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Automatic Differentiation Applied to
Unconstrained Nonlinear Optimization

with Result Verification

Ronald Van Iwaarden

This paper explores using both forward and reverse modes of automatic dif-

ferentiation to solve the standard unconstrained optimization problem and

verify the solution that is found. The two types of automatic differentiation

are compared when the dimension of the problem is increased. This research

shows that the reverse mode is superior when time is the largest constraint and

that the forward mode is superior when memory requirements are of greatest

concern.

Применение автоматического
дифференцирования в задаче
нелинейной оптимизации без
ограничений с верификацией

результата

Р. Ван Иварден

Рассматривается применение прямого и обратного способа автоматиче-

ского дифференцирования для решения стандартной задачи оптимизации

без ограничений и верификации получаемого таким образом результата.

Эти два типа автоматического дифференцирования сравниваются меж-

ду собой при увеличении размерности задачи. Настоящее исследование

показывает, что обратный способ оказывается лучше, когда наиболее су-

щественным ограничением является время, и что прямой способ имеет

преимущества, когда важнее всего требования, предъявляемые к объему

памяти.
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1 Introduction: Newton’s method

The unconstrained optimization problem

min
x∈ℜN

f(x)

where f is a real valued twice continuously differentiable function, and its
level sets are bounded. Our goal is to compute some x∗ such that

f(x∗) ≤ f(x) ∀x ∈ ℜN .

Computing this local minimizer may not always be feasible so that the gener-
ally easier problem of finding a local minimum is substituted for the original
one. That is, an x∗ is computed for which there exists δ > 0 such that

f(x∗) ≤ f(x) ∀x such that ‖x− x∗‖ ≤ δ.

If x∗ is a local minimizer, then the first-order necessary condition is

∇f(x∗) = 0. (1)

If the Hessian matrix at x∗, denoted Hf(x
∗), is positive definite, then the

inequalities above hold with strict inequality when x 6= x∗. This is referred
to as a strong local minimum.

A classical method for solving problem (1) is Newton’s method. To de-
velop Newton’s method, approximate f(x) by Taylor’s theorem and assume
that f is given exactly by the first three terms of its Taylor series expansion

f(x+ p) = f(x) +∇Tf(x)p+
1

2
pTHf(x)p.

To minimize this function over all p, the first order necessary conditions give

∇f(x) +Hf(x)p = 0.

Newton’s method uses the solution

p = −H−1f (x)∇f(x)

and we must solve an N × N system of equations to find the search direc-
tion p. This process yields the following algorithm:
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Step 1. Solve Hf(x)p = −∇f(x).

Step 2. Set x← x+ p.

Step 3. If ‖∇f(x)‖ < ǫ, for some ǫ > 0 stop; else go to Step 1.

As is well known, the main advantage and attraction of Newton’s method are
that, if the function is sufficiently smooth and x is close enough to a strong
local minimizer x∗, then Newton’s method is quadratically convergent.

This advantage, however, is not generally enough to counteract the dis-
advantages of Newton’s method, some of which are the following.

1. The method is not globally convergent. That is, it may not converge
to a stationary point for an arbitrary x0, and it may even diverge.

2. If the Hessian Hf(x) is singular, the method is not defined.

3. If the function is not convex, the set of directions given may not define
a set of descent directions.

4. An N ×N system of equations must be solved at each iteration.

Of these disadvantages, (1) and (3) can be solved by a slight modification of
Newton’s method. Define φ(α) = f(x+αp) for 0 < α ≤ 1 and the modified
Newton’s method becomes

Step 1. Solve Hf(x)p = −∇f(x).

Step 2. Find α so that the following are satisfied:

a) φ(α) < φ(0) + ǫφ′(0)α,

b) φ(α) > φ(0) + (1− ǫ)φ′(0)α.

Step 3. Set x← x+ αp.

Step 4. If ‖∇f(x)‖ < ǫ, stop; else go to Step 1.

The conditions in Step 2 are known as the Goldstein test [13] and they
help to control the global behavior of the method. Early in the calcula-
tion, they play a significant role, forcing the method to make a step that
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minimizes the function at each step, and they also prevent the modified
Newton’s method from making too radical a change. Later in the calcula-
tion, assuming the function tends asymptotically toward a quadratic, the
stepsize approaches 1, and the Goldstein test has less of a role.

1.1 Truncated Newton’s methods

It may not be wise to solve the Newton’s equations, Step 1, when the present
value for x is far from the solution. Dembo and Steinhaug [2] proposed using
the method of conjugate gradients for solving Newton’s equations. If we let
the present solution to Newton’s equations be given by xk, then the residual
is given by rk = Hfxk − ∇f(x). The iterations of the conjugate gradi-
ent method are then truncated when the error, given by ||rk||/||∇f(x)||, is
“small enough” rather than continuing until the error is zero. (Hence the
name truncated Newton’s method). Dembo and Steinhaug showed that this
method is globally convergent to a local minimum with any rate of conver-
gence between linear and quadratic being possible depending on the size of
||rk||/||∇f(x)||.

The conjugate gradient method has a very important property that
makes it especially suited for using automatic differentiation to solve New-
ton’s equations. That property is that the conjugate gradient method never
requires the Hessian matrix to be known explicitly, only a Hessian-vector
product Hf(x)p is required. It is assumed that the function f is in C2,
which implies that the Hessian is symmetric, and so the product pTHf(x)
is also acceptable.

This research implemented the standard conjugate gradient method to
demonstrate the tradeoffs between forward AD and reverse AD with respect
to storage and computational time. The reader should note that much has
been written about conjugate gradient methods (see, e.g., [8, 9]) and that
even a simple diagonal preconditioner can speed up the convergence of this
method. This as well as other basic ideas of both the standard Newton’s
method and the truncated Newton’s method [3, 5, 16, 13] are areas for
further research.
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2 Forward automatic differentiation

There are two types of automatic differentiation (AD), forward and reverse.
The forward mode [21] is used by Dixon and Price [4] in their implementation
of the truncated Newton’s method. To implement forward AD, an algebra on
the space T n of ordered (n+1)-tuples (x, x′, . . . , x(n)) is defined where x(j) is
an j-dimensional tensor. For simplicity and since only second derivatives for
the optimization method, n = 2, and any element x ∈ T 2 can be represented
by (x, x′, x′′), where x is a scalar, x′ is an N -vector, and x′′ is an N × N
matrix. Let U, V ∈ T 2, and let φ(x) ∈ C2, the operations that are needed
are defined in the space T 2 as follows,

U = (u, u′, u′′) and V = (v, v′, v′′).

This gives

U + V = (u+ v, u′ + v′, u′′ + v′′)

U − V = (u− v, u′ − v′, u′′ − v′′)

U ∗ V = (u ∗ v, uv′ + vu′, uv′′ + u′v′T + v′u′T + vu′′)

U / V =
(

u/v, (vu′ − uv′)/v2,

(v2u′′ − v(v′u′T + u′v′T ) + 2uv′v′T − uvv′′)/v3
)

φ(U) =
(

φ(u), φ′(u)u′, φ′(u)u′′ + φ′′(u)u′u′T
)

for the elementary function φ.

These are the standard operations given by the algebra of Taylor’s series,
which is just the implementation of the chain rule. With this notation, a
variable xi becomes (xi, ei, 0), where ei is the ith unit vector and 0 is the
N ×N matrix of zeros. The rules for Taylor arithmetic come directly from
any elementary calculus text and can be modified for faster implementation
on a computer. For example:

w = u/v

U/V =
(

w, (u′ − wv′)/v, (vu′′− (v′u′T + u′v′T ) + 2wv′v′T − wvv′′)/v2
)

.

All of these operations require a matrix store and are not what is needed
for the conjugate gradient method where a matrix-vector product is used.
Dixon and Price [4] adapted forward AD to retain only a vector-Hessian
product as follows. Define the space S2, where any element u ∈ S has
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the form u = (u, u′, u′′p), where u is a scalar, u′ and p are N -dimensional
vectors, and u′′ is an N×N matrix. Then, given U, V ∈ S and φ(x) ∈ C2,
the operations on this space are given by

U = (u, u′, u′′p) and V = (v, v′, v′′p)

U + V = (u+ v, u′ + v′, u′′p+ v′′p)

U − V = (u− v, u′ − v′, u′′p− v′′p)

U ∗ V = (u ∗ v, uv′ + vu′, uv′′p+ u′v′Tp + v′u′Tp+ vu′′p)

U / V =
(

u/v, (vu′ − uv′)/v2,

(v2u′′p− v(v′u′Tp+ u′v′Tp) + 2uv′v′Tp− uvv′′p)/v3
)

φ(U) =
(

φ(u), φ′(u)u′, φ′(u)u′′p + φ′′(u)u′u′Tp
)

.

With this new notation, an independent variable xi is represented by (xi, ei, 0),
where xi is a scalar, ei is again the ith unit vector, and 0 is the N -dimensional
zero vector. It should also be noted that in all of the above operations, at
most dot products are required. The Hessian is never explicitly required.
Since the entire Hessian need not be computed, this adaptation results in
both vector storage and faster operation for each Hessian-vector product.
As with the matrix version, some of these expressions can be simplified for
faster implementation on a computer. Iri and Kubota [10] have shown that
computing the gradient and Hessian by the forward AD method requires
w(f)O(N2) operations, where w(f) is the work required to compute the
function f(x). To compute just the gradient and Hessian-vector product
requires at most w(f)6N operations or w(f)O(N) operations.

3 Reverse automatic differentiation

The present form of reverse AD appeared in 1980 [20]. However, the earliest
known paper that explicitly recognizes the potential savings that arise in
reverse AD is by G. M. Ostrowski et al. [18]. Similar to forward AD, the
reverse mode is based on the chain rule, but the chain rule is used in a
slightly different form from what we are used to.

Consider the simple example

F (x, y) = sin(x3 + y).
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Figure 1: Computational graph for F (x, y) = sin(x3 + y).

One possible computational graph is shown in Figure 1, where v1 = x3,
v2 = x3 + y = v1 + y, and v3 = sin v2 = sin(x2 + y). This computational
graph is essentially a graphical representation of the computational process
that is used in forward AD. A computational graph is by no means unique.
Even in this small example, node v1 could have been replaced by a u ∗ v
node with two input arcs that both originate from the node x and a second
u ∗ v node with input arcs from both x and this new v1.

Once the computational graph has been created, the technique of re-
verse AD can be applied to the computational graph to compute the needed
derivatives. For this process, compute the partial derivatives of any arc
a = (vi, vj), where vi is the node where the arc originates, and vj is the
terminal node. The computational graph is then extended to make a new
computational graph that computes the partial derivatives. The new graph
is created by placing a mirror image of the original graph next to the orig-
inal. For this mirror image, the direction of each arc is reversed. In the
middle of each arc, a multiplication node is placed. All of the original nodes
in the mirror image become addition nodes with the exception of the node
which corresponded to the function value F . This node receives the value 1.
Between the two graphs, one intermediate node is then placed for every arc
in the original graph. Finally, the value of 0 is assigned to every + node in
the mirror graph.
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For each node vi in the original graph that inputs to node vj, where node
vj also has inputs from node vk, three arcs are made that connect these three
nodes with the intermediate node wi,j. This node contains the function that

corresponds to
∂vj
∂vi

. This node then has an arc that connects to node ui,j

in the new computational graph. The node ui,j is the multiplication node
between nodes ui and uj.

To illustrate this, we once again consider the previous example:

∂u3

∂u
=

∂x3

∂x
=

3u3

u
= 3x2

∂u+ v

∂v
=

∂x3 + y

∂y
= 1

∂u+ v

∂u
=

∂x3 + y

∂x3
= 1

∂ sin u

∂v2
=

∂ sin(x3 + y)

∂x3 + y
= cos(x2 + y).

The intermediate node corresponding to the arc from (u+v) to sin u contains
the function cosu = cos(x3+y). This function depends only on inputs from
the node x3 + y. The arc from sin(x3 + y) does not need to be included in
the computational graph. Continuing in this fashion, the intermediate node
for the arc from u3 to (u+ v) has the value 1 and has no inputs. Similarly,
the intermediate node for the arc from y to (u+ v) has the value 1 with no
inputs. The intermediate node for the arc from x to u3 has the value 3x3/x,
where it has its first input from the node with the value u3 and its second
input from node x. The resultant graph for ∇F (x, y) appears in Figure 2.

This new computational graph yields the gradient of the function
F (x, y) = sin(x3 + y). Once this computational graph has been traversed,
∂F
∂x is contained in the mirrored x node, and ∂F

∂y is contained in the mirrored y
node. This graph has a similar geometry to the original computational
graph, and it is rarely computed is practice.

If the Hessian is needed, the new computational graph can be differ-
entiated N times, since the Hessian is just the derivative of the gradient.
Again, this computational graph is not significantly different from the orig-
inal graph, and so it does not need to be explicitly computed. Also, the
Hessian-vector product is easily computed using only the original compu-
tational graph since this third graph again has a similar geometry to the



Automatic Differentiation Applied to Unconstrained Nonlinear. . . 49

YX

U
3

U+V

sin U

cos U
1

*

*

*
*

1

1

3U
V

+

+

+ +

Figure 2: Computational graph for the gradient of F (x, y) = sin(x3 + y).

original computational graph. For a thorough discussion of the algorithm
and the computational complexity, the reader is referred to Iri [10].

4 Comparison of forward and reverse AD

It is next shown that the reverse and forward methods of AD can be viewed
simply as different interpretations of the chain rule. When the forward
method is implemented, the total derivatives of node vi with respect to xi

are known at the point the computation of f reaches node i. Consider the
example from the beginning of Section 3, this can be represented as follows:

1. ∂v1
∂x = 3x2

∂v1
∂y

= 0.

2. ∂v2
∂x

= 3x2

∂v2
∂y

= 1.

3. ∂v3
∂x

= 3x2 cos(x3 + y)
∂v3
∂y

= cos(x3 + y).

Since v3 = f, at 3, the gradient has been computed. This is how the forward
(bottom-up) method of AD is implemented. Assuming xy is evaluated by
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ey lnx is five multiplications. The total number of additional computations
that must be done in order to get the derivative are five multiplications, two
additions, and three transcendental function evaluations.

In contrast to this, the reverse method computes the entire function
first and saves the intermediate values along with the elementary partial
derivatives of each node with respect to its inputs. Then, the graph is
traversed in the reverse direction (top-down). The partial derivative of f
with respect to node vi is known when the computation reaches that point.
When this is finished, the partial derivative of f with respect to each of the
original inputs x1, . . . , xn is known for each xi. For the example that was
used, this can be represented as follows.

1. ∂v3
∂v2

= cos v2

2. ∂v3
∂y = cos v2

3. ∂v3
∂v1

= cos v2

4. ∂v3
∂x

= (cos v2)3v1/x.

Again, since v3 = f and 3v1/x = 3x2, the gradient of the function has
been computed. Instead of computing ∂v3

∂x = 3x2, which requires transcen-

dental function evaluations, we compute ∂v3
∂x = (cosV2)3v1/x, saving work.

For the reverse method, the total amount of additional computational ef-
fort expended is five multiplications, one division, one transcendental func-
tion evaluation, and four additions. If a division costs approximately two
multiplications, a transcendental function costs approximately three mul-
tiplications, and addition and subtraction cost half a multiplication, then
to evaluate the function alone requires approximately seven multiplications.
For the gradient by means of forward AD, an additional fifteen multiplica-
tions are needed. For the gradient by means of reverse AD, an additional
ten multiplications are needed.

The advantages given by reverse AD in terms of computational time are
not great with this problem. If a larger problem is solved, however, the
difference is often more striking. The most obvious disadvantage for reverse
AD is the need to store the computational graph and all of the intermediate
variables. For forward AD, only a vector store is required to compute the
gradient. For reverse AD, we are not aware of any bounds on the growth of
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Derivative Finite differences Reverse AD Forward AD
∇f 2Nw(f) 5w(f) 5Nw(f)
∇2f 3N2w(f) (6 + 9N)w(f) O(N2)w(f)
yt∇2f 4N2w(f) 15w(f) O(N)w(f)

Table 1: Orders of magnitude for different differentiation methods.

the computational graph. However, recent work by Griewank [7] has shown
that it is possible to achieve logarithmic growth in the spatial complexity
of the computational graph with respect to the run time with a trade-off of
logarithmic growth in the temporal complexity.

The primary advantage of reverse AD has been the speed at which deriva-
tives are computed. Iri and Kubota [10] have shown that the work required
to compute the function and its gradient requires at most 5w(f) evalua-
tions. They also show that the work required to compute the function, its
first derivative, and the Hessian-vector product does not exceed 15w(f). In
other words, the time requirement for evaluating the product of the Hessian
and a vector requires at most a constant times the amount of work required
to evaluate the function itself. To compute the full Hessian requires fewer
than (6+9N)w(f) operations. It is very surprising to note that the reverse
method is of an order of magnitude faster than the forward method. This
remarkable fact will become even more evident when both methods are used
for nonlinear optimization.

The reason the reverse mode of AD is so much faster is that the amount
of work required to compute the gradient is dependent on the size of the
computational graph. Since the computational graph for the gradient is
about three times the size of the graph for the function alone, the amount
of work to compute the gradient would appear to be on the order of three
times the work to evaluate the function. The constant, however, can be
greater than three since the time required to access the values from memory
has not been considered. These results are summarized in Table 1.

Table 1 represents only functions of N variables onto the real numbers.
When a function from N variables onto ℜM where M > 1 is considered,
Table 1 can be completely false. Table 1 would lead one to believe that
reverse AD is superior in all cases, but it is very possible that forward
AD will be a superior method for certain cases. For example, consider
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a function from one variable into 8 variables with a computational graph
shaped like a binary tree. With this graph, both forward AD and reverse
AD with go through the same amount of effort in computing derivatives.
The reader is also referred to the work of Bischof et al. [1], where hybrid
schemes are explored to capitalize on the strengths of both the forward and
reverse mode. These hybrid schemes have been implemented in the package
ADIFOR, which is a Fortran preprocessor to translate a Fortran subroutine
into a routine that computes the derivative of the subroutine.

5 Result verification

Once a candidate point x ∈ ℜN for the approximate local minimizer (1) has
been identified, it is next validated. It is known from Moore [15] that if f is
twice continuously differentiable on an interval vector X,

K(X) ⊆ X, (2)

K(X) = y − Y∇f(y) +
[

I − Y Hf(X)
]

(X − y) (3)

where y is any vector such that y ∈ X and Y a nonsingular real matrix,
then the solution to ∇f(x) = 0 is contained in X.

Let Y =
(

Hf(y)
)−1

and y = mid(X). Then K(X) can be seen as a
Newton’s step

y − Y∇f(y) ≡ y −
(

Hf(y)
)−1
∇f(y)

plus a contraction of the present interval

[

I − Y Hf(X)
]

(X − y) ≡
[

I −
(

Hf(y)
)−1

Hf(X)
]

(X − y).

In general, I − (Hf(y))
−1Hf(X) 6= 0, since Hf(X) is an interval matrix.

This yields the following algorithm:

Step 1. Find an approximate solution x̄ to the equation ∇f(x) = 0.

Step 2. Set X = x̄+ [−ǫ, ǫ]x̄.

Step 3. If Equation 2 is satisfied, then stop; else go to 1.
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At Step 3, y = mid(X), Y =
(

mid(Hf(X))
)−1

, and ǫ = 10−10 are used in
Equation 3. In the examples that are given in the next section, the prob-
lems have sparse, narrow-banded Hessians that allow inversion in O(N2)
time. With non-sparse systems, it would be advisable to maintain an ap-
proximation to the inverse so that the O(N3) work involved in inversion
can be avoided. The major computational challenge for this research was
the memory required for storing the Hessian and the matrix I − Y Hf(X).
This required N2 data elements. For the implementation described here,
a 256 × 256 variable matrix required 1 megabyte of memory. This quickly
overwhelmed the test machine even though it had 16 megabytes of memory
and so larger problems were not implemented.

The implementation for the numerical experiments verifies only that a
value for X such that ∃x ∈ X ∋ ∇f(x) = 0 has been found. This does
not guarantee a local minimum, but only that an interval X has been found
for which ∃x ∈ X which satisfies the Kuhn-Tucker conditions (see [13]). A
new method by Ratz [19] verifies that the interval matrix Hf(X) is positive
definite which is a necessary condition for a local minimum, whereas what
is implemented here is only a sufficient condition for a local minimum.

6 Implementation and results

Several implementations of AD have been written for C++ that take advan-
tage of the operator overloading in the language, among them are [6, 14]. The
approach of one of these implementations, Adol-C, is to build the computa-
tional graph each time that the function is evaluated, and then traverse it
in order to get the desired derivatives. The advantage of this method is that
conditional branches can be easily differentiated. Its disadvantage is that
the repeated building of the computational graph can be time-consuming.

A second approach is to write a program that will differentiate functions
rather than general computer programs, that is, a program will read in a
procedure that describes the function f(x), and then writes another pro-
cedure that will compute f(x) and a specified number of derivatives. The
advantage of this method is its speed, and it can then be linked into an opti-
mization algorithm. Another advantage is that if a large amount of memory
is required, paging can be handled much more efficiently. A disadvantage is
that conditional branches are not as easily handled in this case.
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A third approach, the one used here, is to compute the computational
graph once and then retained in main memory. This has the advantage of
speed since the computational graph does not need to be recomputed. A
disadvantage is that memory cannot be handled very efficiently, and that
conditional evaluations in the function cannot be handled very easily. How-
ever, since the test problems used no conditional branches, the drawbacks
of this approach were not significant.

The test problems are as follows.

Problem 1. Extended Rosenbrock’s function:

F (x) =

n/2
∑

i=1

100(x2i − x2
2i−1)

2 + (1− x2i−1)
2

X0 = (−1.2, 1,−1.2, 1, . . . , − 1.2, 1)T

X∗ = (1, 1, 1, . . . , 1)T .

Problem 2.

F (x) =
n

∑

i=2

i(2x2
i − xi−1)

2 + (x1 − 1)2

X0 = (1, 1, . . . , 1)

X∗ =

(

1,
1

21/2
,

1

23/4
,

1

27/8
, . . . ,

1

2(2n−1−1)/2n−1

)

.

The programs were run on an IBM-compatible system running an 80386
at 33 MHz with a math coprocessor using the GNU C++ version 2.3.3 run-
ning under OS/2 version 2.0. The computational graph was designed as a
linked list that could be traversed in both the forward and reverse direc-
tions. The graph was created by overloading the standard operators (+, −,
∗, /) and the elementary functions (sin, cos, log, exp). The time to compute
the computational graph was not included in the tables to follow. However,
the time to compute the computational graph was not more than about
8 seconds, even when the number of variables exceeded 1024.

The forward AD method was implemented by overloading the operators
as for the reverse method. The second form of the forward method was used,
where only a vector-Hessian product was stored for the third element of the
Taylor’s series.
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n Forward AD Reverse AD
Point Hessian Total Point Hessian Total

4 17.40 0.66 18.34 9.88 0.43 10.60
8 57.90 6.09 63.78 18.43 1.59 20.75

16 303.50 40.87 384.31 35.97 6.18 43.57
32 886.28 326.40 1,222.72 80.15 23.53 121.44
64 3,854.35 2,569.37 6,491.06 140.35 99.28 299.13

128 14,464.19 20,672.75 35,478.31 269.19 403.84 1,019.28

Table 2: Time results with Rosenbrock’s function.

All methods used the same truncated Newton optimization code for com-
parison. The linesearch as done by means of first checking to see whether
α = 1 was an acceptable stepsize according to the Wolf Test [13]. If it was
not acceptable, the new point was found by fitting a cubic interpolant to
φ(x), φ′(x), φ(1), and φ′(1), where φ(α) = f(x + αP ) and P is the search
direction. If this again does not find an acceptable stepsize, the stepsize was
cut in half until an acceptable stepsize is found.

The point method was terminated when ‖δx‖ < 10−15. In Tables 2
and 3, the columns “Point” and “Hessian” refer to the time required to find
the potential optimum and the time to compute the Hessian, respectively.
“Total” refers to the total time for finding a potential optimum, computing
the Hessian, and verifying the solution. The time was obtained by asking
for the system time just before the start of the optimization algorithm and
then again just after the end of the algorithm. These two values were then
subtracted appropriately to obtain the figures that are given. Unfortunately,
these are real (wall clock) time elapsed rather than the actual CPU time.
In order to try to get a good estimate, most tests were run three times, and
the average figure is presented in the table.

The results in the tables suggest that when the size of the problem is
doubled, the time to find a potential solution point when using the reverse
method is approximately doubled. This is due to the fact that the reverse
method is able to compute the gradient and the Hessian vector product for
a constant times the work to compute the function alone, which is overall
O(N). For the verification portion of the algorithms, the entire Hessian must
be computed. This requires (5+16N)w(f) operations for an overall O(N2),
which is reflected in the fact that as the size of the problem is doubled, the
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n Forward AD Reverse AD
Point Hessian Total Point Hessian Total

4 25.13 0.81 26.10 16.69 0.53 17.50
8 170.12 6.97 177.91 52.90 2.25 54.78

16 924.32 56.47 983.38 115.60 8.97 127.16
32 4,722.56 472.62 5,206.40 358.37 35.79 405.37
64 24,149.31 3,749.09 27,957.94 913.03 148.78 1,121.53

Table 3: Time results with Problem 2.

time to compute the Hessian goes up by a factor of four as can be seen
above.

The time to find a potential solution approximately quadruples when the
size of problem is doubled for the forward AD method. This is indicative of
the fact that gradients and Hessian vector products are computed linearly
in time giving an overall time of O(N2). For the verification portion of
the algorithms, again, the entire Hessian must be computed. This requires
O(N2)w(f) operations for an overall O(N3), which is reflected in the fact
that as the size of the problem is doubled, the time to verify goes up by a
factor of eight. The larger versions of the different examples were not run
because of the amount of time that would be required.

Problem 2 turned out to be difficult for both methods to solve. It dif-
fers from the Rosenbrock’s function in that as the size of the problem is
increased, the Hessian matrix becomes more ill conditioned. With Rosen-
brock’s function, the condition number of the Hessian matrix is constant for
any number of variables. This is what caused the methods to take consider-
ably longer to Problem 2 and have erratic computation times as the number
of variables increase. However, we still see the quadratic growth in time for
computing the Hessian with the reverse AD versus the eightfold increase for
computing the Hessian with forward AD. Also, reverse AD is again much
superior to forward AD in the time to find a potential optimum.

Dixon and Price [4] compare the truncated Newton’s method with for-
ward AD to E04KDF, the NAG-modified Newton code, OPCG, the Hat-
field Polytechnic OPTIMA library conjugate gradient subroutine [17], and
OPVM, the OPTIMA variable metric code [17]. They found that in all prob-
lems considered, the truncated Newton’s method with forward AD took
approximately three times as long to solve as OPCG, was comparable to
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OPVM, and was slower than E04KDF when the dimension of the prob-
lem was small. When the size of the problem was increased, OPVM and
E04KDF were both slower than the truncated Newton’s method.

Two problems related to the computation of the Hessian for the purposes
of result verification remain, computing K(X) core storage of the Hessian.
It is obvious that the reverse method is superior when one wishes to compute
2 (and then 3) in the least amount of time for a large number of variables.
For the second problem, if the Hessian is sparse, it cannot be assumed that
the inverse is also sparse. This will greatly exceed the additional memory
required for the reverse AD and so cannot be considered a disadvantage.

Finally, it should also be noted that the truncated Newton’s method
without verification and with verification falls apart in the case where the
function has a singular Hessian at the solution. For the truncated Newton’s
method, one technique may be to use the higher order method when far
from the solution and then revert to a lower order method such as a modified
gradient descent when close to the solution or when convergence begins to
stall. For result verification, it may be necessary to use a large number of
decimal places of accuracy to invert the Hessian accurately when close to
the solution. This may not be feasible and is an area for further research.

When using the truncated Newton’s method or any other optimization
method, AD should be considered whenever gradients or Hessian are re-
quired. The major drawback to reverse AD is the memory requirement but
this is not significant if a full Hessian is required. For interval analysis,
AD is a perfect match since the goals of the two ideas are similar. AD in-
tends to give accurate derivatives that are devoid of truncation error, and
interval analysis desires to give a tight bound of the roundoff error that re-
mains. With the advent of languages such as C++, Pascal–XSC [11], and
C-XSC [12], writing code that integrates these ideas is now easy.
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nung von Ableitungen. Wissenschaftliche Zeitschrift der Technischen
Hochschule für Chemie, Leuna-Merseburg 13 (4) (1971), pp. 382–384.

[19] Ratz, D. Automatische Ergebnisverifikation bei globalen Optimierungs-
problemen. Dissertation, Universität Karlsruhe, 1992.

[20] Speelpenning, B. Compiling fast partial derivatives of functions given
by algorithms. Ph. D. thesis, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, January 1980.

[21] Wengert, R. E. A simple automatic derivative evaluation program.
Comm. ACM 7 (8) (1964), pp. 463–464.



60 R. Van Iwaarden

2208 Williams St.
Denver, CO 80210
USA


