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Guaranteed Nonlinear Parameter
Estimation via Interval Computations

Luc Jaulin and Eric Walter
The problem of estimating the parameters of a nonlinear model from prior
knowledge, experimental data and collateral requirements is viewed as one of
set inversion, which is solved in an approximate but guaranteed way with the
tools of interval analysis. It is, for instance, possible to characterize the set of
all parameter vectors that are consistent with the data in the sense that the
errors between the data and corresponding model outputs fall within known
prior bounds. Any collateral requirements that can be expressed as a series of
inequalities to be satisfied by the parameters can be taken into account. This
is illustrated by asymptotic stability requirements for time-invariant models
whose outputs are linear in their inputs, even if nonlinear in their parameters.
The characterization of optimal confidence region in a Bayesian context can
also be formulated in the framework of set inversion.

Гарантированная оценка нелинейных
параметров через интервальные

вычисления
Л. Жолин, Э. Уолтер

Проблема оценивания параметров нелинейной модели на основе априор-
ных знаний, данных эксперимента и побочных ограничений рассматри-
вается как задача инверсии множеств и получает приближенное, но га-
рантированное решение методами интервального анализа. В частности,
оказывается возможным определить множество всех векторов парамет-
ров, совместимых с данными в том смысле, что разность между данными
и результатами модели лежит в заранее известных границах. При этом
могут быть учтены любые побочные ограничения, выражающиеся рядом
неравенств, которым должны удовлетворять параметры. Иллюстрацией
этому служат ограничения асимптотической устойчивости для моделей,
независимых от времени, чей выход линейно зависит от входа, но может
нелинейно зависеть от параметров. Определение доверительной облас-
ти в смысле Байеса также можно сформулировать в терминах инверсии
множеств.
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1 Introduction

The purpose of this paper is to briefly present some results recently obtained
in the field of parameter estimation with the help of interval analysis and so
far only published in the field of automatic control theory. For the sake of
brevity, we have neither detailed the theoretical properties of the algorithms
nor provided examples, these can be found in the references.

Building mathematical models to understand, predict and/or control the
behavior of a system is a basic activity in most fields of pure and applied
science. Frequently, prior knowledge is not sufficient to allow a complete
derivation of models, and experimental data collected on this system must
be used together with available prior knowledge (such as prior ranges or prior
probability density functions) and collateral requirements (such as that the
residuals be sufficiently uncorrelated or that the model be asymptotically
stable) in the modeling process.

A model structure may have to be selected among several candidates,
each of which may involve a vector of a priori unknown parameters. The
procedure employed then usually consists of estimating the parameters as-
sociated with each possible model structure and selecting the simplest struc-
ture with acceptable performances (see e.g. [14, 27]). Parameter estimation
for a given structure is thus at the core of modeling, even when several
structures are being considered.

The most classical approach for parameter estimation (see e.g. [4, 14,
21, 26]) is to look for the value of the parameter vector θ that is best in the
sense of a given scalar criterion j. One may for instance look for the value
of θ that minimizes the (weighted) least squares criterion

j(θ) =
n∑
i=1

wi(y(ti)− ym(ti,θ))2

where y(ti) is the ith experimental datum, ym(ti,θ) is the corresponding
model output and wi (wi ≥ 0) is the weight associated with the ith error.
Many other criteria have also been considered, such as (weighted) least mod-
uli, or any of the criteria generated by the maximum likelihood or bayesian
approaches under various hypotheses on the noise corrupting the data, prior
probability density function for the parameters and cost of assuming an
erroneous value for the parameters [4, 14, 26].
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In very special cases, such as when the criterion is quadratic in an error
affine in the parameters, explicit formulae are available to compute the op-
timal parameter vector. Most often, however, (e.g. when the model output
is nonlinear with respect to the parameters, a situation that is the rule for
models based on prior physical knowledge), no explicit formula can be pro-
vided for the best value of the parameter vector in the sense of the criterion
chosen. A local optimization is then usually performed iteratively, starting
from some initial value for the parameters and computing displacements in
the parameter space aimed at improving the value of the criterion (see e.g.
[26]). Such a local optimization of a scalar criterion has several drawbacks:

1. The choice of the initial value for the parameters relies largely on
guesswork.

2. No guarantee of convergence to the global optimum of the criterion
can be provided.

3. If there are several values of the estimated parameters that correspond
to the same value of the criterion, a situation that may for instance
result from the fact that the parameters are not globally identifiable
(see e.g. [29]), the algorithm picks one of them without indicating that
there are others.

4. In a large number of practical problems, such as the estimation of phys-
ical parameters from uncertain data in physics, chemistry, biology. . . ,
one is not actually interested in the optimal value of the parameters in
the sense of a (somewhat artificial) scalar criterion but would rather
like to characterize the set of all values that are acceptable in a sense
to be specified.

5. Uncertainty on the estimate is evaluated (if at all) by use of asymp-
totic properties of the estimator that rely on a succession of dubious
assumptions, so that no reliable evaluation is provided of the precision
with which the estimated value of θ is obtained.

A possible way out of difficulties 1 to 3 is to use deterministic global op-
timization methods such as those described in [6, 24], but this still leaves
difficulties 4 to 5 to be addressed. This is why we shall follow a different
route, and look for the set of all models that are acceptable instead of looking
for the model that is optimal in the sense of a given criterion. The first step
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is then to list all the properties that the model should have to be acceptable.
Acceptability will be defined here by a set of (possibly nonlinear) inequal-
ities to be satisfied by the parameters. This is a very realistic assumption
in a large number of engineering problems, where acceptability is defined in
terms of tolerances with respect to some nominal specifications. It makes it
easy to incorporate collateral requirements as well as experimental data and
prior information. Once these conditions of acceptability have been defined,
one is interested in characterizing the set S of all parameter vectors such
that the model is acceptable. This can be formulated as a problem of set
inversion, which must be solved globally in order to avoid difficulties 1 to 3.
Starting from some prior feasible set for the parameter vector under the form
of some (possibly very large) axis-aligned box in the parameter space, we
wish to characterize—approximately but in a guaranteed way—the posterior
feasible set for the parameters, i.e. the set of all values of the parameter vec-
tor that are consistent with the prior feasible set and satisfy all conditions
for acceptability. This will be performed with the help of an algorithm for
set inversion described in Section 2.

A first example of acceptability conditions is that the residuals between
the data y(ti), i = 1, . . . , n, and corresponding model outputs ym(ti,θ), i =
1, . . . , n, lie between some known bounds that express the confidence inter-
val attached to individual measurements. This is the problem of bounded-
error estimation, considered in Section 3. Other acceptability conditions
not directly related to the errors could be considered as well. Section 4, for
instance, addresses the computation of guaranteed stability domains, which
can be seen as a problem of parameter estimation from collateral require-
ments only. The characterization of optimal confidence regions in a Bayesian
context can also be cast in the framework of set inversion, as indicated in
Section 5.

2 Set inversion via interval analysis

Our algorithm for set inversion via interval analysis (SIVIA) [8, 9] is aimed
at characterizing the set

X = f−1(Y) ⊆ Rp

from the knowledge of the set Y ⊆ Rq and the vector function f . Let us first
very briefly recall the few notions of interval analysis (see e.g. [19]) needed
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to present it.
A vector interval (or box) in a p-dimensional space is the Cartesian prod-

uct of p scalar intervals

[x] = [x−1 , x
+
1 ]× · · · × [x−p , x

+
p ].

The width w([x]) of a box [x] is the length of its largest side(s). F is an
inclusion function of the vector function f if for any [x], F([x]) is a box such
that

f([x]) ⊆ F([x])

and
w([x]) −→ 0 =⇒ w(F([x])) −→ 0.

The last equation is only needed to ensure convergence of SIVIA, and could
be relaxed to account for numerical errors due to rounding. It means that
the smaller the box [x] is the better the approximation provided by the
inclusion function is going to be. The analysis of the space of interest will
be performed by building sets of non-overlapping boxes with nonzero width
(or subpavings).

SIVIA applies to any function f for which an inclusion function F can be
computed. Exploration is limited to an initial box of interest [x](0), which
is split by the algorithm into smaller boxes whenever needed until either
a conclusion can be reached or the width of the box considered becomes
smaller than some tolerance parameter εr to be specified by the user. Interval
analysis provides us with two basic tests for deciding whether a given box
[x] is included in X :

F([x]) ⊆ Y =⇒ [x] ⊆ X (i.e. [x] is feasible),

F([x]) ∩ Y = Ø =⇒ [x] ∩ X = Ø (i.e. [x] is unfeasible).
In all other cases, [x] is indeterminate. SIVIA computes two subpavings
iteratively, namely Kin, containing all boxes that were proved feasible, and
Ki, consisting of all indeterminate boxes. From these subpavings, it is easy
to bracket the portion of X contained in [x](0) as

Kin ⊆ [x](0) ∩ X ⊆ Kout := Kin ∪ Ki.

Since Kout is a finite union of boxes guaranteed to contain the portion
of X of interest, it is very convenient for implementing set-theoretic manip-
ulations [7]. For another practical situation where interval computational
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methods can be used to bracket a set of interest, see [3]. A stack will be
used to store the boxes still under consideration. Initialization is performed
by setting

k = 0, stack = Ø,Kin = Ø,Ki = Ø.

Iteration k is as follows

1. If F([x](k)) ⊆ Y , append [x](k) to the subpaving of feasible boxes
Kin and go to Step 4.

2. If F([x](k)) ∩ Y = Ø, discard [x](k) as unfeasible and go to Step 4.

3. If w([x](k)) ≤ εr, then append [x](k) to the subpaving of indetermi-
nate boxes Ki, else bisect [x](k) and stack the two resulting boxes.

4. If the stack is not empty, then unstack into [x](k+ 1), increment k by
one and go to Step 1, else stop.

Upon completion of SIVIA, no indeterminate box will have a width larger
than εr. Moreover, under a few realistic technical conditions, Kin and Kout
will tend to X (respectively from within and from without) when εr tends
to zero [9]. When the dimension of X is less than four, the set Kin of all
boxes that have been proved to be feasible (or the union Kout of this set
with that of all boxes for which we have failed to prove anything) can be
plotted in the parameter space. When the dimension of the parameter space
is larger than three, the algorithm obviously still applies, but the results are
obtained under the form of lists of boxes, easier to interpret with the help of
a computer than graphically. A first example of a situation where parameter
estimation can be cast in the framework of set inversion and solved by SIVIA
is considered in the next section.

3 Bounded-error estimation

Bounded-error estimation (or membership set estimation) is becoming in-
creasingly popular in mathematical modeling, automatic control and signal
processing (see e.g. [30], the surveys [13, 17, 22, 32] and the references
therein, as well as no less than 25 papers in [1]).
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To simplify exposition, we shall only consider output errors:

e(ti,θ) = y(ti)− ym(ti,θ), i = 1, . . . , n

but other types of errors could be considered as well. It is assumed that
these errors should satisfy

e−(ti) ≤ e(ti,θ) ≤ e+(ti), i = 1, . . . , n

to be acceptable, where e−(ti) and e+(ti) are known prior bounds. These
prior bounds may result from hard facts, such as the performances of sensors
as expressed in their technical specification sheets, or merely indicate how
far we are prepared to go in accepting discrepancies between our data and
model outputs. Let y be the vector of all data y(ti), i = 1, . . . , n, collected
on a system, and ym(θ) be the vector of all corresponding model outputs
ym(ti,θ). The vector of all output errors can then be written as

e(θ) = y − ym(θ).

Define the feasible set for the errors E as the set of all error vectors e that
satisfy

e− ≤ e ≤ e+

where the ith component of e− and e+ is respectively e−(ti) and e+(ti). To
be acceptable, θ must satisfy

e(θ) ∈ E .

The (posterior) feasible set for θ is therefore given by

S = e−1(E).

Characterizing S is thus a problem of set inversion, which can be solved
with the help of SIVIA. Here, S stands for X , e for f and E for Y . The box
[x](0) then corresponds to the prior feasible set for the parameters.

Most of the work so far has been devoted to models with outputs linear
in their parameters, i.e.,

ym(ti,θ) = rT (ti)θ, i = 1, . . . , n

where the regressor r(ti) is a vector of known numbers. In this case, S is a
convex polyhedron, which is bounded if trivial identifiability conditions are
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satisfied. It can then be characterized exactly and recursively as the convex
hull of its vertices (see e.g. [31]), or approximately but simply by computing
outerbounding ellipsoids (see e.g. [2, 23]), boxes [15, 16] or parallelotopes
[28].

By contrast, very few guaranteed results are available for nonlinear mod-
els, except the signomial approach advocated in [18]. Use of interval analysis
is an alternative approach, independently suggested in [8, 9] and [20], to ob-
tain such guaranteed results. Note that E may be any prior feasible set
for the errors defined by a finite set of inequality constraints. Collateral
requirements are easily taken into account, provided that they can also be
expressed as a series of nonlinear inequalities to be satisfied by the param-
eters. It then suffices to append these inequalities to those resulting from
the bounded-error data. The next section shows, for instance, how stability
requirements can be cast in the framework of set inversion.

4 Characterization of stability domains

Consider a time-invariant continuous-time model, described by an ordinary
differential equation. (Transposition to discrete-time models is trivial.) As-
sume that the output of this model is linear in its inputs, which does not
imply that it is linear in its parameters. A necessary and sufficient condition
for this model to be asymptotically stable is that all terms of the first col-
umn of the Routh table associated with its characteristic polynomial have
the same sign [25]; and an early version of interval analysis was developed
by S. Faedo [5] to derive sufficient conditions for stability by using this cri-
terion. Assume that the characteristic polynomial to be considered depends
on some uncertain parameter vector p, so that it can be written as

P (s,p) =
n∑
k=0

ak(p)sk.

In what follows, the coefficient an(p) of the leading monomial is normalized
to 1. The vector p may consist of parameters of the model of the process,
but may also include parameters of a controller. We wish to characterize
the set P of all values of p such that the resulting model is asymptotically
stable. Here, ak may be any computable function of p, so that the situation
considered is much more general than with Kharitonov’s celebrated theorem
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[10] and its extensions. If f(p) is the vector of all entries of the first column
of the Routh table that are not identically equal to one, then the system
with parameter vector p will be asymptotically stable if and only if

f(p) > 0.

In other words, the system will be asymptotically stable at p if and only if

f(p) ∈ Y

where
Y = ]0,+∞[×(n).

Finding P is thus again a problem of set inversion, since

P = f−1(Y).

This problem can readily be solved with SIVIA. The prior set for the pa-
rameters is then decomposed into subboxes to be tested for stability, an idea
that can also be found in the work by Kiendl and coworkers (see e.g. [11]),
where a Lyapunov function is used to establish the stability of subboxes.
The analysis of the stability of polynomials with coefficients depending on
interval parameters is also being considered by Kolev [12].

More traditional statistically-based approaches for parameter estimation
can also be formulated as problems of set characterization, as evidenced by
the next section.

5 Bayesian estimation

In Bayesian estimation, the parameters are assumed to be random variables,
with known prior probability density function (pdf). A formal expression of
their posterior pdf πpost(θ) (i.e. their distribution when the data and noise
characteristics have been taken into account) is computed using Bayes’ rule
(see e.g. [4, 26]). The posterior pdf for the parameters thus obtained is often
difficult to use in practice, and rules have been suggested to compute point
estimates from it. The simplest of these rules is to compute the maximum
a posteriori estimate, i.e. the value of θ that maximizes πpost(θ). If the
cost of believing that the parameters have the value θ when their actual
value is θ∗ can be evaluated, it is also possible to compute a minimum
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risk estimate, i.e. the value of θ that maximizes the cost averaged over all
possible values of θ∗, given that y has been observed. Whatever the rule for
computing a point estimate, it must be noted that the optimization of the
resulting scalar criterion is usually far from simple and that the information
about the uncertainty on θ that was contained in the posterior pdf is lost,
so that the difficulties alluded to in Section 1 about the lack of a reliable
assessment of the uncertainty on the parameter estimates are still present.
This is why we would rather compute an optimal confidence region at level
α, denoted by Sα and defined as the compact set with smallest volume such
that θ ∈ Sα with probability α. Equivalently, Sα can be defined as

Sα = π−1post([sα,+∞[)

where sα is a threshold level, to be chosen so as to ensure that the posterior
probability of Sα satisfies Πpost(Sα) = α. SIVIA does not apply to finding
Sα, because the additional threshold parameter sα is unknown. For that
purpose, assume that the following are available: (i) a paving K of the prior
feasible set for the parameters (i.e. a subpaving such that the prior feasible
set K is equal to the union of all its boxes); (ii) a pair of functions (π+, π−)
such that π−(θ) ≤ πpost(θ) ≤ π+(θ) and that their values are constant
over any box of K; (iii) a numerical procedure to compute the posterior
probability Πpost([θ]) for any box [θ] of K. Interval analysis can be used to
obtain (π+, π−) from πpost. To find a pair (s−, s+) of positive real numbers
that bracket sα, the following two relations can then be used:

Πpost((π
−)−1([s−,+∞[)) > α =⇒ s− < sα,

Πpost((π
+)−1([s+,+∞[)) < α =⇒ s+ > sα.

The procedure for computing s− is as follows.

1. Sort all boxes of K by decreasing values of π−.

2. Set [θ] equal to the first box of K. Compute α+ = Πpost([θ]).

3. While α+ ≤ α, set [θ] equal to the next box of K,
set α+ = α+ + Πpost([θ]).

4. Set s− = π−([θ]).
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The value of α+ is equal to sum of the probabilities of all boxes explored
so far. When the loop ends, α+ > α, so that s− < sα. The same type of
algorithm can be used to compute s+. Once s− and s+ have been obtained,
it is possible to bracket Sα by setting

Kin := {[θ] ∈ K | π−([θ]) ≥ s+},

Kext := {[θ] ∈ K | π+([θ]) ≤ s−} ∪ {[θ] ∈ K | Πpost([θ]) = 0}.

Then
Kin ⊆ Sα ⊆ Kout := K −Kext.

The finer K is the more accurate the bracketing will be, and the following
procedure will be used for recursively improving K and the quality of the
bracketing.

1. Set K = {[θ](0)}.

2. Repeat

(a) select a box [θ] of K that maximizes Πpost([θ]),

(b) bisect it along a principal plane into [θ1] and [θ2],

(c) set K = K − [θ] + [θ1] + [θ2],

(d) compute s− and s+,

(e) compute Kin and Kout,

until Πpost(Kout) − α ≤ ε (where ε is a suitably small positive real
number).

When this procedure ends, Kout ⊆ Sα+ε.

6 Conclusions

A very large number of problems of practical interest can be formulated as
that of finding all values of a parameter vector that are acceptable in the
sense that a finite set of (possibly nonlinear) inequalities are satisfied. The
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methods classically used for that purpose are random sampling and system-
atic exploration over a grid in the parameter space. Even after intensive
computations, no definitive conclusion can be drawn with these approaches,
because a very small subset of the parameter space may always have escaped
attention.

By contrast, the set-inversion techniques advocated in this paper provide
guaranteed results (even if approximate) with a finite number of operations.
Large portions of the prior parameter space can be very quickly eliminated,
before concentrating on the indeterminate region. Theoretical results con-
cerning the complexity of SIVIA—in terms of memory and computing time—
can be found in [8]. The required memory for the stack remains surprisingly
limited, even if the number of parameters becomes quite large. As could
be expected, the number of boxes in the subpavings increases quickly when
the number of parameters increases or when the tolerance parameter εr is
decreased. Since the characteristics of these boxes can be stored on disks,
problems of realistic size (say with less than ten parameters) can be con-
sidered. The main limitation of the algorithm is that the computing time
increases exponentially with the dimension of the parameter space.
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