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Methodologies for Tolerance Intervals
Birna P. Kristinsdottir∗, Zelda B. Zabinsky∗, Tibor Csendes†,

and Mark E. Tuttle∗

Algorithms for finding large feasible n-dimensional intervals for constrained
nonlinear optimization are presented. The n-dimensional interval is iteratively
enlarged about a seed point while a checking routine maintains feasibility.
Two checking routines are discussed: an interval subdivision method and a
global optimization method. Both checking routines can be used in the overall
methodology to generate a feasible suboptimal interval. Such an interval is
useful when examining manufacturing tolerances in design optimization. Nu-
merical results are presented for a practical application in the optimal design
of a flat composite plate and a composite stiffened panel structure.

Методология нахождения интервалов
допуска

Б. П. Кристиндоттир, З. Б. Забински,
Т. Чендеш, М. Э. Таттл

Предлагается алгоритм нахождения больших n-мерных интервалов до-
пуска для нелинейной оптимизации с ограничениями. Рассматриваемый
n-мерный интервал итерационно увеличивается около начальной точки,
в то время как механизм проверки отслеживает допустимость процесса.
Рассматриваются две проверочные процедуры: метод деления интервала
и метод глобальной оптимизации. Обе проверочные процедуры могут
применяться в рамках общей методологии для порождения приемлемого
подоптимального интервала. Такой интервал полезен при исследо-
вании производственных допусков в оптимизации проектирования.
Представлены численные результаты практического применения в опти-
мальном проектировании плоской композитной пластины и композитной
укрепленной панельной конструкции.
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1 Introduction

1.1 Manufacturing tolerance problem

This paper presents methods to incorporate manufacturing tolerances in an
engineering design problem when the original design problem is in the form
of a constrained optimization problem.

Consider the nonlinear (possibly global) optimization problem (P)

minimize f(x)
subject to gj(x) ≤ 0 j = 1, 2, . . . , m,

where f(x) : Rn → R and the constraint functions, gj(x) : Rn → R are
continuous functions, and n is the dimension of the problem. Let us denote
the set of feasible points by A, that is A := {x ∈ Rn : gj(x) ≤ 0 for
each j = 1, 2, . . . , m}. Also let x∗ be an optimal solution for problem (P).

An example of a global optimization engineering design problem can be
found in the optimal design of composite structures [8], [9] and [12]. The
optimal solution, x∗, representing the optimal design, may be on an active
constraint. Since manufacturing processes are not able to reproduce the
optimal solution x∗ exactly, if the point x∗ were actually produced, it could
fail. In order for x∗ to be a practical design, we need to find a feasible
interval, where x ∈ A for all x ∈ [x∗i − δ, x∗i + δ] for i = 1, 2, . . . , n
and δ > 0 is a specific manufacturing tolerance for each variable. It is also
desirable that this interval be in the neighborhood of the global optimum
(within ε of f(x∗)).

We restate our problem: find an n-dimensional interval X∗ such that,
for all x ∈ X∗,

f(x) ≤ fε ≡ f(x∗) + ε and (1)
gj(x) ≤ 0 for j = 1, 2, . . . , m. (2)

A methodology to solve the stated problem does not previously exist,
but methods discussed in [3], [4] and [5], study related problems. Most of
the literature within the optimization community that exists on sensitivity
analysis is on the sensitivity of the optimum when some of the parameters
of the problem are varied and/or the right hand side of the constraints are
perturbed. This is often called parametric programming (e.g. see [7]). In [2]
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the Augmented Lagrangian function is used to derive sensitivity results in
parametric programming. This approach is not applicable to our restated
problem. In [10] a procedure that incorporates manufacturing tolerances
as a part of engineering design optimization is introduced. The approach
includes both parametric variations and manufacturing tolerances using a
Taylor series approximation in the neigborhood of the optimum. This me-
thod does not check feasibility in the neighborhood around the point, so
we do not have information on whether the interval is feasible. It also as-
sumes that the tolerances are small enough for the Taylor approximation
to be valid. We propose a different approach to incorporate manufacturing
tolerances into engineering design optimization.

1.2 Two questions and approaches

Our approach to the manufacturing tolerance problem suggests two basic
questions and algorithms. For both we assume we are given a design that is
interior to the feasible region, called xseed. This point may come from solving
an earlier optimization problem. Formally we assume that xseed satisfies the
following conditions:

f(xseed) < fε and (3)
gj(x

seed) < 0 for each j = 1, 2, . . . , m. (4)

The first question is: given an interior point xseed, and required tolerances
of ±δ, does the tolerance interval of [xseed

i − δ, xseed
i + δ], i = 1, 2, . . . , n, lie

entirely in the feasible region? We answer this question by directly checking
the feasibility of the tolerance interval using one of two checking routines
presented in Section 2.1.

The second question is: given an interior point xseed, what are the largest
tolerances around xseed? We answer this question by iteratively growing a
maximal feasible rectangle about xseed using the main algorithm, presented
in Section 3.1.

1.3 Composite structural design problem

Laminated composites are made from a stack of several plies, which are
bonded together to form a composites laminate. A ply is a thin layer, made
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from long reinforced fibers, (e.g. graphite fibers), embedded within a weaker
matrix material (e.g. epoxy). Within an individual ply, all fibers are oriented
in the same direction. Composite laminates are usually fabricated such that
fiber angles vary from ply to ply. Previous research, reported in [8], [9] and
[12] has developed optimization software to aid in the design of composite
aircraft structures. The program finds the optimal ply orientations and stiff-
ener geometries, given material properties and loading conditions for a flat
composite plate or stiffened panel structure. The software combines classi-
cal lamination theory with a random search global optimization algorithm,
called Improving Hit-and-Run, see [12] and [13].

The composites optimization problem is a global optimization problem
and can be formulated as (P). The objective function f(x) can be the weight
of the structure, the cost of the structure or a combination of cost and weight.
The inequality constraints gj(x) ≤ 0 represent mechanical constraints such
as strain and strength of the structure. The design variables x are the ply
orientation angles in degrees and, in the case of a stiffened panel, also include
stiffener geometry variables, such as stiffener spacing and stiffener height. A
common size of the optimization problem is 25 dimensions.

When composite materials are designed, it is critical to account for pos-
sible variations in fiber angles during the design phase. During the manu-
facturing process the fiber angles may vary substantially from their optimal
value, ±2o is not uncommon. This is large enough to make a Taylor series
approximation [10] inexact. The composite structural design problem has
motivated the research of our methodologies.

2 Checking a tolerance interval

2.1 Checking routines

The first question mentioned assumes that an interior point xseed, and a tol-
erance interval X = [xseed

i − δ, xseed
i + δ] for i = 1, 2, . . . , n and a δ > 0 are

specified. The problem is to check whether the tolerance interval is feasible
and close to the optimum. That is, check whether the interval is contained
in A and within ε of f(x∗), i.e. for every x ∈ X equations (1) and (2)
are satisfied. In this paper, two checking routines are presented. The first
checking routine uses interval arithmetic to check feasibility, as presented
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in [6]. The second checking routine uses a global optimization algorithm,
IHR (Improving Hit-and-Run) [13] to check feasibility of the tolerance inter-
val.

2.1.1 Interval checking routine

The interval checking routine (see [6]) is a version of the interval subdivision
method modified to check whether an interval X is strongly feasible. The
interval X is said to be strongly feasible if for every x ∈ X, f(x) < fε
and gj(x) < 0 for all j = 1, 2, . . . , m. Suppose f(x) : Rn → R is a
continuous function, and In is a set of n-dimensional compact real intervals.
Then the function F (X) : In → I is called an inclusion function of f(x),
if for every X ∈ In, F (X) ⊇ f(X), where f(X) = {f(x) : x ∈ X} is
called the range of f(x) over the n-dimensional interval X. The width of
an n-dimensional interval, X ∈ In, is defined as the maximum length of
the edge of the interval, w(X) = max

{
w(Xi) : i = 1, . . . , n

}
where Xi is

the i-th coordinate interval of X. It is assumed that all inclusion functions
are isotone, that is, for inclusion function F : In → I, we have X ⊆ Y
implies F (X) ⊆ F (Y ) for all X, Y ∈ In. For more information on interval
arithmetic see [1] and [11]. It is assumed that there exist inclusion functions
for the objective function and constraints.

The checking routine also requires a stopping criterion parameter γ,
which is set to a small positive real value. The procedure to check whether
an interval X is strongly feasible is as follows:

Interval checking routine

Step 0. Initialize a list L to be empty, and set Y = X.

Step 1. If the width of Y is less than γ, then go to Step 7.

Step 2. Evaluate the inclusion functions F (Y ) and Gj(Y ) for each j = 1,
2, . . . , m.

Step 3. If maxF (Y ) ≥ fε or maxGj(Y ) ≥ 0 for any j = 1, 2, . . . , m,
then go to Step 5.

Step 4. If the list L is empty, then go to Step 6, else put the last item of
the list L into Y , delete this item from the list, and go to Step 1.
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Step 5. Subdivide Y into subintervals U and V , set Y = U , put V into the
list L as the last member, and go to Step 1. The subdivision should
be made, such that the largest side of Y is halved.

Step 6. RETURN that the checked interval is strongly feasible.

Step 7. RETURN that the checked interval is not strongly feasible, and
Z = Y .

If the checking routine indicates that the initial interval X is not strong-
ly feasible, then it returns a very small subinterval Z that is not strongly
feasible. By properly setting γ, Z indicates the place where one of the
constraints or f(x) < fε is violated.

2.1.2 Global optimization checking routine

The second checking routine checks the feasibility of the tolerance interval
by finding the worst point in the interval using a random search global
optimization algorithm, Improving Hit-and-Run [13]. The interval X to be
checked can be written as upper and lower bounds, minXi ≤ xi ≤ maxXi,
for i = 1, 2, . . . , n. The checking procedure is to find the largest deviation
of the constraints and f(x) < fε.

The checking procedure is as follows:

maximize h(x) = max
{
f(x)− fε, g1(x), g2(x), . . . , gm(x)

}
(5)

subject to minXi ≤ xi ≤ maxXi for i = 1, 2, . . . , n. (6)

The global optimization algorithm finds an approximation of the global
optimum over the tolerance interval X. If the optimal value h∗ is less than
zero, the interval X is strongly feasible. If the optimal value h∗ is greater
than or equal to zero, then the interval X is not strongly feasible. Also, the
algorithm provides a point z = x∗ where the constraints or f(x) < fε are
violated.

The two checking routines are just about interchangeable. The interval
checking routine has the advantage that a strongly feasible interval, contain-
ing the global optimum can be recognized in a finite number of steps, see
Theorem 1 in [6]. The global optimization checking routine will converge
with probability one to the global optimum. It is possible for the global
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optimization checking routine to stop prematurely and accept an interval as
feasible when in fact it isn’t. It is also possible for the interval checking rou-
tine to reject a feasible interval as infeasible if γ is not small enough. We will
show in Section 2.2 that the global optimization routine has computational
advantages. In practical use there is a tradeoff between absolute guarantee
and computational efficiency.

2.2 Checking tolerance intervals
in a composite laminates

In this section the two checking routines will be applied to check a tolerance
interval around a given seed point. As a test problem, a 4 ply composite flat
plate laminate is tested, subject to strain constraints. Analytic expression
of the strain constraints can be found in [12]. To find the inclusion functions
for the interval checking routine, the natural interval extension with outside
rounding is used ([1, 11]). For our specific functions, one interval function
evaluation costs approximately two times more computing time than a real
function evaluation. The loading conditions used are: Nx = 2000 lbs/in,
Ny = 1000 lbs/in and Ny = −500 lbs/in.

The seed point used is: θ = (−45o, 14o, 14o,−45o). An interval of the
form X = [xseed

i − δ, xseed
i + δ] for i = 1, 2, . . . , n and δ ranging from 0.5o

to 3.0o is checked for feasibility. In the interval checking routine we used
γ = 0.01. The same intervals were checked using IHR by checking each
box 5 times, using a fixed number of function evaluations of 5000. For the
case where IHR detected an interval as infeasible, the average number of
iterations needed to detect infeasibility are reported. The results are shown
in Table 1.

The interval checking routine gives conservative but reliable information
about the feasibility of the tolerance intervals. That is, the interval checking
routine may indicate an interval is infeasible when it really is feasible, but it
will not indicate an interval is feasible when it is actually infeasible. In fact,
the intervals given in Table 2 are all feasible intervals if they are checked with
more precision. The interval checking routine made the error, because γ =
0.01 was not small enough to get a sharp correct indication. Unfortunately,
using a smaller γ greatly increases computation, and was not practical for
this problem. On the other hand, IHR may not always find the true global
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Interval checking routine IHR
δ NFE Feasible NFE Feasible
0.5o 60,980 Yes 25,000 Yes
1.0o 1,657,265 Yes 25,000 Yes
1.5o 18,351,740 Yes 25,000 Yes
2.0o ∗ 2,417,171 No 25,000 Yes
2.5o 8,877,255 No 61 No
3.0o 10,304,657 No 28 No

∗ The 2.0 degree interval is actually feasible

Table 1: Checking interval [xseed ± δ] with both routines

δ 2.0o 2.5o 3.0o

θ1, θ1 -47.0000000,-46.9921875 -47.5000000,-47.4902344 -48.0000000,-47.9941406

θ2, θ2 12.0000000, 12.0078125 11.5000000, 11.5097656 11.0000000, 11.0058594

θ3, θ3 12.0000000, 12.0078125 11.5000000, 11.5097656 11.0000000, 11.0058594

θ4, θ4 -43.1406250,-43.1328125 -43.5546875,-43.5449219 -43.6757812,-43.6699219

Table 2: Intervals returned as infeasible by the interval checking routine

optimum and it may indicate that a tolerance interval is feasible, when it
really is infeasible. But if the IHR checking routine indicates an interval
is infeasible, it is always correct. As can be seen in Table 1, the interval
checking routine requires a lot more computation than the IHR checking
routine.

To use both routines to their best advantage, we are investigating a
hybrid method that alternates between both routines. This hybrid method
would stop if the interval portion indicates feasibility, or if the IHR portion
indicates infeasibility. It is a promising way to reduce computation and
maintain a guarantee of a correct conclusion.
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3 Growing a tolerance interval

3.1 Main algorithm

The second question mentioned will be addressed using the Main Algorithm
introduced in [6]. The algorithm requires an interior point xseed satisfy-
ing conditions (3) and (4), and iteratively grows a strongly feasible interval
around xseed. This is an approximation of a maximal feasible tolerance inter-
val containing xseed. The algorithm uses a stopping criterion parameter η
and step sizes d(i, 1) and d(i, 2) for i = 1, 2, . . . , n, which are set at the be-
ginning to positive reals. To start, d(i, 1) and d(i, 2) must be larger than η.
The stopping criterion indicates that the algorithm should stop increasing
the size of the actual box X, when the change along each coordinate is less
than the threshold η in all directions.

Main algorithm

Step 0. Initialize interval vector Xi = [xseed
i , xseed

i ], and d(i, j) ≥ η > 0 for
all i = 1, 2, . . . , n and j = 1, 2.

Step 1. For i = 1 to n do:

Step 2. Set Yj = Xj for j = 1, 2, . . . , n; j 6= i and

Yi =
[
min(Xi)− d(i, 1), min(Xi)

]
.

Step 3. Use the checking routine to check whether f(y) < fε and gj(y) < 0
(j = 1, 2, . . . , m) for each y ∈ Y . If the answer is yes, then set
X = X ∪ Y . Otherwise d(i, 1) = (min(Xi) − max(Zi))/2, where Z
is the interval passed back by the checking routine as not strongly
feasible.

Step 4. Set Yj = Xj for j = 1, 2, . . . , n; j 6= i and

Yi =
[
max(Xi), max(Xi) + d(i, 2)

]
.

Step 5. Use the checking routine to check whether f(y) < fε and gj(y) < 0
(j = 1, 2, . . . , m) for each y ∈ Y . If the answer is yes, then set
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X = X ∪ Y . Otherwise d(i, 2) = (min(Zi) − max(Xi))/2, where Z
is the interval passed back by the checking routine as not strongly
feasible.

Step 6. End of i-loop

Step 7. Stopping criterion: if the number of inclusion function calls is less
than 1,000,000, and there is an i = 1, 2, . . . , n such that either
d(i, 1) ≥ η or d(i, 2) ≥ η then go to Step 1.

Step 8. Print X, and STOP.

3.2 Convergence results

Consider a fixed constrained nonlinear optimization problem as given in
Section 1.1. Denote the result box calculated with the algorithm parameters
γ and η by X∗γ,η, and the level set belonging to the function value fε by Sfε.
Further assume that

w
(
F (X)

)
→ 0 as w(X)→ 0, and (7)

w
(
Gj(X)

)
→ 0 as w(X)→ 0 (8)

for all j = 1, 2, . . . , m.
The following theorems characterize the convergence properties of our

algorithm with the interval checking routine:
Theorem 1. Assume the set Sfε ∩A is bounded, the seed point xseed fulfills
the conditions (3) and (4), d(i, j) > 0, and the properties (7) and (8) hold for
the inclusion functions F (X) and G(X). Then there exist threshold values
γT > 0 and ηT > 0 such that for all γ: 0 < γ < γT and η: 0 < η < ηT

1) the algorithm stops after a finite number of steps,
2) the result interval X∗γ,η has a positive measure, and
3) the result interval X∗γ,η is strongly feasible: X∗γ,η ⊂ Sfε ∩ A.

See [6] for proof. Using Theorem 1, similar results can be obtained
when the global optimization checking routine is used by making certain
assumptions. The results are summarized in the following corollary.
Corollary 1. Assume the set Sfε∩A is bounded, the seed point xseed fulfills
the conditions (3) and (4), d(i, j) > 0 and the optimization routine correctly
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returns whether an interval is strongly feasible or not. Then there exists an
ηT > 0 such that for all η: 0 < η < ηT

1) the algorithm stops after a finite number of checking routine calls,
2) the result interval X∗η has a positive measure, and
3) the result interval X∗η is strongly feasible: X∗η ⊂ Sfε ∩ A.

Theorem 2 describes the limit of the result boxes when the algorithm
parameters γ and η are equal and converge together to zero.
Theorem 2. If the conditions of Theorem 1 are fulfilled, then the limiting
interval X∗ = limγ→0X

∗
γ,γ exists, and X∗ is maximal in the sense that for

every box X ′ the relations X∗ ⊆ X ′ and X ′ ⊆ Sfε ∩ A imply X ′ = X∗.
See [6] for proof. The algorithm does not find a maximal volume box

around the seed point in a finite number of steps. In our application to
manufacturing tolerances this is not a disadvantage since we often want to
be able to control the shape of the resulting maximal box.

3.3 Stiffened panel design

In this test a more realistic problem will be treated using the Main Algorithm
to grow a maximal tolerance interval using the global optimization checking
routine. The test problem used here is a stiffened panel design example from
[8]. The material used is AS4/3501-6, graphite/epoxy and the structure is
subjected to the same multiple loading condition as in [8]. The seed point
used is obtained from a previous optimization by minimizing weight subject
to strain and strength constraints using a margins of safety equal to 0.3.
The seed point is the following:

θskin = (−38o, 35o,−30o, 49o,−82o,−82o, 49o,−30o, 35o,−38o)

θstiffener = (18o, 18o,−18o, 62o,−18o,−62o,−62o,−18o, 62o,−18o, 18o, 18o)

(STS, WSTF, HSTF, WSTC, ASTW) = (18.69, 1.00, 2.00, 1.99, 89.97o)

θskin and θstiffener are fiber angles in degrees. Dimensions associated with
the stiffener geometry are shown in Figure 1. STS stands for stiffener spacing
in inches, WSTF for width of stiffener flange in inches, HSTW for height
of stiffener web in inches, WSTC stands for width of stiffener cap in inches
and ASTW for the angle of stiffener web in degrees.
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Figure 1: Hat stiffener geometry

Tolerance intervals are grown for the fiber angles in the skin and the stiff-
ener. The weight of the structure only depends on the number of plies and
geometry variables but not on fiber angles. Therefore we are not concerned
with changes in weight, only concerned with the feasibility of the structure.
The tolerances on the geometry variables will be assumed to be given and
fixed, and they are ±1.00 degree on the stiffener web angle and ±0.05 inches
on all the other geometry variables.

The resulting tolerances are shown in Figure 2, which demonstrates how
the fiber angles can vary from their optimum value without making the
structure infeasible. Notice that the tolerances are different for different
variables. For instance the optimal value of the first fiber angle in the skin
(−38o) can range between −43o and −33o and therefore has a tolerance
of 4o in one direction and 5o in the other direction. The optimal value of
the third fiber angle in the skin (−30o) can vary from −33o to −27o and
therefore has a tolerance of approximately ±3o. This is valuable tolerance
information in practice because there are manufacturing situations where
tolerances can be of different sizes for different variables, that is tolerances
may be asymmetric. The initial setting of d(i, j) in the Main Algorithm can
be manipulated to influence the resultant tolerance interval.

4 Conclusions

We have shown that growing an interval using the Main Algorithm gives
valuable tolerance information for a constrained optimization problem. The
practical information can be used to simply check whether a tolerance inter-
val is feasible, or to gain information about possibly asymmetric tolerances.
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Figure 2: Tolerances on fiber angles in skin and stiffener

Two checking routines are discussed and compared. The interval check-
ing routine has the advantage of giving a reliable indication of feasibility,
while the IHR checking routine gives a reliable indication of infeasibility.
Also, IHR appears to have computational advantages in detecting infeasibil-
ity. We hope to use both routines to their best advantage by constructing a
hybrid checking routine that combines the reliability of the interval checking
routine with the efficiency of the IHR checking routine. This would provide
a truly practical scheme for evaluating tolerance intervals.
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József Attila University,
Szeged,
Hungary

M. E. Tuttle
Mechanical Engineering Department
University of Washington,
Seattle,
USA


