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Computing Zeros of Functions Using
Generalized Interval Arithmetic

Eldon R. Hansen

We consider the use of a generalized interval arithmetic in algorithms for solv-
ing nonlinear equations or systems of nonlinear equations. The algorithms
can involve either derivatives or slopes. The convergence rate is improved for
either form. The improvement is greater if slopes, rather than derivatives, are
used. However, the slope method is applicable to only rational functions. For
multidimensional problems we introduce the generalized interval arithmetic
into the Hansen-Sengupta method. Again, the convergence rate is improved.

Вычисление нулей функций при
помощи обобщенной интервальной

арифметики

Э. Р. Хансен

Рассматривается использование обобщенной интервальной арифметики в
алгоритмах для решения нелинейных уравнений или систем нелинейных
уравнений. В эти алгоритмы могут входить либо производные, либо <на-
клоны>. И в том и в другом случае улучшается скорость сходимости. Но
при использовании наклонов это улучшение значительнее, чем в случае
производных. Однако метод наклонов применим лишь для рациональных
функций. Для многомерных задач мы вводим обобщенную интервальную
арифметику в метод Хансена-Сенгупты. Скорость сходимости улучшает-
ся и в этом случае.
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1 Introduction

The “slope method” is an algorithm using interval arithmetic for comput-
ing and bounding the zeros of nonlinear functions or systems of nonlinear
functions. It was introduced by Krawczyk and Neumaier [1]. See also [2],
[3]. It is closely related to the interval Newton method. It is even more
closely related to a method described in [4]. Each method (in interval form)
provides guaranteed bounds on all zeros in a given region.

We shall derive the slope method for one-dimensional problems in Sec-
tion 2. In Section 3, we show how it can be incorporated into the Hansen-
Sengupta method for multidimensional problems.

In Section 4, we describe a generalized interval arithmetic (g.i.a.) in-
troduced by the author in [1]. We give an illustrative example of its use
in Section 5. In Section 6, we show how g.i.a. can be introduced into the
one-dimensional slope method.

In Section 7, we give a detailed discussion of how g.i.a. can be used in
the multidimensional slope method and how the structure of g.i.a. can be
exploited to extract enhanced convergence when solving nonlinear equations
or systems.

Section 8 contains an illustrative example of the use of g.i.a. in solving
nonlinear problems in one variable.

Numerical results for a two-dimensional problem using g.i.a. in a slope
version of the Hansen-Sengupta method are given in Section 9.

The use of g.i.a. does not improve convergence of the interval Newton as
greatly as it does that of the slope method. In Section 10, we show why this
is the case; and note that the slope method is applicable to only rational
functions.

In Section 11, we compare four possible combinations of methods using
either a Newton or slope method and either ordinary interval arithmetic
(o.i.a.) or g.i.a. Numerical results for the four methods are given in Sec-
tion 12.

In Section 13, we compare the slope method to a procedure introduced
by the author in [4] and show why the slope method is superior.

The last two sections contain discussions of miscellaneous topics.
We believe that everything in this paper relating to g.i.a. is new except
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for the introductory material in Section 4.

2 The slope method in one dimension

In this section, we shall introduce the slope method by considering a simple
problem in the one-dimensional case. We shall describe how it can be used
to compute and bound real zeros of rational functions.

Consider a simple power, p(x) = xm, of x for some integer, m. Note
that

p(y)− p(x) = ym − xm = (y − x)
m−1∑
k=0

xkym−1−k. (2.1)

Now consider a polynomial

f(x) =
n∑

m=0

amx
m.

Using (2.1), we obtain the identity

f(y)− f(x) = (y − x)g(x, y) (2.2)

where

g(x, y) =
n∑

m=0

am

m−1∑
k=0

xkym−1−k.

Let y be a zero of f . Then f(y) = 0 and from (2.2),

y = x− f(x)/g(x, y). (2.3)

Suppose X is an interval containing the zero, y, of f . From (2.3),

y ∈ x− f(x)/g(x,X).

This relation forms the basis for an algorithm for computing the zero, y.
Define

N(x,X) = x− f(x)/g(x,X). (2.4)

If y ∈ X, then y ∈ N(x,X). We replace the bound X on y by

X ′ = X ∩N(x,X).
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Iterating this step produces a set of nested intervals converging to the zero, y.
This is the slope method.

We have derived the slope method for the case in which f(x) is a poly-
nomial. It serves also for computing and bounding the zeros of any ratio-
nal function. However, it is not applicable when f(x) is irrational because
g(x,X) does not have a finite representation in this case.

The reader will note the close similarity of this procedure to the interval
Newton method. Let f ′(X) denote the derivative of f(x) evaluated with
interval argument, X. If we replace g(x,X) in the slope method by f ′(X),
we obtain the interval Newton method. See Section 10 for a derivation of
the interval Newton method. For more details, see, for example, [2] or [3].

The slope method generally converges in fewer steps than the standard
interval Newton method. However, it requires more computing per step.
The reason is that g(x,X) is contained in f ′(x) and is generally a narrower
interval than f ′(x); but it is a more complicated function.

We can illustrate this with a simple example. Let

f(x) = x4.

Then

f ′(X) = 4X3 and g(x,X) = x3 + x2X + xX2 +X3.

We can rewrite f ′(X) as

f ′(X) = X3 +X3 +X3 +X3.

Note that each term x3, x2X, and xX2 in g(x,X) is narrower than the
corresponding term, X3, of f ′(X). Therefore, g(x,X) is narrower than
f ′(X).

This result is general. The slope function, g(x,X), contains the real
quantity, x, instead of the interval, X, in various places. As a result, g(x,X)
is narrower than f ′(X).

The slope method and the interval Newton method share a number of
common properties which make them extremely efficient and reliable algo-
rithms. See [2].

The slope method extends naturally to the multidimensional case. See
[2] or [3]. Thus, it is applicable for computing the zeros of rational functions
of one or more variables.
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Unfortunately, if f is irrational, then g(x,X) is not a finite sum. Be-
cause of this, the slope method cannot be used by itself to compute zeros
of irrational functions. However, a hybrid method can be used in which the
slope method is used for the “rational part” of f and the interval Newton
method is used for the “irrational part”. See [2]. For an alternative method,
see Section 13.

Note that the slope method could be used in a non-interval setting. In
this case, of course, it would not provide error bounds on the computed zeros.
In this paper, we always assume it is implemented in interval arithmetic.

3 The multidimensional slope method

Let x and y be vectors of n components. In the multidimensional slope
method, we seek zeros of a vector functions, f(x) : Rn → Rn. We assume
that each component of f is a rational function of the components of x.
Therefore, each component of f can be expanded in a form which is an
extension of (2.2). See [2] or [3]. Putting these expansions together in
vector form, we obtain an equation of the form

f(y) = f(x) + J(x, y)(y − x). (3.1)

Here, J(x, y) is a matrix corresponding to the Jacobian of f . Its elements
are rational functions of the components of x and y.

Assume that y is a zero of f . Then f(y) = 0 and, from (3.1),

f(x) + J(x,X)(y − x) = 0 (3.2)

where we have replaced y in J(x, y) by the box X in which we seek a zero
of f .

Note that, to be correct, we should write (3.2) to indicate that the vector
0 is contained in the left member. However, here (and elsewhere) we conform
to common usage and write the relation as an equation.

To compute (with error bounds) the zeros of f in this multidimensional
case, we shall use the Hansen-Sengupta method. See [2] or [6] for details.
It makes no difference therein whether J is a usual Jacobian or the “slope
Jacobian”.
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In the Hansen-Sengupta method we precondition this equation by mul-
tiplying by an approximate inverse, B, of the center of J(x,X). Thus, (3.2)
becomes

M(x,X)(y − x) = r(x) (3.3)

where M(x,X) = BJ(x,X) and r(x) = −Bf(x).
We solve the i-th equation of (3.3) for the i-th component of y − x.

Before doing so, we replace each component of y except for the i-th by the
(most recently computed) corresponding component of the box in which we
seek a zero of f . Thus, we obtain an interval

Ni(x,X) = xi + Pi/Mii (3.4a)

where

Pi = ri(x)−
i−1∑
j=1

Mij(X
′
j − xj)−

n∑
j=i+1

Mij(Xj − xj). (3.4b)

The new bound for yi is obtained as

X ′i = Xi ∩Ni(x,X). (3.5)

The new box, X ′, whose components are given by (3.5), contains any zero
of f which is in X.

This step is done for each i = 1, . . . , n and the process is iterated until
the new box is sufficiently small.

Note that Mii may contain the value zero. If so, the division in (3.4a)
may create a gap in the i-th component of the current box. When this
occurs, the gap can be used to split the box into sub-boxes. See [2] for
details.

In Section 7, we modify this procedure to introduce g.i.a.

4 Generalized interval arithmetic

In this section, we shall briefly describe the generalized interval arithmetic
(g.i.a.) derived in [5].
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The original intent in the derivation of g.i.a. (see [5]) was simply to
provide sharper error bounds than those obtained using o.i.a. Thus, for
example, we might replace o.i.a. in the interval Newton method by g.i.a.

However, it turned out to have other virtues as well. In [5], we showed
how it could reduce the growth of multidimensional intervals (the so-called
wrapping effect) due to rotations. We shall show below how it can be used to
improve the convergence of the slope method or the interval Newton method.

Consider an interval, X, of width 2s. Denote the midpoint of X by x.
Any point in X can be expressed as x + u for some value of u satisfying
−s ≤ u ≤ s. When we evaluate a function using g.i.a., we retain terms
linear in u and bound higher order terms.

For example, note that a point in X2 can be expressed as (x + u)2 =
x2 + 2xu+ u2. To simplify exposition, we shall write

X2 = x2 + 2xu+ u2

although the left member is an interval and the right member is a single num-
ber in that interval. This should create no confusion and we shall continue
to use this notation.

Since −s ≤ u ≤ s, it follows that 0 ≤ u2 ≤ s2. Therefore, we express
X2 as

[x2, x2 + s2] + 2xu.

Thus, the result is linear in u and contains (x+ u)2 for all u ∈ [−s, s].
In general, when we evaluate a function of X, at each step, we com-

bine (by addition, subtraction, multiplication, or division) two intermediate
functions, say f(X) and g(X). Each of these functions will be expressed as
linear functions of u. Denote f(X) = A + Bu and g(X) = C +Du where
A, B, C, and D are intervals.

Consider the four arithmetic operations for combining f(X) and g(X).
Let h(X) be the result and express h(X) as E + Fu. For addition or
subtraction,

f(X)± g(X) = (A±Bu) + (C ±Du) = (A± C) + (B ±D)u.

In this case, E = A± C and F = B ±D.
For multiplication, we have

f(X)g(X) = (A+Bu)(C +Du) = AC + (AD +BC)u+BDu2.
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We bound the term u2 by [0, s2]. Therefore, f(X)g(X) = E + Fu, where

E = AC +BD[0, s2] and F = AD +BC.

For division, we have

f(X)

g(X)
=

A+Bu

C +Du
=

A

C
+

(BC − AD)u

C(C +Du)
.

In the denominator of the last term, we replace u by its bound [−s, s]. Thus,
we obtain

E =
A

C
and F =

BC − AD

C(C +D[−s, s])
.

In general, the interval, X, will be a datum. For example, it may be
the interval in which we seek the root of a polynomial. More generally, we
shall have more than one datum interval. For example, we may compute
the inverse of a matrix for which each element is an independent interval.

If the data consist of n intervals, Xi, of respective widths, wi, we express
each of them as Xi = xi+ui where ui ∈ [−si, si]. As we combine these data
intervals, we form intermediate generalized intervals of the form

f(X) = A0 +
n∑

i=1

Aiui and g(X) = B0 +
n∑

i=1

Biui (4.1)

where Ai and Bi (i = 0, . . . , n) are intervals.
Let “op” denote one of the operations of addition, subtraction, multipli-

cation, or division in g.i.a. Denote

h(X) = C0 +
n∑

i=1

Ciui (4.2)

where h(X) = f(X) op g(X). The rules for computing h(X) are obtained
in much the same way as for the single datum case.

For addition, we have

Ci = Ai +Bi (i = 0, . . . , n). (4.3)

For subtraction,
Ci = Ai −Bi (i = 0, . . . , n). (4.4)
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For multiplication, let us first consider the case n = 2. That is,

f(X1, X2) = A0 + A1u1 + A2u2
g(X1, X2) = B0 +B1u1 +B2u2.

We have

h(X1, X2) = f(X1, X2)g(X1, X2)

= A0B0 + (A0B1 + A1B0)u1 + (A0B2 + A2B0)u2
+ A1B1u

2
1 + A2B2u

2
2 + (A1B2 + A2B1)u1u2.

As in the one datum case, we replace u21 (i = 1, 2) by its bounding interval
[0, s2i ].

We must decide what to do with the product u1u2. We can replace either
u1 by the interval [−s1, s1] which bounds it or we can replace u2 by [−s2, s2].
It the first case, we retain a term linear in u2. In the second case, we retain
a term linear in u1. In general, it is not obvious which is the better policy.
For a case in which we do know which alternative to use, see Section 14.

For multiplication for general n, we want the product of f(X) and g(X)
where they are of the form given by (4.1). We obtain the product h(X) in
the form (4.2) where

C0 = A0B0 +
n∑

i=1

AiBi[0, s
2
i ] (4.5a)

and

Ci = A0Bi +B0Ai +
n∑

j=1
j 6=i

AiBj[−sj, sj] for i = 1, . . . , n. (4.5b)

Here we have arbitrarily replaced uj by [−sj, sj] in the product uiuj.
For division, we obtain C0 = A0/B0 and

Ci = (B0Ai − A0Bi)/D (4.6)

where

D = B0

(
B0 +

n∑
i=1

Bi[−si, si]
)
.

Once we have obtained the desired function as a linear function of u1, . . . ,
un, we “reduce” it to an interval by replacing ui by its bounding interval
[−si, si] (i = 1, . . . , n).
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5 An example using g.i.a.

As an example of g.i.a., consider the function

f(X1, X2) = (1 +X1X2)/(X1 +X2)

where X1 = [0.8, 1] and X2 = [1, 1.2]. We express a point in X1 as x1 + u1
where x1 = 0.9 is the midpoint of X1 and u1 ∈ [−0.1, 0.1]. We express
a point in X2 as x2 + u2 where x2 = 1.1 is the midpoint of X2 and u2 ∈
[−0.1, 0.1].

Using (4.5), we obtain

X1X2 = 0.99 + [1, 1.2]u1 + 0.9u2.

From this result and (4.3),

1 +X1X2 = 1.99 + [1, 1.2]u1 + 0.9u2. (5.1)

Using (4.3),
X1 +X2 = 2 + u1 + u2. (5.2)

From (5.1) and (5.2) we obtain, using (4.6)

f(X1, X2) =
1.99

2
+

[
0.01

4.4
,
0.41

3.6

]
u1 +

[
−0.19
3.6

,
−0.19
4.4

]
u2.

We “reduce” this result to an interval by replacing u1 by its bounding
interval [−0.1, 0.1] and replacing u2 by its (same) bounding interval. We
obtain

f(X1, X2) =

[
3.522

3.6
,
3.642

3.6

]
= [0.978, 1.012].

If we had used ordinary interval arithmetic (o.i.a.), we would have ob-
tained f(X1, X2) = [0.818, 1.223]. The g.i.a. procedure gives a sharper
result in this case. However, for other input intervals or other functions,
o.i.a. may obtain a better result than g.i.a. The latter tends to be superior
when the data intervals are narrow and when the data variables occur many
times in the function being evaluated.
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6 Use of g.i.a. in the slope method
(the one-dimensional case)

We now consider the slope method in one dimension. The basic step in
this method is to compute a new bound, N(x,X), on a zero of f from a
bounding interval, X, as

N(x,X) = x− f(x)/g(x,X).

See (2.4). Here x is the midpoint ofX. The slope function g(x,X) is defined
in Section 2.

Denote U = [−s, s] where s is the halfwidth of X. We express a point
in X as x+ u where u ∈ U . We evaluate g(x,X) using g.i.a. and obtain

g(x,X) = C +Du (6.1)

for some intervals C and D. If we now replace u by U in (6.1), we obtain

N(x,X) = x− f(x)/(C +DU). (6.2)

We can evaluate the right member using interval arithmetic.
However, we can do better than this as we shall see in Section 7.
Before discussing the details, we shall consider the problem of computing

zeros of multidimensional functions. The details to complete the computa-
tion in the one-dimensional case can be subsumed into the corresponding
details for the multidimensional case.

7 Use of g.i.a. in the slope method
(the multidimensional case)

In the multidimensional case, the slope method involves the use of equa-
tion (3.4). When we introduce g.i.a., the elements of the matrix, M , will be
expressed as generalized intervals.

When we solve for the i-th new (interval) variable, we replace the other
variables, yj, by their bounding intervals, Xj, for j = 1, . . . , n, j 6= i. We
also “reduce” the variables, uj, for j 6= i. This is actually the same process
since we first replaced yj by xj + uj to introduce uj.
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We can think of the process as first replacing yj by xj + uj and then
replacing uj by Xj − xj. Therefore, we can compute uj(yj − xj) as the
square of an interval instead of the product of two different intervals. This
yields sharper results.

When we use g.i.a. to “evaluate” the right member of equation (3.4), we
obtain an intermediate result of the form

Ni(x,X) = xi + (A+Bui)/(C +Dui) (7.1)

where A, B, C, and D are intervals.
Note that equation (6.2) is of the same form as equation (7.1) except

that B = 0 for the former. That is, when we use the slope method in
one variable to parallel the interval Newton method, we get a relation of
essentially the same form as when we use the slope method to parallel the
Hansen-Sengupta method in the multidimensional case. Since (7.1) is more
general than (6.2), we shall discuss only the former.

For simplicity, we now drop the subscript, i, and write (7.1) in the form

N(x,X, u) = x+ (A+Bu)/(C +Du). (7.2)

We shall discuss this relation as if we were seeking a zero in the one-
dimensional case. This simplifies the language since we will not have to
keep repeating that we are seeking a component of a zero.

If we replace u in (7.2) by its bounding interval, U , and evaluate the
result using o.i.a., we obtain an interval which contains any zero of f which
is in the original interval, X. This follows from the derivation of the slope
method. This would be the straightforward way to proceed.

Note, however, that if we consider the single point, u, in U = X − x,
then N(x,X, u) is a bound on the result we would get if we sought a zero of
f in the degenerate interval x+ u. Therefore, if x+ u is not in the interval
N(x,X, u), then x+ u is not a zero of f .

Using this fact, we can often prove that some (or all) of the initial inter-
val, X, does not contain a zero of f . We generally obtain more information
in this way than by simply “reducing” as described above. We proceed as
follows.

We first consider the case in which 0 /∈ C + Du for the values of u of
interest. In this case N(x,X, u) is a finite interval for a given value of u.
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From (7.2), x+ u /∈ N(u) if

u < (A+Bu)/(C +Du) (7.3)

or
u > (A+Bu)/(C +Du). (7.4)

Hence, if either (7.3) or (7.4) is satisfied, then x+ u is not a zero of f .
Next consider the case in which 0 ∈ C +Du for values of u of interest.

We must now use extended interval arithmetic to divide A + Bu by C +
Du. Extended interval arithmetic (in which we are allowed to divide by
an interval containing zero) was derived independently in [7] and [6]. For a
discussion of the restricted part of this arithmetic that is needed here, see,
for example, [2].

In both 0 ∈ A + Bu and 0 ∈ C + Du, then using extended interval
arithmetic to evaluate the right member of (7.2), we obtain the entire real
line as the interval result. In this case, we follow the standard procedure for
the o.i.a. case and split the interval into two or more subintervals.

If 0 ∈ C + Du but 0 /∈ A + Bu, then the right member of (7.2) is
computed to be the entire real line but with a gap missing. In this case,
x+ u is not a zero of f if u is in the gap. For details, see below.

We now consider how to determine the values of u for which x+u cannot
be a zero of f . Denote

R(u) = (A+Bu)/(C +Du).

From (7.2),
N(x,X, u) = x+R(u).

First, we need to express the endpoints of the numerator interval, A+Bu,
and the endpoints of the denominator interval, C +Du, of R(u) explicitly.
To do so, we consider the cases u < 0 and u > 0 separately. The numerical
values of the endpoints of A, B, C, and D will be known. Therefore, the
endpoints of A + Bu and C + Du can be explicitly expressed as linear
functions of u.

We could simplify this process by choosing x to be an endpoint of the
interval X. As a result, u would always be of one sign. We have not used
this alternative.
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After determining the endpoints of A+Bu and C+Du, we must divide
A + Bu by C + Du with u still unspecified except in sign. That is, we
want the endpoint of R(u) as an explicit function of u. In order to do this
division, we must know the signs of the endpoints of A+Bu and C +Du.

But, these sign depend on the value of u. They may change as u varies
over U . Therefore, we must compute the values of u at which the endpoints
of A + Bu and C + Du change sign. We can then break up the interval
U = [−s, s] bounding u into separate subintervals to be treated individually.

The values of u where these endpoints are zero constitute four points at
which we have to subdivide U (if they are in U). The value u = 0 (which
is always in U) is another point at which we had to subdivide U earlier.
Depending on how many of these points are in U (and distinct), we need to
subdivide U into two to six subintervals and treat each separately.

Recall that, for one-dimensional problems, B = 0. Therefore, in this
case, we need to subdivide U into at most four subintervals. If we had chosen
x to be an endpoint of X, then u would be of one sign and we would need
to subdivide U into at most three subintervals for one-dimensional problems
and into at most five subintervals in for multidimensional problems.

If, for a particular subinterval of values of u, we find that 0 /∈ C +Du,
then we obtain an explicit result for R of the form R(u) = [Q(u), Q′(u)]
where Q(u) and Q′(u) are of the form

Q(u) = (a+ bu)/(c+ du) and Q′(u) = (a′ + b′u)/(c′ + d′u).

In this case, x+ u is not a zero of f if either

u < (a+ bu)/(c+ du) or u > (a′ + b′u)/(c′ + d′u). (7.5)

If 0 ∈ C +Du, but 0 /∈ A+Bu, we obtain a result of the form

R(u) = [−∞, P (u)] ∪ [P ′(u),∞] (7.6)

where P (u) and P ′(u) are of the form

P (u) = (a+ bu)/(c+ du) and P ′(u) = (a′ + b′u)/(c′ + d′u).

In this case, x + u is not a zero of f if u is in the gap between the two
semi-infinite intervals; that is, if

u > (a+ bu)/(c+ du) and u < (a′ + b′u)/(c′ + d′u). (7.7)
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Examining (7.5) and (7.6), we see that we want to solve a relation of the
form

(a+ bu)/(c+ du) < u or > u

or a similar relation involving the primed quantities.
In order to get the explicit form of the endpoints of R(u), we shall have

restricted our attention to a particular subinterval of U in which c+ du and
c′ + d′u are each of one sign only. Consider the case in which c + du > 0.
Then the relation R(u) > u becomes Q(u) > u and can be rewritten

a+ bu > u(c+ du).

In general, knowing the sign of c + du and of c′ + d′u, the relation
R(u) > u (that is, Q(u) > u) or R(u) < u (that is, Q′(u) < u) can be
rewritten as a specific quadratic relation of the form

a+ bu < u(c+ du) or a+ bu > u(c+ du) (7.8)

or else a similar relation involving the primed variables.
We solve this quadratic relation for the values of u which satisfy it. The

solution values of interest are those which are in the subinterval of U being
considered.

We now list the various cases that can occur. We first consider the case
in which d = 0 and/or d′ = 0. If d = 0, then Q(u) is a linear function of u
and we have

Q(u) > u if

 a/c > 0 and c = b,
u > a/(c− b), c 6= b, and b/c > 1,
u < a/(c− b), c 6= b, and b/c < 1.

(7.9)

If d′ = 0, then

Q′(u) < u if

 a′/c′ < 0 and c′ = b′,
u < a′/(c′ − b′), c′ 6= b′, and b′/c′ > 1,
u > a′/(c′ − b′), c′ 6= b′, and b′/c′ < 1.

(7.10)

For all other cases, we assume d 6= 0 and d′ 6= 0. Let v denote the
discriminate of the quadratic in (7.8); i.e.,

v = (c− b)2 + 4ad.
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Similarly, define
v′ = (c′ − b′)2 + 4a′d′.

If v < 0, then
Q(u) > u if u < −c/d. (7.11)

If v′ < 0, then
Q′(u) < u if u > −c′/d′. (7.12)

If bc− ad = 0, then Q(u) = a/c. Therefore,

Q(u) > u for u < a/c. (7.13)

If b′c′ − a′d′ = 0, then Q′(u) = a′/c′. Therefore,

Q′(u) < u for u > a′/c′. (7.14)

The remainder of the cases depend on the roots of the quadratic in (7.8)
(or of the corresponding quadratic for the primed variables). We have al-
ready considered the case in which the discriminate is negative (in which
case the roots are complex and of no interest). We now have the case in
which they are real.

Let r and s denote the roots ordered so that r ≤ s. For the primed
variables, denote the roots by r′ and s′ where r′ ≤ s′.

For bc − ad < 0 (which incidentally implies that the roots r and s are
real),

Q(u) > u for − c/d < u < s and for u < r. (7.15)

For b′c′ − a′d′ < 0

Q′(u) < u for r′ < u < −c′/d′ and for u > s′. (7.16)

Now assume bc− ad > 0 and denote

q = (bc− ad)1/2.

Then

Q(u) > u
for s < u < −c/d and for u < r
when d > 0 and b+ c < −2q
or when d < 0 and b+ c > 2q;

(7.17)
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Q(u) > u
for r < u < r′ and for u < −c/d
when d > 0 and b+ c > 2q
or when d < 0 and b+ c < −2q.

(7.18)

Similarly, assume b′c′ − a′d′ > 0 and denote

q′ = (b′c′ − a′d′)1/2.

Then

Q′(u) < u
for r′ < u < s′ and for u > −c′/d′
when d′ > 0 and b′ + c′ < −2q′
or when d′ < 0 and b′ + c′ > 2q′;

(7.19)

Q′(u) < u
for −c′/d′ < u < r′ or for u > s′

when d′ > 0 and b′ + c′ > 2q′

or when d′ < 0 and b′ + c′ < −2q′.
(7.20)

It may appear that the computations we have described in this section
involve a lot of work. It is a lot of work for the programmer because of the
many details involved. However, the computational effort is rather small
compared to that for other parts of the overall algorithm.

It can be shown that, for one-dimensional problems, the procedure we
have described is cubically convergent to simple zeros and quadratically
convergent to double zeros. Obtaining this enhanced convergence is certainly
worth the relatively small amount of extra computing.

Unfortunately, proofs of rates of convergence is very lengthy because of
the many special cases which occur in the arithmetic. We shall not take up
the necessary space here.

8 An illustrative example

In this section, we give an example to illustrate the steps of the g.i.a. proce-
dure. Suppose we are using this procedure to find the zeros of the polynomial

f(x) = x5 − 8x3 + 6x2 + 7x− 6 = (x+ 3)(x− 2)(x+ 1)(x− 1)2. (8.1)

The slope function for f can be written

g(x, x+ u) = u4 + 5xu3 + (10x2 − 8)u2

+ (10x3 − 24x+ 6)u+ 5x4 − 24x2 + 12x+ 7.
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Suppose that in the course of solving this problem the algorithm gener-
ates the subinterval [0.038, 1.83] and seeks a root therein. Thus, x = 0.934
and u is restricted to the interval U = [−0.896, 0.896].

We use o.i.a. to evaluate f in order to bound rounding errors and obtain
f(0.934) = [−0.0354,−0.0353]. We use g.i.a. to evaluate g and obtain

g(0.934, 0.934 + u) = [1.07, 2.31] + u[−8.27,−4.51].

To conserve space, we record results to only three significant digits. More
were used in the computations. Also, henceforth, we shall omit the argu-
ments when they are clear from the context.

To express g more explicitly, we must known the sign of u. We first
consider the case u ≤ 0. Thus, we restrict u to the subinterval [−0.896, 0]
of U . In this case,

g = [1.07− 4.51u, 2.31− 8.27u].

Note that g > 0 since u ≤ 0. Knowing this, we are able to expressN(x,X, u)
from (2.4) explicitly as

N = 0.934 + [Q,Q′]

where

Q = 0.0353/(2.31− 8.27u) and Q′ = 0.0353/(1.07− 4.51u). (8.2)

Since Q > 0 (because u ≤ 0), we have Q > u. Therefore, the point x+u
is not in N for any u in the current subinterval [−0.896, 0] of U . That is,
there is no zero of f in [0.038, 0.934].

Since we have eliminated all of the current subinterval, we do not try to
make use of the right endpoint function, Q′.

We now consider the case u ≥ 0; that is, 0 ≤ u ≤ 0.896. In this case,

g = [1.07− 8.27u, 2.31− 4.51u].

Note that the left endpoint of g is zero for u = 0.13 and the right endpoint
is zero for u = 0.509. Therefore, we subdivide the subinterval [0, 0.896] into
the smaller subintervals [0, 0.13], [0.13, 0.509], and [0.509, 0.896].

Consider the first of these subintervals, [0, 0.13]. Therein, g > 0 and the
condition Q > u is

0.0353/(2.31− 4.51u) > u.
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From (7.17), Q > u for 0 ≤ u < 0.0158. Therefore, there is no zero of f for
these values of u.

We now consider the condition Q′ < u for the subinterval [0, 0.13] of U .
We have just learned that there is no zero for u ∈ [0, 0.0158]. Hence, we
need only consider the subinterval [0.0158, 0.13].

We find that the discriminant, v′, is negative. Hence, from (7.12), Q′ <
u for u > 0.13. Thus we gain no useful information about the current
subinterval.

Next, we consider the subinterval [0.13, 0.509] of U . In this interval,
0 ∈ g, and R(u) is given by (7.6). We need both P < u and P ′ > u in order
to assert that x+u is not a zero of f . The condition P < u in explicit form
is

0.0353/(1.08− 8.27u) < u.

The discriminant of the quadratic (see (7.8)) is negative and, from (7.12)
(with P in place of Q′), we find that P < u for the entire subinterval.

The condition P ′ > u is

0.0353/(2.3− 4.52u) > u.

From (7.17) (with P ′ in place of Q), this holds for 0.493 < u < 0.51.
Therefore, u is in the gap in R(u) for 0.493 < u < 0.51. It follows that there
is no zero of f(x) for u anywhere in the current subinterval, [0.493, 0.509].

Finally, we consider the subinterval of U for 0.509 ≤ u ≤ 0.896. We find
that Q and Q′ are the same as for the case 0 < u < 0.13. From (7.17), we
find that the condition Q > u gives no useful information. We have

Q′ = 0.0353/(1.08− 8.27u)

and, from (7.17) (with Q′ in place of Q), we find that Q′ < u for u > 0.13.
That is, there is no zero of f for any value of u in [0.509, 0.896].

Combining the information from all the four subintervals, we find that
any zero of f in the original interval, [0.038, 1.83], must be in [0.95, 1.06].
As it must, the new interval contains the same zero of f at x = 1 as did the
original interval.

In this one iteration of our algorithm, we have reduced the width of
the interval of search for this zero by 94%. This is typical. The procedure
makes good progress even before the high rate of asymptotic convergence
takes over.
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9 A two-dimensional example

As another numerical example, we consider a simple two-dimensional prob-
lem introduced by Hansen and Sengupta [6]. In this problem, we seek the
real and imaginary parts of the complex zeros of (z2 − 4i)(z − 1.7). Thus,
we want the zeros of the function

f(x) =

[
x31 − 3x1x

2
2 − 1.7x21 + 1.7x22 + 4x2

x32 − 3x21x2 + 3.4x1x2 + 4x1 − 6.8

]
.

The zeros are [
1.7

0

]
,

[
21/2

21/2

]
,

[
−21/2

−21/2

]
.

We used essentially the same algorithm as Hansen and Sengupta [6]
except that we used slopes and inserted the g.i.a. procedure described in
Section 7. The original Hansen-Sengupta algorithm required 81 steps to
obtain the zeros with the error guaranteed to be less than 10−6. Using g.i.a.
as described above, we obtained the zeros with an error bound of 10−8 in 31
steps.

One must keep in mind, however, that the g.i.a. procedure involves more
work per step. The saving in effort using g.i.a. depends on how much work
is required to evaluate the function f and its derivatives.

The use of g.i.a. greatly improves convergence for this example and other
problems of low dimension. From the nature of the procedure, it is obvious
that convergence will be improved for larger problems. However, we have
no experience on such problems.

10 Interval Newton methods

In order to discuss the topic we wish to consider in this section, it seems
best to derive the interval Newton methods for the one-dimensional case.

Suppose f(x) is continuously differentiable in an interval, X. Let x and y
be in X. From the mean value theorem

f(y) = f(x) + f ′(t)(y − x) (10.1)
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where t is between x and y and, hence, t is in X. If y is as zero of f , then
f(y) = 0 and

y = x− f(x)/f ′(t). (10.2)

The interval Newton method is obtained by replacing t by its bound,
X, in this relation and using the fact that any zero, y, of f in X is also in
x− f(x)/f ′(X).

For the slope method, the relation corresponding to (10.2) is

y = x− f(x)/g(x, y). (10.3)

Here, the left member, y, is the same quantity which occurs in g(x, y) in the
right member. But, in (10.2), y occurs on one side of the relation while a
different quantity, t, occurs in the other.

This difference is crucial when we use g.i.a. When we replaced X by
a single representative point, x + u, in the slope method, we are merely
reverting to the case in which an occurrence of y in g(x, y) is represented by
x+ u.

But we cannot do this for the interval Newton method because, in this
case, X is bounding t, not y.

All is not lost, however. Instead of replacing X by a single point when
using the procedure in Section 7, we can replace X by a subinterval of X
known to contain t. Thus, when considering a single point x + u, we can
replace X by the smallest interval (call it X ′) containing x and x+ u. This
subinterval, X ′, is of width less than or equal to half the width of X. This
provides improved convergence.

Where the slope and Newton methods differ computationally is in (7.3)
and (7.4). When these inequalities are used in the Newton method, we must
replace u by X ′−x in the right members. We omit the details of the ensuing
procedure.

The remarks we have made in this section hold equally well for the
multidimensional case.

11 A hierarchy of methods

There are four methods of interest in this paper:
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1. The standard interval Newton method using the derivative of f and
o.i.a.

2. The interval Newton method using the slope function and o.i.a.

3. The standard interval Newton method using the derivative of f and
g.i.a. See Section 10.

4. The interval Newton method using the slope function and g.i.a. See
Section 7.

The slope function has a narrower interval “value”, in general, than the
derivative evaluated over the same interval. Therefore method (2) (respec-
tively, method (4)) will generally require fewer iterations than method (1)
(respectively, method (3)). However, method (2) (method (4)) requires
slightly more work per iteration than method (1) (method(3)).

Similarly, the use of g.i.a. rather than o.i.a. causes method (3) to take
fewer iterations than method (2). In each case, the reduction in number of
iterations is at the expense of more work per iteration.

The use of g.i.a. has a greater effect in reducing the number of itera-
tions than does replacing the standard interval Newton method by the slope
method. However, it requires quite a bit more work per step.

For the four methods, fewer iterations, but more work per step, are
required as we go down the list. A proper comparison would be to determine
run times for each method on a battery of test problems. We have not done
so.

Such a comparison should be done using the best possible implementa-
tion of each method. The correct implementation of g.i.a. would be to use
operator overloading in a language such as C++. We do not have such an
implementation and cannot make a reasonable evaluation of the methods at
this time.

However, we make the following guess based on limited experience: The
run time will tend to decrease for methods farther down the list. We expect
method (4) to be distinctly superior in efficiency; especially for problems
with multiple zeros.
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12 Another example

We now consider a numerical example comparing the methods discussed in
Section 11.

We seek all the zeros of the polynomial given in (8.1). Note that f(x)
has three simple zeros at x = −3, −1, and 2 and one double zero at x = 1.

We chose the initial interval to be X = [−4, 4]. We solved this problem
by the four methods using a final interval width tolerance of 0.000001. The
number of iterations for each method is given in the following table.

Method 1 2 3 4
Number of iterations 93 54 30 16

13 Some remarks on the slope method

A method derived by the author in [4] yields same basic algorithm as the
slope method. At one time, the author believed that they were, in fact, the
same, differing only in that the slope method is a more organized version.
In [4], he implied that they were the same method. We shall now show
that they are not, and that the slope method is distinctly superior in most
regards.

To conserve space, we shall not describe the method in [4]. Thus, our
comments will be of limited interest to the reader. However, we feel that
the comments will be of interest to a few specialists.

The derivation of the author’s version requires that the point of expan-
sion, x, be in X. (Compare the remarks in Section 9.) This is not the case
for the slope method. As we have seen in Section 9, g.i.a. can improve the
slope method more greatly if we do not need to have x ∈ X.

The author’s method does have one advantage over the slope method.
The latter cannot be used when f is irrational except for rational parts
of f which might occur. However, the author’s procedure is applicable for
irrational functions. It provides an advantage over the standard interval
Newton method.
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14 Alternative Jacobians

We noted in Section 4 that when doing g.i.a. in the multidimensional case,
we must decide how to linearize a product such as uiuj. We can replace ui
by its bounding interval, Ui, and have a result which is linear in uj or we
can replace uj by Uj and have a result which is linear in ui.

Sometimes, it is worthwhile to do both. Consider the procedure in Sec-
tion 7 applied to a multidimensional problem. Assume we are solving the
problem by the Hansen-Sengupta method using g.i.a.

When solving the i-th equation of (3.3) for the i-th variable, we replace
all other variables by the interval bounding them. That is, we replace any
variable, uj, for j 6= i by the interval, Uj. Therefore, when solving for
the i-th variable, it would have been best to do all previous g.i.a. steps by
replacing uj in uiuj by Uj instead of replacing ui.

The coefficient matrix, M , in (3.3) is obtained as M = BJ where J is
the Jacobian or “slope Jacobian” of the vector function, f , whose zeros we
seek. For each row of M that we compute in the manner just described, we
have to compute a different Jacobian, J . This is obviously too much extra
effort for problems of high dimension. However, it seems to be worthwhile
for problems of low dimension.

15 A final note

It our g.i.a., we retain terms linear in u and linearize higher order terms. It
is possible to extend g.i.a. to retain quadratic (or even higher) terms in a
similar way. It is also possible to compute different terms to different orders.

Consider the problem of solving systems of nonlinear equations using
the slope version of the Hansen-Sengupta method as described in Section 7.
Suppose we retain quadratic terms when computing the off-diagonal terms of
the matrix, M , in Section 3 and retain only linear term when computing the
diagonal terms. Then the numerator of the function R(u) in Section 7 will
be a quadratic in u and the denominator will be linear in u. Therefore, the
procedure discussed in Section 7 can be used with only minor modifications.

We have not tried using this alternative.
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