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In a series of papers and a monograph [21], we have described the conceptual
structures as well as the basic architecture of the knowledge-based system
Clinaid. Its generic architecture is aimed at support of knowledge-based
decision making with risk and under uncertainty.

The majority of extant medical expert systems deal with a limited medical
context, the largest domain of knowledge being just a single medical field. The
inherent limitation of such medical expert systems is in its essence conceptual
and logical: their knowledge bases and inference engines cannot mix easily the
knowledge from several fields without some adverse effects. Clinaid deals
with this problem by introducing a multi-centre architecture in the Diagnostic
Unit. The medical data and knowledge of each medical specialist field exhibit
different logical properties. This in turn leads to the several kinds of many-
valued logics on which the relational inference and data manipulation is based.
Semantic and epistemological justification of the use of these logics for the
interval-valued inference is provided by a theoretical device called the checklist
paradigm [25].

The Diagnostic unit of Clinaid deals with a number of body systems [21].
In this paper we shall use several body systems to demonstrate the interaction
across the body systems during the inferential process and to show how interval
based methods of inference help in dealing with the problems induced by this
phenomenon.

Интервальнозначный вывод в
медицинской базе знаний CLINAID

Л. Когоут, И. Стабиле

В ряде работ и монографии [21] нами описаны принципиальные структу-
ры и базовая архитектура базы знаний Clinaid. Архитектура системы
Clinaid ориентирована на основанную на базе знаний поддержку приня-
тия решений в условиях риска и неопределенности.
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Большинство существующих медицинских экспертных систем имеют
дело с ограниченным медицинским контекстом, их объем знаний покры-
вает лишь одну область медицины. Неизбежная ограниченность подоб-
ных систем носит принципиальный логический характер: их базы знаний
и средства вывода не могут легко сочетать знания из разных областей,
не вызывая при этом нежелательных последствий. Система Clinaid ре-
шает эту проблему использованием многоцентровой архитектуры в диа-
гностической подсистеме. Медицинские данные и знания из каждой спе-
циальной области обладают различными логическими свойствами. Это,
в свою очередь, приводит к нескольким типам многозначных логик, на
которых основаны относительный вывод и работа с данными. Семанти-
ческое и эпистемологическое обоснование использования этих логик для
интервальнозначного вывода обеспечивается теоретической схемой, нося-
щей название <парадигма проверки списка> (checklist paradigm) [25].

Поскольку Clinaid призвана стать удобной медицинской консульта-
ционной системой, ее база содержит большое число медицинских эксперт-
ных данных. Диагностическая подсистема системы Clinaid работает
с несколькими системами тела [21]. В данной статье рассматриваются
некоторые из них, чтобы продемонстрировать взаимодействие во время
процесса вывода и показать, как интервальные методы вывода помогают
справляться с возникающими проблемами.

1 The basic knowledge handling
mechanisms of CLINAID

1.1 Dynamics of medical diagnostic process

The clinician’s activity while treating a patient consists of the following
processes: 1. Observation and acquisition of relevant patient data. 2. Con-
ceptual classification and filtration of relevant observational data for process
(3). 3. Clinical decision and patient management [22]. All these components
interact strongly with one another. This interaction of clinical activities
manifests itself in the properties of the dynamic process of clinical inference.
Incompleteness, locality of inference and directed complexity reduction play
a substantial role here. In order to deal successfully with these factors, trian-
gle and square relational products of relations [10, 7] were used to represent
inference structures in Clinaid [20].

All the above activities have to be represented in Clinaid and this
diversity is reflected in the virtual architecture of the system. The basic
architecture consists of the following cooperating units (basic shell substra-
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tum):
1. Diagnostic Unit (comprised of several parallel cooperating centres).
2. Treatment Recommendation Unit.
3. Patient Clinical Record Unit.
4. Co-ordination and Planning Unit.

A fully comprehensive medical system has to have the capability of deal-
ing with a number of diverse body systems. The multiplicity of body sys-
tems in which the given signs and symptoms of a particular patient are
interpreted, defines logically a multiplicity of contexts. It requires special
precautions for the inferential system to deal with this multiplicity of con-
texts correctly, as will be seen later.

1.2 Use of triangle and square relational products
in interval reasoning

There are two different facets of the problem. The first is specifying rela-
tional inference structures in the form where connectives are specified only
as generic logic types: AND, OR, PLY etc. The second is the choice of spe-
cific valuation (many-valued logic algebra operations) for the generic logic
connective-types, e.g. usual fuzzy AND: val(A AND B) = min(a, b) or what
is called fuzzy bold AND: val(A AND B) = max(0, a + b − 1), etc. Thus
the generic relational knowledge representation and inferential structures
(with generic logic types of connectives) are instantiated by the choice of
a specific many-valued system of connectives. Then the system becomes a
specific relational inference system in which, however, this instantiation can
be changed according to different circumstances during the run time. The
generic framework can be instantiated either to an interval system, such as
the pair of AND in the example above, or to a usual many-valued system
with point valuation e.g. val(A AND B) = a+b−ab. The generic relational
framework for inference is provided by relational products. The choice of
the specific logics is guided by the checklist paradigm.

1.2.1 Triangle and square types of relational products

Triangular and square products play a pivotal role not only in medical ap-
plications but also in other fields. See [24] for a recent survey and selected
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bibliography. The triangle subproduct R�S, the triangle superproduct R�S,
and square product R2S were introduced in their general form defined below
by Bandler and Kohout in 1977. The square product, however, stems from
Riguet (1948) [37], needing only to be made explicit [10]. Independently of
Bandler and Kohout, Sanchez defined an “α-composition” which is a special
form of the triangle product using implication operator of Breuwerian logic,
and is used in the theory of relational equations. The products were more
recently rediscovered and described in 1986 by J. P. Diognon, M. Monjardet,
B. Roubens, and P. Vincke [12, 13]. Aubin and Frankowska in their book of
1990 [1] use a triangle product, which they, however, call “square”.

Let us look now at the definitions and meaning of the products. Where R
is a relation fromX to Y , and S a relation from Y to Z, a product relationR∗
S is a relation from X to Z, determined by R and S. There are several types
of product used to produce product-relations [10, 24]. Each product type
performs a different logical action on the intermediate sets, as each logical
type of the product enforces a distinct specific meaning on the resulting
product-relation R ∗ S. When the relations are fuzzy, there is a further
wide choice of realization for each of the four product kinds defined below,
because several many-valued logics provide implication operator and other
connectives suitable for interval computation. In order to explain clearly the
need for, and the significance of, different logical types of relational products,
we begin with crisp relations, and then extend these to fuzzy.

Definition

Circle product: x(R ◦ S)z ⇔ xR intersects Sz
Triangle Subproduct: x(R� S)z ⇔ xR ⊆ Sz
Triangle Superproduct: x(R� S)z ⇔ xR ⊇ Sz
Square product: x(R 2 S)z ⇔ xR = Sz

Before the relational products can be of real service in interval comput-
ing, they must be fuzzified. For their fuzzification, the many-valued logic
based (fuzzy) power set theories are essential [3, 4]. Once the concept of
the fuzzy power set is clearly understood, the way of fuzzifying formulas
defining relational compositions becomes obvious. In order to switch over to
the matrix notation that is more convenient computationally because of its
explicit handling of logic values, we express the relational products in their
pure logical form. In the logic formulas, Rij will represent the fuzzy degree
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to which the statement xiRyj is true.

(R ◦ S)ik =
∨

j
(Rij

∧
Sjk)

(R� S)ik =
∧

j
(Rij → Sjk)

(R� S)ik =
∧

j
(Rij ← Sjk)

(R 2 S)ik =
∧

j
(Rij ≡ Sjk)

The customary logical symbols for the logic connectives AND, OR, both
implications and the equivalence in the above formulas represent the con-
nectives of some many-valued logic, chosen according to the properties of
the products required. The details of choice of the appropriate many-valued
connectives are discussed in [5, 7, 9].

It is important to distinguish what we call harsh fuzzy products (defined
above) from a different family, the family of mean products. Given the
general formula (R@S)ik ::= #(Rij ∗ Sjk), a mean product is obtained
by replacing the outer connective # by

∑
and normalizing the resulting

product appropriately. The mean products are very effective in medical
applications, although their mathematical theory does not take such a neat
form as that of harsh products.

The mean products provide an effective inference mechanism in Clinaid
applications. Their superiority has been shown empirically, for most recent
extensive experiments see [38]. In some non-medical applications, such as
urban studies [40], harsh products, however, work equally well. See [24] for
further references.

In representing clinical knowledge structures not only quantitative but
also qualitative notions are involved. Product-relations formed by the re-
lational products represent new entities composed from the original data.
Their specific semantics defines the conceptual meaning which is partially
dependent on the conceptual meaning of the original data-relations. If R
is the relation between patients and individual symptoms, and S a relation
between symptoms and diseases, R ∗ S will be a relation between patients
and diseases. The diagnostic clinical interpretation of each distinct logical
type (e.g. the triangular square product types) of these product-relations
has a distinct clinical meaning:
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x(R ◦ S)z: x has at least one symptom of illness z.
x(R� S)z: x’s symptoms are among those which characterize z.
x(R� S)z: x’s symptoms include all those which characterize z.
x(R 2 S)z: x’s symptoms are exactly those of illness z.

1.3 Choice of appropriate many-valued logics

1.3.1 Empirical criteria

The triangle and square products may be based on a large variety of many-
valued logic implication operators; a practical question then arises, as to
which many-valued set or relational theory is the best for a particular ap-
plication and/or knowledge domain, or inference task. Evaluation experi-
ments performed in various applications [11, 28] conclusively show how es-
sential it is to select the fuzzy knowledge representation structure or infer-
ence/decision making method that would appropriately match the data /
knowledge structures dictated by a particular application. The most impor-
tant point that emerges from empirical studies is that the technique that
should be employed in a specific application will crucially depend on the
nature of data and knowledge involved. For an extensive recent survey with
selected bibliography that addresses both the theoretical and empirical cri-
teria for the choice of logic see [24].

1.3.2 Theoretical criteria: the checklist paradigm
in interval inference

The interval inference in Clinaid is theoretically justified by the checklist
paradigm. The checklist paradigm generates pairs of distinct connectives
of the same logical type that determine the end points of intervals, thus
providing formally and epistemologically justified systems of interval-valued
approximate inference. The most relevant further references are [5, 6, 8, 9,
32], each addressing a different aspect of the problem. Two recent surveys
[25, 24] list further theoretical papers as well as applications and also link
the checklist paradigm to the computational aspects and to Bandler and
Kohout’s papers on “fast fuzzy relational algorithms”. A brief explanation
of the mechanism of the checklist paradigm and of its link to interval logic
based inference is given in this section.
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Let O be a set of concrete or abstract objects, C a set of abstract con-
structs and P a set of items that may be associated with O or C. Let Q,R
be two crisp relations from the lattice of all relations from O to P , and from
C to P , respectively; in symbols: Q ∈ R(O ; P ) and R ∈ R(C ; P ).
Then xQy reads: ‘object x is associated with item y’, and zRy reads ‘con-
struct z is associated with item y’. zR is the afterset of z, i.e. the set of all
y in the range of R that are related to z.

A checklist is a tuple (x, xR) such that x ∈ C, where xR is the afterset
of x.

An object-description is a tuple (y, yQ) such that y ∈ O, where yQ is
the afterset of y.

Notational convention. The value of xiRyj is written as Rij.

Given a fixed object xk ∈ O and a fixed construct xi ∈ C, a checklist
valuation is a triple (V = xi, yj, D) such that D ⊆ P . This triple will also be
called ‘fine valuation structure’, or briefly ‘fine structure’. The value Dj of
the element dj ∈ D is given by the formula Dj := Qij ≡ RT

jk, where ≡ is the
two-valued equivalence connective. The coarse checklist valuation structure
W associated with V is the triple (W = xi, yj, d), where d is computed from
D of the given V by the formula d := σ(Di) = 1/n

∑n
i=1Di. σ(...) is called

sigma count in fuzzy set theory.

Given two checklist valuation structures, one may ask about more com-
plex fine structures that can be formed by logic operations over their values.
For example given Va = (a, y,Da) and Vb = (b, y,Db), can one construct
VaANDb = (aANDb, y, Da)? Obviously, DaANDb

i := Da
i &Db

i . The value of
the corresponding coarse structure can be computed the obvious way as the
sigma count σ(DaANDb

i ).

If the fine structures Va and Vb are not available, the question arises,
whether there exists a many-valued connective ANDMV L by which the exact
value of WaANDb can be computed from Wa and Wb.

To obtain the exact value for the composed coarse structure is unfortu-
nately impossible in general, as the truth-functionality is lost in transition
from the fine to the coarse structure. The rule of compositionality of Fregean
logic does not hold in this case. We can, however find a pair of many-valued
logic (MVL) connectives, ANDTOP and ANDBOT that give the upper and
the lower bound, thus forming an interval in which all the unknown exact
values of the coarse structure must be contained.
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Let us introduce the following convenient notational conventions for fu-
ture use. For 2-valued crisp fine structure components let us define: ai := Da

i

etc. For the many-valued coarse structures introduce a by the definition
a := da = σ(Da

i ) = 1/n
∑n

i=1D
a
i , etc.

Let us look now at other remaining cases. For any of 16 two-valued
connectives [35, 18], say F , the exact value of the coarse structure a CON b
can be computed from the fine structure by the formula a F b := σ(aiFbi).
If only a and b are available, it is not always possible to find a many-valued
connective CON such that a CON b = a F b would hold in general.

Fuzzy logics in general deal with uncertainty, imprecision and incom-
pleteness of data. The transition from the fine to the coarse structure is
usually accompanied by loss of information, or what can be called “loss of
variety” in Ashby’s sense. Hence, the coarse structure approximates the fine
structure in such cases. One must specify in a more precise way, what kind
of information loss is expected in order to derive a pair of interval many-
valued logic connectives, CONTOP and CONBOT that give the bounds
within which the exact value must fall. This specification determines the
character of approximation and the exact meaning of the phrase “W is as-
sociated with V”.

Above, the fine structure V and the coarse structure W associated with
it were defined. The coarse structure was “associated” with the fine structure
by the formula for computation of its exact values from the fine structure.
In general, the form of this association of structures, and hence the for-
mula yielding the values of W , is determined by a measure. In the case
of association presented above, measure m1 = 1 − u10 was used [5], which
yields TOP(d) = max(0, a+ b−1), BOT(d)=min(a, b). To understand the
meaning of this measure, the meaning of ulm has to be clarified first.

Pairs of binary values of two fine structure composed by F, yielding the
composed binary values νklm can be combined in four distinct ways:

νk00 = ¬ak&¬bk; νk01 = ¬ak&bk; νk10 = ak&¬bk; νk11 = ak&bk.

From these four types of components, ulm with l,m ∈ 0, 1 is computed
by the formula ulm := σ(νklm) = 1/n

∑n
k=1 ν

k
lm.

Using the measures m1 — m5 of [5] leads to interval logics of various
kinds. For each measure, a pair of connectives (conbot, contop) were derived
(cf. [5], Theorem 6.3), giving the upper bound TOP(d) and the lower bound
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BOT(d) of the value d for the composite structure.
In general, mi = m(F ;G(ulm)) is a function of two parameters, F and

G(ulm), where ulm is parametrised by l,m ∈ 0, 1 as seen from the formulas
above. Relation G(ulm), the so-called constraint table can be found e.g. in
[19] and is explained in detail in [5]. The constraint table has two distinct
forms, one for the object language connectives, the other for the rules of
inference that belong to the metalanguage [19].

The inequality restricting the possible values of measure m(F ;G(ulm)),
expressing the logical values that fall within the interval, is written in its
general form as: contop ≥ m(F ;G(ulm)) ≥ conbot. In this paper we employ
m(F ) = m1(F ) = 1 − u10. When the type PLY (implication operator) is
chosen for F , this choice yields the bounds [5]:

min(1, 1− a+ b) ≥ m1(PLY ) ≥ max(1− a, b)

where the Lukasiewicz implication represents one bound while the other
bound (plybot) is the Kleene-Dienes implication operator. Other measures
give other bounds, as listed in Appendix 2. Inequalities for all 16 possible
logic types of connectives F and measure m1 appeared e.g. in [6, 8]. As far
as we are aware, the papers of Bandler and Kohout [5] and [6] appear to be
the first in the literature on the topic of checklist paradigm.

Choosing for F the connective type AND Bandler and Kohout [6, 8] ob-
tained for the same measure the boundsmin(a, b) ≥ m1(AND) ≥ max(0, a+
b−1). The last two inequalities are formally identical with those of Schweitzer
and Sklar [39] giving the bounds on copulas which play an important role in
their theory of norms and conorms. Surprisingly, these checklist paradigm
bounds also coincide with Novák’s recent derivation of bounds on fuzzy
sets approximating classes of Vopěnka’s Alternative Set Theory [34]. His-
dal derives the same inequalities as the bounds on some connectives of her
TEE model and comments on a possible link (cf. Appendix A2 “The TEE
model and Bandler and Kohout’s checklist paradigm” in [15]). In the con-
text of modalities in fuzzy logics, checklist paradigm-like inequalities for
F = {AND,OR} were recently also independently discovered by Resconi,
Klir, and St.Clair [36]. Yet all these models are neither formally nor epis-
temologically identical. This indicates the need for a more precise meta-
and metametalogical formulation of many-valued based mathematical sys-
tems, that would include in their full definition a part formulating their
“mathematical epistemology”.
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Crispness and its dual fuzziness, two important characteristics of fuzzy
sets, were introduced by Bandler and Kohout in their 1978 paper [2, 3].
Later, independently, fuzziness was also introduced and investigated in de-
tail by Yager [42] and further studied in a more abstract setting by Higashi
and Klir [14]. Bandler and Kohout’s paper [3] motivated further abstract
generalizations of Weber [41]. Weber’s paper contains many important the-
oretical results that are also useful in applications.

In the context of interval logics, crispness and fuzziness provide impor-
tant characteristic of fuzzy propositions, predicates and power sets. The
higher the degree of fuzziness of a proposition is, the wider is the margin of
its imprecision. Interval connectives-pairs generated by the measure m1 are
of theoretical and practical interest, because of the theorem of Bandler and
Kohout (cf. [8], ‘Gap Theorem’ in Sec. 5, p. 108) concerning the fuzziness
of the logics generated by m1. This theorem links the width of the interval
that the values of two many-valued (fuzzy) logic propositions composed by a
connective of logical type F attain, with the imprecision of that proposition,
measured by the degree of unnormalized fuzziness. The theorem holds for
all non-trivially 2 argument logic types of connectives. We quote a useful
result that holds for the connectives used in the present paper:

aANDTOPb− aANDBOTb = aPLYDTOPb− aPLYBOTb = min(φa, φb)

where φx = min(x, 1− x) is unnormalized fuzziness of x. This gives us an
epistemological justification for giving preference to m1 generated connec-
tives in context of the present application.

If additional statistical assumption are used for characterizing the un-
known fine structure together with the approximation measures m1 — m5,
a many-valued connective can be derived for each measure which is opti-
mal with respect to these assumption. This “optimal” connective is a point
(non-interval) many-valued logic. Hence, under these additional statistical
assumptions, the interval logics collapses into point logics. A different logic
will result for each different approximation measure — see e.g. the results
for measures m1 — m5 in Theorem 7.1 in [5]. For use of these so-called
“expected measures” in Clinaid see [33].
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1.4 Dealing with the inferential context in CLINAID

Knowledge-based system architectures of Clinaid type can deal with a
multiplicity of contexts provided by the multiplicity of the body systems
and other factors. Deep knowledge concerning individual contexts, takes into
account cross-contextual similarities and differences. We distinguish: a) the
context of different body systems; b) the context of different diagnostic levels
within the super-context of a specific body system. The multiple context of
clinical inference, when a clinician interacts with the system is reflected in
the diagnostic hierarchy, which uses syndromes in a substantial way.

The strategy of clinical inference used over this diagnostic hierarchy
which includes syndromes, is realized in Clinaid by means of fuzzy tri-
angle products [10]. Within each specific body system of Clinaid, (e.g.
cardiac or respiratory, etc.) the inferential levels have to be related appro-
priately. Each body system has specific conceptual semantics that assign
the clinical meaning to the relational compositions.

The inferential process is performed in a hierarchical or heterarchical
manner, involving the following levels:

1. Symptoms and Sign Level

2. Risk Factors Level

3. Body System Level

4. Syndrome Level

5. General Disease Level

6. Specific Disease Level

7. Aetiological Level

Experience shows that the dynamic paths of inference in diagnosis performed
by an inexperienced medical student (in spite of her/his textbook knowledge)
are different than those performed by an experienced clinician. This is due
to the fact that an experienced clinician utilizes the above hierarchies in
a more efficient manner than a novice. This reflects also in the way the
essential input information (patient’s signs and symptoms) is utilized within
the context of additional knowledge.
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Let us look at a concrete example: sore throat may point to diseases in
many body systems. The most likely of these will include:

1) an upper respiratory tract infection

2) rheumatic fever

3) collagen diseases (a large group)

4) leukemia

5) immune deficiency syndrome (a large group)

To decide which body system is affected we need to obtain a ranking
order of likelihoods (plausibilities, possibilities and such like) of body system
candidates. This is obtained by asking questions about the presence of other
symptoms. It is a constellation of symptoms that makes one or other disease
more likely.

Let us take sore throat, together with running nose, eyes; headache,
fever/chills. If one or more of these are positive, this makes the upper
respiratory infection URI most likely. Even if the answer is no to some
questions this does not exclude the URI diagnosis.

We have, however to distinguish the context in which the answers appear:
e.g. if the patient is a child with aching in the joints, another diagnosis,
namely, rheumatic fever is more likely.

In order to include context, it is not sufficient to present just symptoms,
in many instances risk factors are also needed. These are obtained from
patient history. Patient history includes such items as past history, alcohol,
drugs, diseases appearing in patient’s family, relations, etc. So, the context
also comes from the patient history.

The likelihoods (plausibilities, possibilities) of this example are reinter-
preted with respect to the context that is embedded within the structure
containing signs/symptoms, risk factors and body system levels. The inter-
vals come with this reinterpretation.

The expertise lies in utilizing this additional knowledge consisting of:

• knowing which question to ask next;

• the ability to interpret the answers in the right context;
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• the competence in deciding which is the next body system to consider
when the likelihood of the first candidate body system becomes less
and less likely with the new questions presented.

Superficially it would appear that the relation between signs, symptoms
and illnesses is sufficient for performing adequate diagnostic inference in
the broad medical context of multiple body systems. It is also sometime
erroneously assumed that this inference can be performed in a way similar
to that used in the rule-based medical expert systems concerned with a
narrow medical specialty. Investigation of the logical structure of broader
categories of medical knowledge, however, shows that this would not be an
adequate way of dealing with this problem.

Indeed, the multiplicity of contexts which causes that the same
sign/symptom may acquire a different meaning in a different context (as
shown by the example) leads to a number of problems. These problems
cannot be dealt with correctly in all situations by classical rule-based sys-
tems or Prolog systems using logic without types, despite the popular belief
perpetuated amongst others, by the providers of rule-based expert system
shells. Briefly summarizing [21], three problems have to be dealt with. One
faces:

• The Problem of INCOMPLETENESS:
Not all signs and symptoms characterizing the disease are always ob-
servable or present.

• The Problem of LOCALITY OF INFERENCE:
Not all signs and symptoms are relevant in a particular given diagnos-
tic context.

• The Problem OF COMPLEXITY OF INFERENCE:
The complexity of exhaustive matching of all disease descriptors and
indicators (e.g. signs, symptoms, tests, etc.) may be forbiddingly
high.

The multiple context dilemma of clinical inference is resolved by the
diagnostic hierarchy which uses syndromes as the main instrument. Syn-
dromes are essential when dealing with a multiplicity of body systems of
general medicine, a matter that narrowly specialist medical expert systems
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have failed to handle adequately. A syndrome is defined as a cluster of
signs and symptoms that appear together and characterize a specific group
of diseases. This cluster consists of signs and symptoms that, when viewed
in probabilistic/statistical terms, are mutually dependent. When handled
by relational methods, however, the additional knowledge contained in syn-
dromes and similar semantic constraints, vastly reduces complexity of the
inferential task as well as increasing its reliability.

Computational aspects of this complexity reduction follow from the de-
tailed functional arrangement of inferential processes in the diagnostic unit
of Clinaid (see [21], Sec. 10.4 and Fig. 10.5 referring to ‘activity graph
of the dynamics of a body system on Clinaid’). This is a typical “divide
and conquer strategy” as often used in construction of algorithms. Instead
of dealing with hundreds of signs and symptoms pointing directly to the
hundreds of diseases within a body system, the signs and symptoms point
to the syndromes, typically 5–15 in a body system. The syndromes that
are found to be relevant will point directly to a much smaller number of
candidate diseases. Their number is further reduced by introducing further
signs and symptoms into the inferential process. Without the application of
such constructs as syndromes, the inferential process might have difficulty
in reaching the final conclusion. For discussion of clinical evidence of this
phenomenon comparing the inferential process of a medical expert with that
of a novice see [26], quoting findings of Anderson.

Although syndromes carry important medical information and are in-
strumental in reducing complexity of inference, they are usually neglected
by the designers of medical ESs. There are several reasons for this. One
of these is the fact that when the Bayesian inference is used, the depen-
dency of the syndrome’s components substantially increases the complexity
of Bayesian inference. This has the consequence that the resulting expert
system cannot deal with the multiple contexts and works satisfactorily only
within the narrow context of one body system. If, on the other hand, the
designer opts for the inclusion of syndromes, it has the following serious con-
sequences when Bayesian inference is used. Given m diseases and n signs &
symptoms that are independent, one requires Pind = m ·n+m+n probabili-
ties. Without the assumption of independence, and given k dependent signs
& symptoms simultaneously, one requires Pdep = (m ·n)k +m+nk probabil-
ities. Taking for example one body system which contains for the purpose of
this example 200 diseases and 200 signs & symptoms, Pind = 40, 400. Taking
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10 dependent signs & symptoms that enter into 1 syndrome, Pdep = 4 · 1040.
This explains why excluding syndromes and/or using Bayesian inference is
an inadequate, albeit common, approach. We believe that our Clinaid
approach avoids this pitfall as described below.

Contribution of interval logics of appropriate kind to improvement of
inferential process when dependent entities (such as signs and symptoms
related to a syndrome) are involved stems from their mathematical proper-
ties. Some logics, such as Kleene-Dienes introduced below are optimal for
dealing with dependent data, while the other pole of the interval bound,
Lukasiewicz is optimal for data with independent properties. This follows
from the theory of the checklist paradigm introduced in Section 1.3. When
the fuzziness of data is small, the interval is narrow. With increasing fuzzi-
ness, the interval widens (see the formulas relating the fuzziness to the width
of the interval in Section 1.3 above). When the width of the interval becomes
unacceptably large, the inferential process is stopped, or maybe returned to
the point where a request for further data can be made. For point-based
inference this option of eliminating the danger of instability does not exist as
there is no acceptable criterion for judging the quality of inference, the grade
of the point premiss or conclusion refers only to the uncertainty inherent in
data itself.

We have discussed the limitation of the conventional systems that are
due to the mismatch of the properties of the data with the properties of
the Bayesian statistics. The next issue is the multiplicity of contexts in
which a given item of input data (patient’s signs and symptoms) have to
be interpreted, in order to reach the conclusion — by deciding which of the
competing hypotheses is the most plausible one.

2 Multi-context inference in CLINAID
involving interval-valued inference

In this section we present a clinical example clearly demonstrating how the
use of interval logics can improve the quality of reasoning of a medical knowl-
edge based system. The main contribution of interval reasoning is to pro-
vide the limits by which the degrees of validity of logical conclusion must
be bound. After outlining the necessary prerequisites in terms of the rela-
tional structures involved, we present the actual computations that clearly
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demonstrate the merit of our method. The computations outlined below use
both triangle and square products. Unlike the usual “circle” product which
is used for conventional composition of relations and functions, these other
products are second order constructs, involving the power sets of ranges and
domains of relations. The triangle products are concerned with inclusion
of structures, while the square products with symmetrical matching and
equality of structures. Unlike the usual circle product, these products are
not associative even in their crisp Boolean form. The basic intuition for the
choice of products can be obtained by re-reading section 1.2.1 above and
looking at other applications such as [7, 29, 30, 16].

2.1 Relationships over the basic relational structures
of CLINAID

Let us list now the medical meaning (semiotic descriptors) of all the sets
entering into the relations of individual levels used in the sequel.

Name: A set of:
A .... attributes.
B .... body systems.
D .... specific diseases.
O .... observation events.
P .... of patients.
S .... symptoms and physical signs.
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Name: Definition: Relation
AB .... R(A; B) from attributes to body systems.
OA .... R(O ; A) from observation events to attributes.
OB .... R(O ; B) from observation events to body sys-

tems.
POA .... R(P ×O × A) between patients, observation events

and attributes
PS .... R(P ; S) from patients to symptoms and physi-

cal signs.
PD .... R(P ; D) from patients to specific diseases.
SB .... R(S ; B) from symptoms and physical signs to

body systems.
SD .... R(S ; D) from symptoms and physical signs to

specific diseases.

Now, we shall briefly explain the meaning and purpose of the relations
employed in the inference.

Definition of the relation from observation events to body systems:

OBik = (OA2AB)ik = 1/n
∑
j

(OAij ≡ ABjk).

This computes the degree of involvement of each body system relative to
available symptoms and signs (and generally other observables) and may in-
volve the time dimension. The set of attributes over which the two relational
components are matched is formed by logic formulas over the elementary at-
tributes, such as signs and symptoms.

The relation involvement of a body system RI is defined as a fuzzy iden-
tity relation, specifying to what degree the body systems are involved with
respect to a given OB relation. It is computed by the formula:

BIik = ( (OB)T2OB)ik = 1/n
∑
j

( (OB)Tij ≡ OBjk).

As we are concerned only with the degree of identity of individual elements,
not with its violations, only the diagonal of the matrix containing locally
reflexive [24] elements is used in further inference. Mathematically, the
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degree of identity of an element in the sense used here the degree of it being
a singleton in its fuzzy power set [3].

Definition of the relation from ‘symptoms and signs to body systems’

SB ∈ R(S ; B).

The relation SB is an element of the lattice R of all fuzzy relations from
the set S of symptoms and physical signs to the set of individual body
systems B. The aim of this relation is to select the body systems relevant
to presented patient information.

The relation PA relates the set P of patients to the sets of attributes. It
is computed from the ternary relation POA by the relational composition
(square product) over the set O of observation events.

PAik = (POA2POA)ik = 1/n
∑
j=l

(POAijk ≡ POAilk).

This is special case of a product of two 3-ary (3 dimensional) relations. In
general, given an r-ary and an s-ary relation, the dimension of the product
is (r + s − 2)-ary [10]. Here, however, we deal with a special case, as the
same variable ranges over the first and the third index of both relations.
Hence, the result is a 2-ary relation. The first argument of the product, say,
(pi, oj, ak) is matched with the second argument (pi, ol, ak) by ≡ for j = l
and summed.

The relation HPD ∈ R(P ; D), expresses a hypothetical relationship
between patients to specific diseases, the hypothesis being based on the data
contained in PS:

HPDik = (PS � SD)ik = 1/n
∑
j

(PSij → SDjk).

This relation is computed directly from individual (observed) signs and
symptoms PS and the knowledge of SD. The alternative is to involve the
syndromes as well.

It can be combined with the BI to form the working diagnoses relation
WD ∈ R(P ; D) by the formula:

WD = HPD uBI.
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This formula computes the intersection of the relations HPD and BI. The
connectives ANDTOP and ANDBOT used to compute this intersection are
min(x, y) and max(0, x+ y − 1), respectively.

Let us take a concrete example, a fragment of the knowledge structure
dealing with the relationship of signs/symptoms to several body systems.
This example will be used in the sequel to demonstrate how the interval
based inference is performed in Clinaid.

Signs/symptoms Diseases
RI RF St Le

fever .8 .8 .8 .8
sore throat .8 .2 .2 .8
running eyes .4 .1 .1 .4
headaches .2 .2 .2 .2
rash .1 .3 .6 .7
red nasal mucosa .6 .1 .1 .6
red pharynx .6 .1 .1 .6
enlarged tonsils .8 .1 .1 .8
pus on tonsils .9 .1 .1 .9
child with aching joints .3 .9 .9 .2
PH chloramphenicol .1 .1 .1 .9
child in day care .7 .1 .1 2

Table 1. Relation of Signs/symptoms to Diseases

Attributes Body systems
RS CVS GIS US NS ES MS GS Skin HEM

F .7 .2 .3 .3 .2 .2 .2 .3 .1 .3
Ch .1 .6 .2 .1 .2 .1 .9 .1 .1 .1
F & Ch .4 .9 .2 .1 .2 .1 .6 .1 .1 .3

Table 2. Relation from Attributes to Body Systems

Let us assume that our clinical case is a child with aching joints that also
has fever with chills. The set S is a crisp set consisting of s1 = Ch (Child
with aching joints) and s2 = F (Fever with chills). From this set, and using
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the clinical knowledge structure of Table 1, one computes the relation HPD
that suggests the diseases that the patient may be suffering from. The result
of this computation is listed in the column HPD1 of Table 3. The diagnosis
based on the set S = {F,CH} cannot distinguish between RF (rheumatic
fever) and St (Still’s disease), both are suggested to the degree 0.85. Other
two diseases respiratory infection (RI/0.55) and leukemia (Le/0.5) are very
close. The implication operators used in the computations were Lukasiewicz
and Kleene-Dienes operators, for the TOP and BOT values of the intervals
entering HPD1. As the values of S are crisp, the TOP and BOT values are
identical. For fuzzy values of S, one obtains a true interval.

In the above computation, no information about the interaction of F
and Ch was used. The suggested working diagnosis can be refined using this
available information, that is used to compute the candidate body systems,
using additional clinical knowledge contained in Table 2. It will be seen that
in this refinement the interval logics play useful role. Let us compute the
first refinement. To obtain WD we have to compute BI first.

The patient’s signs and symptoms are not oscillating, that is, the rela-
tional matrix POA has all the rows of the same values. The set S yields
the following attributes: A = {F&Ch/0, F&Ch/0, F&Ch/1}. This is
also the set of all attributes (afterset) oiOA of the relation OA (i.e. the
i-th column of the relational matrix OA). From OA and AB (given in Ta-
ble 2) the relation OB is computed using S# based equivalence. Only four
the most significant body systems are used in this example. These are:
Respiratory (RS ), Cardio-vascular (CVS ), Muscular (MS ), and Hematolog-
ical (Hem) body systems. The intervals enter into the computations first
while computing the relation BI = OBT2OB. The TOP and BOT values
of the intervals are computed by the equivalences based on Lukasiewicz
and Kleene-Dienes implication operators, respectively. The diagonal of
BI determines the involvement of individual body systems. We obtain:
BIii = {RI/[.6, 1], CVS/[.9, 1], MS/[.6, 1], HEM/[.7, 1]}. The resulting
working diagnoses computed by the formula WD1 = BI u HPD1 are listed
in Table 3.

We can see now that after adding the information about the interaction
of F and Ch and the clinical knowledge about the plausible involvement of
the body systems, rheumatic fever R in CVS is very close to Still’s disease
St in MS and both more plausible than other two diseases. This suggests a
strategy for further refinement: try to find the signs/symptoms that push
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RI and Le to the top. If this fails, the previous diagnosis stands.
To demonstrate the dynamics of the changes, let us introduce other three

elements of S, rash (R), enlarged tonsils (Et), pus on tonsils (Pt) and assume
that all have degree 1, i.e. are crisp elements of S. Table 3 shows also these
further refinements. HPD1 is computed from F, Ch, HPD2 is computed from
F, Ch, R, Et, HPD3 is computed from F, Ch, R, Et, Pt.

Body Diseases BIii HPD1 WD1 HPD2 WD2 HPD3 WD3

Systems
RS RO [.6, 1] .55 [.15, .6] .5 [.1, .5] .58 [.48, .58]
CVS RF [.9, 1] .85 [.75, .9] .525 [.42, .52] .44 [.34, .44]
MS St [.6, 1] .85 [.45, .85] .387 [0, .39] .5 [.1, .5]
HEM Le [.7. 1] .5 [.2, .5] .62 [.32, .62] .84 [.54, 84]

Table 3. Interval-Based Diagnoses

[TOP - 30%, TOP] [BOT, BOT + 30%]
WD1 {RF, St } { RI, Le }
WD2 {RI, RF, Le } { RI, St }
WD3 { RI, Le } { St }

Table 4. Plausibility Partitions of Working Diagnoses

Each collection of diseases that forms a WDi contains the most plausible
disease, having the degree of plausibility TOP and the least plausible, having
the degree BOT. Table 4 show the top and bottom band of diseases. The
remaining diseases are placed in the third band, in between the other two.
This kind of partition is used with advantage to generate interval based
questioning strategies that extend and improve the previously developed
non-interval based questioning strategies of Clinaid [27]. The width of the
bands that is set in the example to 30% is usually variable, regulated by the
required size of the working hypotheses set. This is similar to the way the
dynamic tuning is done in information retrieval algorithms [23].

In the early information retrieval applications, the size of the set of re-
trieved objects was regulated by a point threshold [17, 31, 23], α-cut of a
fuzzy set. Here, the regulating mechanism comes from the interval logic
of the checklist paradigm. Practical interest in checklist paradigm inter-
vals stems in this context from the following consideration. Let the toler-
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ance of imprecision of a many-valued (fuzzy) be τ ∈ [0, 1]. An interval
fuzzy proposition A is τ -acceptable, if its value interval satisfies the con-
straint atop−abot ≤ τ). Any proposition that does not satisfy the constraint
is called τ -unacceptable. Epistemologically, the concept of τ -acceptability
means that only the propositions with the degree of fuzziness smaller than
τ will be used as the logic premisses in further inference. If during the
inference process a τ -unacceptable proposition is derived, two actions can
be taken: (1) adding more information by using the premisses that are less
fuzzy but carry the same conceptual information and recomputing the logi-
cal interval proof again; or (2) abandoning the inference process because of
lack of precise enough information.

3 Conclusion

The generic architecture of Clinaid is designed to operate in a multien-
vironmental situation and make decisions within a multiplicity of contexts.
In this paper we have used several body systems to demonstrate interaction
across body systems during the inferential process and have shown how in-
terval massed methods of inference help in dealing with large amounts of
medical expert knowledge across a number of body systems. Interval rea-
soning provides the limits by which the degrees of plausibility of a logical
conclusion must be bound.
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