions of one vari-
able and addition. Dokl. Akad. Nauk SSSR 114 (1957), pp. 369–373.

[10] Kurkova, V. Kolmogorov’s theorem is relevant. Neural Computation 3
(1991), pp. 617–622.

[11] Kurkova, V. Kolmogorov’s theorem and multilayer neural networks.
Neural Networks 5 (1992), pp. 501–506.

[12] Ness, M. Approximative versions of Kolmogorov’s superposition theo-
rem, proved constructively. J. Comput. Appl. Math., 1993 (in printing).

[13] Sprecher, D. A. On the structure of continuous functions of several
variables. Transactions Amer. Math. Soc. 115 (3) (1965), pp. 340–355.

[14] Sprecher, D. A. An improvement in the superposition theorem of Kol-
mogorov. Journal of Mathematical Analysis and Applications 38 (1972),
pp. 208–213.

Guaranteed Intervals for Kolmogorov’s Theorem 199

M. Nakamura
Department of Mathematics
University of Texas at Austin
Austin, TX 78712,
USA

R. Mines
Department of Mathematics
New Mexico State University
Las Cruces, NM 88003,
USA

V. Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968,
USA

