
Interval Computations
No 3, 1993

Verified Solution of Linear Systems
Based on Common Software Libraries

Carlos Falcó Korn and Christian Ullrich
Usually routines of common software libraries compute approximations for
the solution of a given problem and, in certain cases, corresponding accuracy
estimations. These estimations are sometimes very precise. In other cases,
they are completely wrong, giving rise to misleading interpretations of the
computed solution. Therefore, we propose to extend existing software libraries
by the capability of computing a guaranteed inclusion of the solution. For
linear systems with interval H-matrices, this extension can be done without
changing the given library, thus reusing the existing software. Furthermore,
runtime and accuracy measurements show that the verification can be achieved
with low additional costs—even for linear systems of high dimension.

Верифицированное решение
линейных систем на основе

библиотек подпрограмм общего
назначения

К. Фалько Корн, Х. Улльрих
Как правило, подпрограммы, имеющиеся в библиотеках общего назначе-
ния, вычисляют приближенное решение данной задачи и, в некоторых
случаях, соответствующие оценки точности. Эти оценки иногда весьма
точны, хотя нередко они совершенно ошибочны и могут привести к невер-
ной интерпретации полученного решения. Предложение авторов статьи
сводится к тому, чтобы дополнить существующие библиотеки средства-
ми, позволяющими получить гарантированное включение решения. Для
линейных систем с интервальными H-матрицами такие средства могут
быть добавлены без изменения существующей библиотеки. Кроме того,
измерения времени счета и достигнутой точности показывают, что вери-
фикация для линейных систем даже большой размерности может быть
осуществлена с незначительными дополнительными затратами.

c© C. Falcó Korn, Ch. Ullrich, 1993

Verified Solution of Linear Systems Based on Common Software Libraries 117

1 Introduction

Many software libraries for solving numerical problems are now available
[8]. Some of these packages are widely used because they are distributed
freely via electronic mail servers [4]. In addition they are popular because
the routines provided are efficient implementations of efficient algorithms.
The major drawback when using these libraries is that the correctness of
the results is not guaranteed. Frequently the user gets just an estima-
tion for the number of correct digits of the computed “solution”. This
estimation is sometimes accurate, but in other cases, it is not reliable or
is completely misleading. The well-known LINPACK package [5] gives a
good example in the routines matgen and DGECO. The first generates a test
matrix of a given dimension n; the second performs the LU-decomposition
of a matrix and computes an estimation of its condition number, which can
be used to estimate the number of correct digits. For n = 128, a very high
condition number is delivered, thus suggesting an ill-conditioned problem.
This may make the user cautious, but he gets no hint that the matrix is
singular!

This problem is avoided by interval algorithms, which either compute a
guaranteed inclusion of the solution or return a warning that the problem
may not be solvable. In spite of this powerful feature, interval algorithms
have not been accepted by the great majority of users. We believe that
reasons for this lie in the philosophy of existing environments for verified
computing. First, a user has no possibility of choice. For example, Pascal–
XSC [11] provides just one routine for solving linear systems. That routine
is so general that it works inefficiently in many cases. Second, existing
software is not reused; everything is built “from scratch.” A potential user
has to decide between “all or nothing.” If he needs guaranteed results,
he has to drop the working environment or library he is accustomed to.
Third, the proposed interval algorithms are too slow. This is partly due
to the ambition of computing inclusions to the maximum accuracy, which
in most practical cases is not necessary. A direct consequence of being
inefficient is the inability to solve big problems. Finally, existing interval
programs are coupled to the environment being used (e.g. Pascal–XSC),
thus reducing the portability.

We show how to avoid above drawbacks by using software libraries for
solving linear systems:

118 C. Falcó Korn, Ch. Ullrich

Reuse of existing software libraries is achieved by decoupling

• the calculation of the approximation using a library routine

• and the verification step.

We add new routines to the existing library procedures that use the
computed approximation to construct an inclusion. This implies the
subordination of the second phase to the first one, specially to the
accuracy of the computed approximation. This strategy leads to a
variety of verification methods.

Efficiency: For interval H-matrices, we develop algorithms that compute
an inclusion efficiently in the sense that the time needed for the ver-
ification is less or of the same magnitude as the computation time
for the approximation. Since floating point operations should be ex-
ecuted as fast as possible (using co-processors), we avoid evaluating
scalar products to maximum accuracy.

Portability: The algorithms are based only on a floating-point arithmetic
conforming the IEEE standard 754 [1]. This guarantees the general
applicability of the methods.

The aim of our approach is a collection of verification routines with inter-
faces that are adapted to specific conventional libraries (ITPACK,
LINPACK etc.). A user continues to work in his familiar environment,
and he can—but does not have to—guarantee his results economically by
calling a further subroutine with a familiar interface.

Table 1 lists notation used in the following sections. Matrix variables
are denoted by capital letters, vectors and scalars by small letters. We
enclose interval variables in brackets to achieve a better readability. For
instance, an interval matrix is given by [A] ∈ Mn(IIR), and A ∈ [A]
denotes an arbitrary real matrix A ∈Mn(IR) contained in [A]. Subscripts
denote the components of a vector or matrix. Thus, x = (xi) ∈ Vn(IR)
and A = (Aij) ∈ Mn(IR) represent a vector and a matrix, respectively.
Superscripts identify a sequence of vectors.

Verified Solution of Linear Systems Based on Common Software Libraries 119

IN : set of natural numbers
IR : set of real numbers
IIR : set of real intervals, i.e. IIR = {[a, b]|a, b ∈ IR, a ≤ b}
Vn(T) : n-dimensional vectors with components in T ∈ {IR, IIR}
Mn(T) : quadratic n× n matrices with components in T ∈ {IR, IIR}

Table 1: Notation for data types

2 Analysis of classical iterative methods

Starting with an interval matrix [A] ∈ Mn(IIR) and an interval vector
[b] ∈ Vn(IIR), we are looking for an inclusion [x] ∈ Vn(IIR) of the solution
set X := {x ∈ Vn(IR) | Ax = b, A ∈ [A], b ∈ [b]}. The usual approach is
to transform the problem into a fixed point equation [x] = [T][x]+[g] that
allows a successful test for inclusion (according to the theorem of Brower),
i.e. there exists a [x] ∈ Vn(IIR) with [T][x] + [g] ⊆ [x].

The success of the inclusion test is characterized by the following the-
orem proved in [13]:

Theorem 1. Given [T] ∈ Mn(IIR) and the δ−neighborhoods of 0 ∈
Vn(IR) Uδ(0) ⊆ [ε]k+1 ⊆ [ε]k, k = 1, 2, 3, . . . Choose any starting value
[x]0 ∈ Vn(IIR), and perform the iteration [x]k+1 := ([T][x]k+[g])+[ε]k, k ≥
0. Then there exists a k ∈ IN with [x]k+1 ⊆ [x]k if and only if ρ(|[T]|) < 1.

Standard books of iterative methods contain several statements re-
garding the condition ρ(|T |) < 1. For example, Varga [14] devotes several
chapters to M-matrices and regular splittings. They lead to convergent
methods with non-negative iteration matrices T , which obviously fulfill
above condition. In the following, we give the necessary definitions and
results. For further reading, we recommend [7, 12, 14].

Definition 1. Given A, M , N ∈Mn(IR), A = M −N is called a regular
splitting of the matrix A if M is nonsingular with M−1 ≥ 0, and N ≥ 0.

Definition 2. A matrix A ∈ Mn(IR) is a M-matrix, if aij ≤ 0 (i 6= j), A
is nonsingular, and A−1 ≥ 0.

120 C. Falcó Korn, Ch. Ullrich

Definition 3. Let [A] = ([a]ij) ∈Mn(IIR):

1. The point matrix 〈[A]〉 = (αij) ∈Mn(IR) defined by

αij =

{
inf{|aii| | aii ∈ [a]ii} for i = j

−|[a]ij| otherwise

is called the comparison matrix of [A].

2. [A] is an interval H-matrix, if 〈[A]〉 is a M-matrix.

Since important classes of matrices (e.g. strict or irreducible diagonal
dominant matrices, symmetric matrices which have a positive definite
comparison matrix) are H-matrices1, the following lemma allows us to
define simple, but effective verification algorithms.

Lemma 1. Let A ∈Mn(IR) be a H-matrix. Let ω0 ∈ IR be defined by

ω0 =
2

1 + ρ(|J |)

where J is the matrix resulting from the Jacobi method. Then ω0 > 1,
and the Jacobi, Gauss-Seidel, and SOR methods (for 0 < ω < ω0) are
convergent.

Proof: The proof is trivial for the Jacobi method; the rest is shown in [7,
pp. 169–171]. 2

The proof shows ρ(|J |) < 1, ρ(|G|) < 1, and ρ(|H(ω)|) < 1 for 0 <
ω < ω0.

3 Symmetric inclusions

3.1 Reducing the runtime

The idea of using symmetric intervals is not new. Collatz [3] already
used this approach to reduce the computation time. The following lemma

1An H-matrix is a point matrix A ∈Mn(IR) that fulfills Definition 3.

Verified Solution of Linear Systems Based on Common Software Libraries 121

proved in [6] shows how to bound the solution set of an interval linear
system (with H-matrices) by solving a single linear system with point
data.

Lemma 2. Let [A] ∈Mn(IIR) be an interval H-matrix, and [b] ∈ Vn(IIR).
Let z ∈ Vn(IR) be the solution of 〈[A]〉z = |[b]|. Then every x ∈ {x | Ax =
b, A ∈ [A], b ∈ [b]} satisfies |x| ≤ z.

Now let u ∈ Vn(IR) be an approximate solution of Ax = b with A ∈ [A]
and b ∈ [b], and let bd ∈ Vn(IR) be an upper bound for the solution of

〈[A]〉z = |[b]− [A]u| .

Then u + [−bd, bd] is an inclusion of the solution set of [A][x] = [b]. The
computation of bd can be done using any regular splitting 〈[A]〉 = 〈M〉 −
|N | and iterating as shown in Table 2. Upon termination, u+[−zk+1, zk+1]
is an inclusion of the solution set X.

Choose 0 ≤ z0 ∈ Vn(IR)
Iterate zk+1 := 〈M〉−1|N |zk + 〈M〉−1 |[b]− [A]u|
until zk+1 ≤ zk

Table 2: Computing a symmetric inclusion for interval H-matrices

Note that zk+1 is computed without interval operations once |[b]−[A]u|
is available. In Section 3.2, we show how to bound |[b] − [A]u| without
interval arithmetic. Thus the total execution time can be halved.

For usual splittings (Jacobi, Gauss-Seidel, SOR methods) the system
〈M〉z = r can be solved in a sufficiently “simple” way. In these cases,
computing an upper bound of zk+1 can be achieved by setting the upward
rounding mode when evaluating the expression that defines zk+1. In ad-
dition we should comment that, as stated in Theorem 1, an inflation has
to be performed. In [6] it is shown that the well-known epsilon inflation
is not suitable, and a new inflation strategy is introduced.

3.2 Reducing the memory requirement

Having used symmetric intervals to reduce the runtime, we consequently
consider a possible reduction of the memory requirements for interval in-

122 C. Falcó Korn, Ch. Ullrich

put data. Table 3 lists the data involved in each step of the inclusion
computation.

Phase Input Output

1. Approximation A ∈ [A], b ∈ [b] u ∈ Vn(IR)
2. Defect [A], [b], u d = |[b]− [A]u| ∈ Vn(IR)
3. Verification 〈[A]〉 ∈Mn(IR), d z ∈ Vn(IR), with X ⊆ u+ [−z, z]

Table 3: Data needed for symmetric inclusions using interval H-matrices

Let us start with the handling of the matrices. Notice that in the first
and third steps, only a point matrix is needed. Since we can choose in
the approximation phase any matrix contained in the interval input, it
is reasonable to choose A ∈ [A] such that 〈[A]〉 is defined by taking the
absolute values (see Definition 3). Therefore, we can use the same matrix
A in the first and third phases.2

The computation of the defect is more complicated since we need all
of the information contained in [A]. Attempts to avoid the storage of
the interval matrix lead to a loss of information, i.e. accuracy. For the
moment, let [b] = b ∈ Vn(IR). Then for all Â ∈ [A], we have

|b−Âu| = |b−Au+(A−Â)u| ≤ |b−Au|+ |A−Â||u| ≤ |b−Au|+d([A])|u|

where d([A]) is the diameter matrix of [A]. So far, we have not gained
anything since A and d([A]) require the same amount of memory as [A].
Considering that in many cases intervals occur because of converting dec-
imal into binary data or measurement errors in experiments, we assume
that all components have a similar relative error. Then the diameter ma-
trix can be estimated by d([A]) ≤ mA|A| with 0 ≤ mA ∈ IR. This means
for the defect:

|b− [A]u| ≤ |b− Au|+mA|A||u|.

Hence, the defect can be bounded by the same matrix A ∈Mn(IR), which
suffices for all three phases in Table 3. This way we have halved the
memory requirements for the matrix.

2This choice reduces not only the memory requirements, but usually also the accuracy compared
with the center matrix of [A]. The results in Section 5 show that this accuracy loss is not important.

Verified Solution of Linear Systems Based on Common Software Libraries 123

The handling of the interval right hand sides follows a similar pattern.
For the approximation phase, we can choose any b ∈ [b]. For the defect,
we easily get

|[b]− [A]u| ≤ mb ∗ |b|+ |b− Au|+mA|A||u|

with 0 ≤ mb ∈ IR, and d([b]) ≤ mb|b|.
Summarizing, we have shown how to map intervals (in the matrix and

in the right hand side) to point data and an additional number.3 This
makes the adaptation of the verification routines to the given library an
easy task.

Before doing so, we should remark that the user is still responsible for
generating the correct data. He must compute sequentially the elements
[a]ij (using interval arithmetic) and determine the values aij ∈ [a]ij and
mij with

d([a]ij) ≤ mij ∗ |aij|.

Then mA := max{mi,j | 1 ≤ i, j,≤ n}. The user should not determine
the values aij and mij by hand, but by calling special routines provided
in an interval library (see [6]). Two different routines are necessary to
compute the elements of the comparison matrix (see Definition 3). A
further routine treats the right hand side.

4 Extension of ITPACK

As stated in [9, p. 74]: “It is not usual to find library subroutines for itera-
tive solution methods. However, a collection of such routines can be found
in ITPACK, . . . ” This package provides basic methods (such as Jacobi
and SOR iteration) that are accelerated by semi-iterative or conjugate gra-
dient techniques. The reference manual [10] points out that “. . . ITPACK
routines can be called with any linear system containing positive diagonal
elements, they are most successful in solving systems with symmetric pos-
itive definite or mildly nonsymmetric coefficient matrices.” Matrices are
stored in the well-known “compressed sparse row format,” which means

3This estimation is very inaccurate if [A] or [b] have elements containing 0 without being equal to
[0]. For instance, mA has to be 2 if [a]ij = [−ε, ε] for some i, j. This does not occur in our examples. In
other cases, another estimate is necessary.

124 C. Falcó Korn, Ch. Ullrich

that the matrix 
11.0 0.0 0.0 14.0 15.0
0.0 22.0 0.0 0.0 0.0
0.0 0.0 33.0 0.0 0.0

14.0 0.0 0.0 44.0 45.0
15.0 0.0 0.0 45.0 55.0


is represented by three arrays:

A = [11.0, 14.0, 15.0, 22.0, 33.0, 14.0, 44.0, 45.0, 15.0, 45.0, 55.0],

JA = [1, 4, 5, 2, 3, 1, 4, 5, 1, 4, 5],

IA = [1, 4, 5, 6, 9, 12].

These three parameters are part of the interface of any of the seven rou-
tines provided by ITPACK:

subroutine name(n, IA, JA, A, b, u, iwksp, nw, wksp, iparm,

rparm, ier).

Most of the remaining parameters are self-explanatory; n is the dimen-
sion, b is the right hand side, and u is the approximation. Temporary
results are stored in the arrays iwksp and wksp (of size n+1 and nw). Run-
time errors are signaled via the last parameter. The 12-element integer
array iparm is mostly used to enter values controlling the functionality
of the routine, such as the maximum number of iterations, etc. The 12-
element floating-point array rparm is mostly used to return values like the
estimated number of correct digits. ITPACK offers a procedure named
DFAULT that sets defaults for all 24 values in iparm and rparm.

The interface of a verification routine is given by

long name(n, IA, JA, A, b, u, iparm, rparm, bound).

The name of this function is constructed by the following convention:

ElementType MatrixType KindOfInclusion MethodUsed.

ElementType expresses whether the matrix contains intervals. Matrix-
Type distinguishes the class of the matrix (M-matrix, H-matrix etc.).
KindOfInclusion tells whether a symmetric or a nonsymmetric inclusion
is computed. Finally, MethodUsed names the iterative method (Jacobi,
Gauss-Seidel, etc.). Thus the routine

Verified Solution of Linear Systems Based on Common Software Libraries 125

long I M S Jac(n, IA, JA, A, b, u, iparm, rparm, bound)

computes a symmetric inclusion u+[−bound, bound] for interval M-matrices
using the Jacobi method. It is important to note that

• The function returns 1 if the inclusion was successful, otherwise 0.

• Intervals on the right hand side are handled via b ∈ Vn(IR) and
mb ∈ IR satisfying d([b]) ≤ mb|b|. The value of mb is passed to the
function via rparm[5].

• Intervals in the matrix are handled via A ∈ Mn(IR) and mA ∈ IR
satisfying d([A]) ≤ mA|A|. The value of mA is passed to the function
via rparm[6].

The remaining parameters are the same as in the ITPACK routines. We
also supply a procedure DFAULT V that sets the arrays iparm and rparm to
default values (see [6]). Since the approximation and verification routines
look almost the same and are handled in a similar way, a potential user
will not be discouraged from verifying his results.

5 Results

5.1 Example 1

The first example uses the matrix which arises from the discretization
of the well-known Dirichlet problem ∆u = 0 on the unit square Ω =
{(x, y)|0 < x, y < 1} with boundary conditions [14, p. 202–205]:

A =

n︷ ︸︸ ︷
B C

C
. C

C B

,

126 C. Falcó Korn, Ch. Ullrich

with

B =


4 −1

−1
. −1
−1 4


︸ ︷︷ ︸√

n

and C =


−1

. . .
. . .
−1


︸ ︷︷ ︸√

n

.

To test the inclusion routines, we construct a linear system Ax = [b]
such that the i-th component of the true solution is xi = 1

i . We use interval
arithmetic to compute an inclusion [b] ∈ Vn(IIR) of Ax. We then choose
b ∈ [b] and determine a number mb ∈ IR such that d([b]) ≤ mb|b|. With
these values, we use ITPACK and the verification routines to achieve an
inclusion. For a more realistic problem, see Section 5.2.

All following computations are performed in IEEE double format on
a Macintosh IIcx. The approximation is computed with the ITPACK
routine SSORSI. The verification is computed with P M NS GS. The routine
SSORSI is in all cases the fastest of all the ITPACK routines, i.e. JCG, JSI,
SOR, and SSORCG each need more time to compute an approximation of
the same quality. Table 4 compares for different dimensions the runtime
of SSORSI (requiring 10 correct digits) and P M NS GS.

dimension 100 484 900 1444 1764 2116 2916 40000

approximation 61 382 762 1413 1663 2118 3312 68396
verification 16 150 352 655 855 1283 1858 76252

Table 4: Runtime of the approximation and the verification

The runtime is measured in ticks, which correspond to 1
60 seconds. Ta-

ble 4 shows for increasing dimension how the verification time approaches
and overtakes the approximation time. This behavior is not bad if we
consider that ITPACK does not provide the desired accuracy. For the di-
mension 40000, an approximation with only 3 correct digits was computed
(we required 10). The worst and best inclusions guarantee 2.4 and 12.8
digits, respectively.

To illustrate this point, we run the following test. For fixed dimension
2916, we demanded from ITPACK approximations of different accuracies.

Verified Solution of Linear Systems Based on Common Software Libraries 127

The results are condensed in Table 5, where the error of the computed
approximation to the vector xi = 1

i (we will call this the “exact” error),
the accuracy of the best and worst inclusions, as well as both ITPACK
estimations are given. The values represent the number of digits which
are obtained using the negative of the logarithm base ten. Negative values
mean that no digits are correct.

digits required 5 7 9 11 13

“exact” error -2.9 -0.5 1.7 4 6.1
worst inclusion -3.4 2.8 1.1 2.9 5.3
best inclusion 6.6 9 11.1 12.4 14.3

estimation # 1 5.1 7 9.2 11.3 13.6
estimation # 2 7.3 9.7 11.9 13.2 15.4

Table 5: Accuracy achieved vs. accuracy required

The worst inclusion is clearly influenced by the “exact” error, while
the best inclusion is always close to the required accuracy and both es-
timations. An explanation for this behavior, specially for the misleading
information delivered by ITPACK, can be obtained when considering for
example the second estimation. Given an approximation u, the error is
estimated by

‖x− u‖2

‖x‖2
≈ ‖b− Au‖2

‖b‖2
.

Although the reference manual states that the negative of the logarithm
base ten of this value “. . . is the approximate number of digits. . . ” [10,
p. 9], it should be stressed that it is not a relative but an absolute accuracy,
which is only valid for the large components of the solution (see [6]). As
shown by the “exact” error, smaller components may have considerably
fewer correct digits. This discrepancy is determined automatically when
intervals are used.

The considerations above are confirmed by setting xi = 1. The gap
between the best and worst inclusions is narrower, and the inclusion guar-
antees at least 2 to 3 digits in all. For the dimension 40000, we obtain
(demanding 10 digits from ITPACK) 8 – 10 guaranteed digits. In this
case the approximation took 81055, the verification 74350 ticks.

128 C. Falcó Korn, Ch. Ullrich

5.2 Example 2

The two-dimensional elliptic problem

A(x, y)uxx + C(x, y)uyy +D(x, y)ux + E(x, y)uy + F (x, y)u = G(x, y)

on the unit square Ω = {(x, y)|0 < x, y < 1} with the linear boundary
conditions of third kind

left : α0(y)ux(0, y) + β0(y)u(0, y) = γ0(y),

right : α1(y)ux(1, y) + β1(y)u(1, y) = γ1(y),

down : δ0(x)uy(x, 0) + ε0(x)u(x, 0) = λ0(x),

up : δ1(x)uy(x, 1) + ε1(x)u(x, 1) = λ1(x),

was solved in [2] with ACRITH by partitioning Ω into an equidistant mesh
using the step width h = 1

m . This delivers a total of (m + 1)2 points or
unknowns in the plane. Interior points are handled by inserting second
order central differences into the partial differential equation, which leads
to (m− 1)2 linear equations. The boundaries (without the 4 corners) are
approximated using forward/backward differences. This gives 4(m − 1)
additional equations. Setting the corners to zero, we obtain the last 4
equations of the quadratic linear system (for details see [2, 6]).

The following three examples studied in [2]

1) −(uxx + uyy) = 0, u(x, 0) = u(0, y) = 0, u(x, 1) = u(1, y) = 1

2) −(uxx + uyy) = 0.1
x2+y2 , u(x, 0) = u(0, y) = u(x, 1) = u(1, y) = 0

3) −(uxx +uyy) = e−(x− 1
2)2−(y− 1

2), u(x, 0) = u(0, y) = u(x, 1) = u(1, y) = 0

lead to exactly representable point matrices (in binary arithmetic). The
right hand side has to be included by intervals. Table 6 shows for the first
example and different step widths the ratio of the computation time for
the verification and the approximation (using ITPACK and its extension).
For the approximation, we chose the ITPACK routine SSORSI, which was
again the fastest of the five ITPACK routines.

Note that h = 1
28 leads to a system with 66049 equations. In [2] results

are given just for h = 1
23 = 1

8 . In this case the ratio between verification
and approximation time equals 16.8!

Verified Solution of Linear Systems Based on Common Software Libraries 129

step width 1
23

1
24

1
25

1
26

1
27

1
28

verification
approximation 0.14 0.23 0.30 0.48 0.32 0.38

Table 6: Relation of the approximation and verification times

ACRITH guaranteed 5 digits for h = 1
8 , while the ITPACK extension

guarantees in all cases 7 – 10 digits. To achieve this, we require 10 correct
digits from the approximation routine in ITPACK. Similar (accuracy and
runtime) results are valid for all other examples.

The remaining examples studied in [2]

4) −(eyuxx + exuyy) = 0, u(x, 0) = u(0, y) = 0, u(x, 1) = u(1, y) = 1

5) −(e−yuxx + e−xuyy) = 0, u(x, 0) = u(0, y) = 0,
u(x, 1) = 1

1−0.9x , u(1, y) = 1
1−0.9y

6) −(pux)x − (puy)y + u = 0 with p(x, y) = ex
2+y2,

u(x, 0) = u(0, y) = 0, u(x, 1) = x
1−0.9x , u(1, y) = y

1−0.9y

lead to interval matrices which are treated by computing a real number
mA with d([A]) ≤ mA|A| (see Section 3.2). The right hand side is included
in the same way.

Table 7 shows excellent results for the fourth example, where 10 correct
digits were demanded from ITPACK. The two other examples lead to
similar values.

step width 1
23

1
24

1
25

1
26

1
27

verification
approximation 0.23 0.21 0.32 0.33 0.36

worst inclusion 9 9 9 9 8

Table 7: Runtime and accuracy of the inclusion

130 C. Falcó Korn, Ch. Ullrich

6 Conclusion and further work

We have seen that in the case of interval H-matrices that it is possible to
extend software libraries (for solving linear systems) by verification rou-
tines for a highly efficient inclusion of the solution basing on approxima-
tions delivered by the library routines. Our extension to ITPACK consists
of 6 routines (each 300 lines of C code). Their application requires

• ITPACK, which consists of 9000 lines of FORTRAN. It is public
domain software and can be obtained via netlib.

• a floating-point arithmetic that provides operations with directed
roundings (this is satisfied by all co-processors supporting the IEEE
standard 754 [1]) and a high level language that allows control of
the rounding direction.

The efficiency of the verification routines is excellent for various reasons.
The use of symmetric input data and symmetric inclusions nearly halves
the execution time. Furthermore, a new inflation variant is built in that
accelerates the verification step considerably. Finally, we have refused to
supply any (software) implementation of the exact dot product. Basing
only on hardware operations we may loose some accuracy, but we gain all
the power of the existing co-processors.

All the results have been produced on a Macintosh IIcx containing the
processors MC68030 and MC68881 (which provides the IEEE standard
754) and 8 MBytes of RAM. Since ITPACK is written in FORTRAN and
our routines in C, two compilers are needed (you can avoid this problem by
rewriting the latter in FORTRAN). The C compiler must allow to control
the rounding direction. We have listed these requirements on purpose to
stress the minimality (and thus portability) of our approach.

In our opinion, further research should follow these paths:

• Development of more efficient verification methods: On one hand,
more refined inflation variants should be developed and tested. On
the other hand, the convergence of the verification could be acceler-
ated using preconditioners. It should even be possible to reuse the
parameters of the acceleration methods computed by ITPACK.

Verified Solution of Linear Systems Based on Common Software Libraries 131

• Extension of libraries based on direct methods: Following a different
approach, verification methods basing on the LU or Cholesky fac-
torizations, etc., can be developed [6] to extend popular libraries as
LINPACK or LAPACK.

• Implementation on parallel computers: First experiments have shown
that it is possible to transfer successfully our approach to parallel
computers. Promising results with the Laplacian matrix for dimen-
sions up to 1,000,000 are given in [6].

References

[1] American National Standards Institute/Institute of Electrical and
Electronic Engineers, A standard for binary floating-point arithmetic.
ANSI/IEEE Std 754–1985, New York, 1985.

[2] Ames, W. F. and Nicklas, R. C. Accurate elliptic differential equation
solver. In: Miranker, W. L. and Toupin, R. A. (eds), “Accurate Sci-
entific Computations”, Lecture Notes in Computer Science, Vol. 235,
Springer Verlag, 1985, pp. 70–81.

[3] Collatz, L. Funktionalanalysis und numerische Mathematik. Springer-
Verlag, Berlin-Heidelberg-New York, 1964.

[4] Dongarra, J. J. and Grosse, E. Distribution of mathematical soft-
ware via electronic mail. Communications of the ACM 30 (5) (1987),
pp. 403–407.

[5] Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W.
LINPACK Users’ Guide. SIAM, Philadelphia, 1979.

[6] Falcó Korn, C. Die Erweiterung von Software-Bibliotheken zur effizi-
enten Verifikation der Approximationslösung linearer Gleichungssys-
teme. PhD Thesis, University Basel, 1993.

[7] Frommer, A. Lösung linearer Gleichungssysteme auf Parallelrechn-
ern. Vieweg Verlag, Braunschweig, 1990.

[8] Hager, W. W. Applied numerical linear algebra. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1988.

132 C. Falcó Korn, Ch. Ullrich

[9] Kahaner, D., Moler, C., and Nash, S. Numerical methods and soft-
ware. Prentice Hall, Englewood Cliffs, May 1989.

[10] Kincaid, D. R., Respess, J. R., Young, D. M., and Grimes, R. G.
ITPACK 2C: a FORTRAN package for solving large sparse linear
systems by adaptive accelerated iterative methods. ACM Transactions
on Mathematical Software 8 (1982), pp. 302–322.

[11] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch.
PASCAL–XSC: language reference with examples. Springer Verlag,
Berlin-Heidelberg, 1991.

[12] Ortega, J. M. Numerical analysis: a second course. SIAM, Philadel-
phia, 1990.

[13] Rump, S. M. Lineare probleme. In: Kulisch, U. (ed.) “Wissenschaftli-
ches Rechnen mit Ergebnisverifikation — Eine Einführung”. Vieweg
Verlag, 1989, pp. 129–135.

[14] Varga, R. S. Matrix iterative analysis. Prentice-Hall, Englewood
Cliffs, New Jersey, 1962.

Institut für Informatik, Universität Basel
Mittlere Str. 142, CH-4056 Switzerland
e-mail: carlos@ifi.unibas.ch
e-mail: ullrich@ifi.unibas.ch

