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We present the techniques we have used to bound the range of the arcsine, arc-
cosine, arctangent, arccotangent, and hyperbolic sine functions in our portable
FORTRAN–77 library INTLIB. The design of this library is based on a balance
of simplicity and efficiency, subject to rigor and portability.
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1 Introduction

INTLIB ([7] and [8]) is a portable FORTRAN–77 library to support inter-
val arithmetic evaluation of the elementary functions. Here, we describe
the subroutines in INTLIB for bounding the arcsine, arccosine, arctangent,
arccotangent, and hyperbolic sine functions. These subroutines are called
IASIN, IACOS, IATAN, IACOT, and ISINH respectively.

Our basic algorithms are based on Taylor’s theorem, with special argu-
ment reduction and choice of expansions. Our choice of the Taylor approxi-
mation allows us to achieve

1) ease of obtaining mathematically rigorous bounds on the truncation
error;

2) portability;

3) fast convergence rates, and

4) ease with which the FORTRAN source code can be read and main-
tained.

There are numerous alternatives, such as polynomial interpolation, ratio-
nal interpolation or minimax approximation, etc. Polynomial interpolants
have error bounds similar to those of Taylor polynomials, and share other
similarities, but are slightly more complicated. Rational functions have been
used in interval computations to approximate elementary functions; for ex-
ample, see [2, §2.4], following [12]. However, to our knowledge, in general all
coefficients change if we increase the degree of approximation. Furthermore,
we know of no simple error formulas amenable to interval computation. For
example, in [11, problem 19, p. 312], the error term for rational interpolation
of a function f by P (x)/Q(x) at xi, 1 ≤ i ≤ n is given by

e(x) =
pn(x)

n!Q2(x)

dn

dxn
[
Q2(x)f(x)

] ∣∣∣
x=ξ

where pn(x) =
∏n

i=1(x − xi). Contrast this with the simple error term for
the arcsine in equation (4) below.

Related rationales are given in [3] and [9] for employing Taylor series in
portable interval libraries for the standard functions. There are, however,
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some techniques beyond the Taylor approximations that will be useful in
our context; see §5 below.

Specifically, the following well-known series expansions underlie the ap-
proximations in this paper.

arcsinx = x+
x3

2 · 3
+

1 · 3x5

2 · 4 · 5
+ · · ·+ (2n)!x2n+1

(2nn!)2(2n+ 1)
+ · · · (1)

arctanx = x− x3

3
+
x5

5
− · · ·+ (−1)n−1 x

2n−1

2n− 1
+ · · · (2)

sinhx = x+
x3

3!
+
x5

5!
+ · · ·+ x2n+1

(2n+ 1)!
+ · · · (3)

We bound these elementary functions with interval arithmetic.1 In interval
computations, both the number of computations and the widths of the input
intervals affect the width of the result interval. Hence, we want to

(a) use narrow intervals x in the above series and

(b) accelerate the rate of convergence to reduce the number of computa-
tions.

Let us address (a) first. The range of a continuous monotone function
f(x) is either [f(x), f(x)] or [f(x), f(x)]. Therefore, we may bound f(x)
by replacing both x and x by the smallest machine representable intervals2 l
and u containing x and x, respectively, then bounding f(l) and f(u). If f(x)
is a monotonically increasing function, then f(x) ⊆ [f(l), f(u)], where f(x)
denotes the exact range of f over x. If f(x) is a monotonically decreasing
function, then f(x) ⊆ [f(u), f(l)]. Since the widths of l and u are small,
the overestimation in the bounds for f(x) due to the width of the operand
will be limited. This idea is used for all subroutines in this paper, since all
functions considered in this paper are monotone.

To guarantee that the computed range contains f(x) for all x ∈ x, we
need to over- or underestimate the series as appropriate. For example, we
need to overestimate the series (1) if we replace x by u and to underesti-
mate (1) if we replace x by l.

1Throughout this paper, we use boldface letters to denote intervals; we use x and x to denote the
lower bound and upper bound, respectively, for an interval x.

2This can be done by using the subroutine RNDOUT in [6].
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We address (b) and error estimations for each of these subroutines in the
following sections.

2 IASIN and IACOS

IASIN and IACOS bound the arcsine function and arccosine function respec-
tively. The core subroutine of IASIN evaluates s, the partial sum of series (1),

by interval arithmetic, where si =
i∑

n=0

(2n)!x2n+1

(2nn!)2(2n+ 1)
, and 0 ≤ x ≤ 0.5.

Since arcsinx is an odd function, we assume x ≥ 0. If x < 0, we compute
arcsin x by arcsin x = −arcsin (−x). We assume x ≤ 0.5 for fast conver-
gence. If x > 0.5, we define y =

√
1−x
2 < 0.5 and use y in equation (1).

Then, we apply the identity arcsinx = π/2−2 arcsin
√

1−x
2 to find arcsin x.

Suppose i terms are used in evaluating (1), so that the interval truncated

from (1) is ei =
∞∑

n=i+1

(2n)!x2n+1

(2nn!)2(2n+ 1)
. Since

(2n)!

(2nn!)2(2n+ 1)
is a decreasing

sequence, we may apply the geometric series with common ratio r = 0.5 ≥ x
to overestimate the maximum absolute truncation error ei = maxe∈ei |e|. We
thus obtain

ei =
∞∑

n=i+1

(2n)!x2n+1

(2nn!)2(2n+ 1)

≤ (2i+ 2)!x2i+3

(2(i+1)(i+ 1)!)2(2i+ 3)

∞∑
n=1

xn

≤ 2(2i+ 2)!x2i+3

(2(i+1)(i+ 1)!)2(2i+ 3)
. (4)

If s = 0, we use sin 0 = 0 to avoid computing equation (1). If s 6= 0, the

maximum relative error is less than
max ei
min si

≤ (2i)!2x2i+1

(2ii!)2(2i+ 1)s
.We terminate

accumulation of the sum s when this relative error bound is less than a
tolerance ε (denoted TOL0 in the code), related to the relative error in
a single floating-point operation. If we need to overestimate s, we add
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the maximum absolute truncation error to the partial sum. If we need to
underestimate the series, we simply truncate all terms from the i+ 1 term.

Here is the algorithm to bound arcsin x. In the algorithm, we use a
logical variable Negative to indicate if x < 0 or not. We use another logical
variable Over to indicate if we need to over estimate s or not. The variable
Code records argument reductions on x, so that the result may be trans-
formed correctly. Some irrational numbers such as π/2,

√
2, . . . are used in

our algorithms. They are defind as interval constants in INTLIB.

In Algorithm 1, Algorithm 2, and Algorithm 3, Step 3 is analogous to
Step 2. However, the rounding direction differs, and depends on what argu-
ment reduction was previously done. We do not include details for Step 3 of
these algorithms here. However, we have a complete writeup of Step 3 (and
indeed, the FORTRAN source) for those interested in implementing these
algorithms.

Algorithm 1.

1. Input the interval x = [x, x].

2. Compute the lower bound of arcsin x.

(a) If x < 0, then Negative ← True , x← −x,Over ← True ,
else Negative ← False ,Over ← False .

(b) Represent x by an interval l.

(c) If l > 0.5, then Code ← 12, l←
√

(1− l)/2,
else Code ← 11.

(d) Compute s = l + l3
1·3 + · · ·+

(2i)!l2i+1

(2ii!)2(2i+1)
until

(2i+ 2)!2l
2i+3

(2(i+1)(i+ 1)!)2(2i+ 3)s
< ε.

(e) If Over = True then s← s + (2i+2)!2l2i+3

(2i+1(i+1)!)2(2i+3)
.

(f) If Code = 12 then s← π/2− s.

(g) If Negative = True then arcsin x← −s else arcsin x← s.

3. Compute the upper bound of arcsin x, analogously to Step 2.

Since arccos x =
π

2
−arcsin x, we may first find arcsin x then subtract it

from π/2 to obtain arccos x. Therefore, we do not present IACOS in detail.
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3 IATAN and IACOT

IATAN and IACOT bound ranges of the inverse tangent function and in-
verse cotangent function, respectively. The series (2) with coefficientO(1/n)
converges too slowly. For faster convergence, we multiply both sides of (2)
by x2. We obtain

x2 arctanx = x3 − x5

3
+
x7

5
− · · ·+ (−1)n−1 x

2n+1

2n− 1
+ · · · . (5)

By adding (2) and (5), we have

(1 + x2) arctanx = x+

(
1− 1

3

)
x3 − · · ·

+ (−1)n+1

(
1

2n− 1
− 1

2n+ 1

)
x2n+1 + · · · . (6)

Dividing both sides of (6) by 1 + x2, we obtain

arctanx =
x+ 2

(
1
1·3x

3 − 1
3·5x

5 + · · ·+ (−1)n+1 x2n+1

(2n−1)(2n+1) + · · ·
)

1 + x2
. (7)

Letting s = 1
1·3x

3 − 1
3·5x

5 + · · ·+ (−1)n+1 x2n+1

(2n−1)(2n+1) + · · ·, (7) becomes

arctanx =
x+ 2s

1 + x2
. (8)

The series s converges much faster than (2) does, since its coefficient
an = O(1/n2). In our program, we use equation (8) with interval arithmetic
to bound arctan x. We assume x ≥ 0, because the inverse tangent function
is an odd function; if x < 0, we use arctan x = −arctan (−x). We also
assume |x| ≤ 1. If |x| > 1, we apply arctanx = π/2 − arctan 1

x to find
arctan x.

The series s also converges at |x| = 1. However, to further increase the
rate of convergence, we only evaluate series (8) when 0 ≤ x ≤

√
3
3 . If x >

√
3
3 ,

we let y =
√
3x−1√
3+x . It is easy to prove that 0 ≤ y ≤

√
3
3 when

√
3
3 ≤ x ≤ 1.

We then apply the identity arctanx = π/6+ arctan
√
3x−1√
3+x

to find arctan x.



35

The maximum absolute truncation error of s from the i-th term is
less than x2i+1

(2i−1)(2i+1) . This is because s is an alternating series. We use
x2i+3

(2i+1)(2i+3)/s to estimate the maximum relative error. If the relative error
less than ε, we either terminate the computation or add one more term to s,
depending on the sign of the last term and whether we need to overestimate
s or underestimate it. When we need to overestimate the series s, we should
chop the series after the i-th term if i is an odd number. When we need to
underestimate the series s, we should chop the series after the i-th term if i
is an even number.

Here is the algorithm to bound arctan x. In the algorithm, a logical
variable Negative is used to indicate if x < 0 or not. Another logical variable
Even indicates whether or not we need to overestimate s. The variable Code
records argument reduction transformations that have been applied to x.

Algorithm 2.

1. Input the interval x = [x, x].

2. Compute the lower bound for arctan x.

(a) Transform x to make 0 ≤ x ≤
√
3
3
.

i. If x < 0, then Negative ← True , x← −x,
else Negative ← False .

ii. If x > 1 then x← 1
x
.

iii. If x >
√
3
3

then x←
√
3x−1√
3+x

.

iv. We record the transformations by the following:
If neither (b) nor (c) has been performed, Code ← 11.
If only (c) has been performed, Code ← 12.
If only (b) has been performed, Code ← 21.
If both (b) and (c) have been performed, Code ← 22.

(b) Determine the value of Even according to the above transformation.
If we need to overestimate s then Even ← False ,
else Even ← True .

Even ←
Negative \ Code 11 12 21 22

False True True False False
True False False True True

.

(c) Represent x by an interval l.

(d) Compute s = l3
1·3 −

l5
3·5 + · · ·+ (−1)i−1 l2i+1

(2i−1)(2i+1)
until l

2i+3

(2i+1)(2i+3)
/s < ε.

(e) If Even = True and i is an odd number, then add the next term on s.
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(f) If Even = False and i is an even number, then add the next term on s.

(g) s← l+2s
1+l2 .

(h) Transform s according to the argument reduction transformations to make
0 ≤ x ≤

√
3
3
.

If Code = 12, s← π/6 + s.
If Code = 21, s← π/2− s.
If Code = 22, s← π/3− s.

(i) If Negative = True then arctan x← −s,
else arctan x← s.

3. Compute the upper bound for arctan x, analogously to Step 2.

Since arccot x =
π

2
− arctan x, to find arccot x we first find arctan x

then subtract it from π/2.

4 ISINH

We discuss ISINH in this section. The series (3) converges for all real num-
bers. To further increase the rate of convergence in our program, we assume
0 ≤ x ≤ 1. We use sinhx = − sinh(−x) when x < 0. In our program, we
repeatedly apply the identity sinhx = 3 sinh(x/3)+4 sinh3(x/3) to evaluate
sinhx if 1 < |x| ≤ 33 = 27. For arguments with |x| > 27, we use INTLIB’s
exponential function IEXP. IEXP, in turn, has error checking for arguments
that would overflow.

Here is our algorithm.
Algorithm 3.

1. Input the interval x = [x, x].

2. Compute the lower bound for sinhx.

(a) If x < 0, then Negative ← True , x← −x,Over ← True ,
else Negative ← False ,Over ← False .

(b) If 0 ≤ x ≤ 1, then Code ← 11.
If 1 < x ≤ 3, then Code ← 12, x← x/3.
If 3 < x ≤ 9, then Code ← 13, x← x/9.
If 9 < x ≤ 27, then Code ← 14, x← x/27.
If 27 < x, then branch to IEXP.
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(c) Represent x by an interval l.

(d) Compute s = l + l3
3!
+ l5

5!
+ · · ·+ l2i+1

(2i+1)!
until 2l

2i+3

(2i+3)!s
< ε.

(e) If Over = True , s← s + 2l2i+3

(2i+3)!
.

(f) For k = 12 to Code do: s← 3s + 4s3.

(g) If Negative = True then sinhx← −s,
else sinhx← s.

3. Compute the upper bound for sinhx, analogously to Step 2.

We have also have an algorithm, ICOSH, for the hyperbolic cosine func-
tion. However, we have not yet perfected it for inclusion in INTLIB at the
time we submit this paper.

5 Additional improvements

The Ph. D. dissertations [3] and [9] have recently become available to us.
These works provide a careful consideration of implementation of the elemen-
tary functions for arbitrary floating-point systems. As here, much (though
not all) of these works are based on Taylor approximations. These works
emphasize high or maximal precision (approximation by the nearest machine
number) in the function values. That requires higher than working preci-
sion to attain. Nonetheless, much of their development can be beneficially
applied to INTLIB. For instance, formulas appear for the total roundoff
error in the evaluation of a polynomial using Horner’s scheme in terms of
roundoff error in a single operation, as well as for the roundoff error occur-
ring from certain types of argument reductions. With such formulas, we
may do the computations in steps 2d and 3d of algorithms 1, 2, and 3 in the
machine’s floating-point arithmetic, instead of in our portable interval arith-
metic. Though some rearrangement of the computations will be necessary,
this change will clearly greatly increase the speed of these algorithms.

Another possible improvement is the use of Chebyshev economization;
see e.g. [4, pp. 456–459]. The additional error terms introduced by dropping
the trailing terms in the Chebyshev basis can be easily bounded using inter-
val arithmetic. However, the resulting polynomial coefficients are no longer
as simply representable, causing possible minor difficulties. For example,
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some of the roundoff error bounds in [3] and [9] depend on the zero-th or-
der coefficient of the polynomial being exactly representable in the machine.
Also, computing these coefficients complicates maintenance of the routines,
should it be desirable to increase or decrease the degree of approximation.

6 Summary

Based on the above algorithms, we have developed subroutines: IASIN,
IACOS, IATAN, IACOT, and ISINH in FORTRAN–77 ([1]). These subrou-
tines have been tested and exhaustively documented. They are included in
the readily available and portable software library INTLIB ([7]). INTLIB
has been submitted to ACM Transactions on Mathematical Software ([8]).
We are continuing to test and improve it. A test version is available through
the Internet via FTP at ftp.ucs.usl.edu in the directory
/pub/interval_math/intlib.
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