
Interval Computations

No 2, 1993

Solving Large Systems of Nonlinear
Constraints with Application to Data

Modeling

Gregory D. Hager

Many applications in remote sensing require fitting a model to observed data
and making a decision based on the resulting model parameters and their
uncertainty. When observation errors are bounded, interval-based constraint-
solving methods provide a general, robust method for computing approxima-
tions to the set of models that fit observed data, and determining the appro-
priate decision to make about the model.

This paper formalizes the notion of decision-making from observed data.
An abstract class of interval bisection algorithms is defined. These algorithms
are shown to be correct for the entire class of decision-making problems, and
to terminate in finite time for all but a small set of problems. A practical
realization of the algorithm is described, and experimental results on simulated
data are presented.

Решение больших систем нелинейных
ограничений с приложением к

моделированию данных

Г. Д. Хагер

Многие приложения в дистанционном распознавании требуют подгонки
модели к наблюдаемым данным и принятия решения, основанного на па-
раметрах полученной модели и их неопределенности. Когда погрешнос-
ти наблюдения ограничены, интервальные методы решения ограничений
(равенств и неравенств) позволяют получить надежный общий метод вы-
числения приближений к множеству моделей, удовлетворяющих получен-
ным в результате наблюдений данным, и определения подходящего для
модели решения.

В статье формализуется понятие принятия решения исходя из полу-
ченных в результате наблюдения данных. Определен абстрактный класс
интервальных алгоритмов деления пополам. Показано, что эти алгорит-
мы корректны для целого класса задач принятия решений и завершаются
за конечное время для всех задач, за исключением небольшого множес-
тва. Описывается практическая реализация этого алгоритма; представле-
ны экспериментальные результаты на моделированных данных.

c© G. D. Hager, 1994

170 G. D. Hager

1 Introduction

Many applications in the area of remote sensing require modeling and inter-
preting large sets of noisy sensor data. There is an extensive literature on
the theory and practice of data modeling and interpretation when models are
linear in their parameters and sensing errors are statistically well-behaved.
However, many problems involve nonlinear models and ill-behaved sensor
data errors. Achieving efficient, reliable data modeling for these problems
can be extremely difficult. In addition, data interpretation often includes a
calculation of the accuracy of the fitted model that is also complicated by
nonlinearities and ill-behaved error statistics.

This article describes a reliable, simple-to-use algorithm for solving non-
linear, ill-behaved data interpretation problems. The major restriction on
problems is that sensing error must be bounded. In this case, each observed
datum imposes a constraint on the parameterization of a data model. These
constraints are expressed by equations and inequalities which are solved us-
ing constraint satisfaction techniques. In addition, the algorithm accepts a
decision criterion expressed as an inequality on model parameters. Con-
straint solving is performed until the satisfiability of the decision criterion is
determined for every parameter value consistent with the observed data.

The original motivation for developing these algorithms comes from the
domain of robotic sensing and manipulation. For example, in a manufactur-
ing domain, there may be a wide variety of shafts, gears, and fasteners that
are all exact copies of one another modulo specific parameters such as size,
length, number of teeth, and so forth. Given a model for manufactured parts,
the problem is to decide what the parts are, and to compare them with one
another or to classify them. For example, the goal may be to order gears
based on size, or to match gears with shafts of the appropriate size. Each
decision involves solving for the set of model parameters from sensor data.

Problems of this type commonly have the following general attributes:

• There are many more equations than unknowns. It is common that 10
to 15 parameters are to be determined from well over 1,000 constraint
equations.

• The precision to which the model parameters can be computed is ulti-
mately governed by the precision and completeness of the sensor data.
Sensor data errors are often bounded, but these bounds are typically
several orders of magnitude larger than machine precision. The size of

Solving Large Systems of Nonlinear Constraints with Application to... 171

these bounds as well as the density and/or completeness of the sensor
data can be expected to vary widely in normal operating conditions.

• Model parameters need only be determined to the precision required
to determine the satisfiability of a set of constraints describing task-
specific decision criteria. Consequently, the amount of effort devoted
to constraint solving can be expected to vary according to the size and
quality of the data set as well as the physical attributes of the observed
system.

The algorithm used to solve these problems employs interval bisection
methods. The most important aspects of this algorithm are:

• The algorithm is set-based : the set of solutions to the systems of equa-
tions it manipulates are typically sets of nonzero measure in the model
parameter space.

• As noted above, the goal of the algorithm is to determine set relation-
ships, not to solve equations to an absolute precision. The algorithm
can be shown to compute correct solutions. Given some additional
conditions placed on the structure of the data modeling problem, the
algorithm can be shown to terminate with a solution in finite time.

• The structure of the decision constraints is used to guide the bisection
process so that the computation needed to reach a decision is reduced.
The amount of computation performed varies adaptively based on the
character of the data and the system of constraints.

The next section describes an example problem in detail and then formally
states the general data modeling problem to be solved. Section 3 presents
some basic results in interval methods for solving nonlinear equations. This
section may be omitted on first reading and referred to as required. Sec-
tion 4 presents an abstract algorithm for solving set-based decision-making
problems, and shows that it is correct and that it terminates in finite time
for all but a small set of problems. Section 5 describes an implemented algo-
rithm. Section 6 describes some experimental results, and Section 7 summa-
rizes the work and indicates possible extensions. Two related publications,
[Hager 1992b] and [Hager & Lu 1993], describe more extensive experimental
results with real data and the constraint solving software system, respectively.

172 G. D. Hager

2 Problem definition

In order to motivate the general class of problems addressed in this paper,
consider the following simple example. A tray of ball bearings is imaged by
a video camera. The images from the camera are processed to recover the
outlines of the bearings in the image. The image of a single bearing in the
camera image is a circle, and so it can be modeled by the equation

h(c1, c2, r, u, v) = (c1 − u)2 + (c2 − v)2 − r2 = 0. (1)

The vector p = (c1, c2, r), consisting of the location of the center and the
radius of the model, is referred to as the parameter vector of the model.
Given the physical constraints of the imaging equipment, parameter vectors
can normally be restricted to come from a set P referred to as the parameter

space of the model. In the example above, the parameter space might be
defined as P =

{
(c1, c2, r) | |c1| ≤ 100, |c2| ≤ 100, 1 ≤ r ≤ 10

}
indicating

the expected range of circle locations and sizes.

The sensor — in this case the video camera and associated data processing
algorithms — returns information about the location z = (u, v) of points on
the outlines of ball bearings in the camera image. However, a camera image
is a discrete set of cells, so the sensor data is inherently quantized and has
limited accuracy. If the width of a sensor cell is 2t, then it can be assumed
that an observed value z = (u, v) only restricts the position of an outline
to the set of locations z =

{
(u′, v′) | |u − u′| ≤ t, |v − v′| ≤ t

}
. The latter

is referred to as an observation’s uncertainty set. If the tolerance t is large
enough, then the uncertainty set is guaranteed to contain the observation
that would have been generated by a perfect (i.e. error-free) sensor.

The basic goal of data modeling in robotic sensing is to infer the param-
eterization of a data model from uncertain observations. The set of model
parameters consistent with a single observation z with uncertainty set z is:

S(h,P , z) =
⋃

z∈z

{
p ∈ P |h(p, z) = 0

}
. (2)

The parameter vectors consistent with a collection of observations z1, z2, . . . ,
zn with uncertainty sets z1, z2, . . . , zn is

S∗ =
⋂

1≤i≤n

S(h,P , zi). (3)

This set, called the solution set, contains the parameter vectors of all surfaces
that could have generated the complete data set. If the tolerance used to

Solving Large Systems of Nonlinear Constraints with Application to... 173

define uncertainty sets has been selected correctly, then the physically correct
parameters of the observed outline must be in the solution set. Choosing an
error tolerance larger than necessary leads to unacceptably large solution sets,
so the goal is to select a value which is no more than a slight overestimation
of the minimal, correct value. It is also important to note that even if there
were no errors in observed data (t = 0), incompleteness of the data could
still cause the solution set to be large. For example, acquiring only two data
points on a circle is not enough to fully specify model parameters, even if
there are no data errors. In general, the size of the solution set depends on
both the magnitude of data errors and the completeness of the observed data.

In this article the objective of data modeling is to make a decision about
the observed object. For example, suppose the bearings mentioned above
must be placed into a retainer with an outline of radius s. This is possible
if and only if r < s. The solution set summarizes all the information known
about r from observations. Hence, it is only possible to guarantee that r < s
for the real outline if every parameter vector in the solution set satisfies this
constraint. Conversely, if no parameter vector in the solution set satisfies
this constraint, then the real outline definitely does not satisfy it. If neither
case holds, then no decision can be made — the problem is fundamentally
ambiguous.

This basic problem setting can be generalized to cover a wide range of
data interpretation problems. To frame the general problem more precisely,
the complete set of available data values will be represented by the vector x ∈
ℜs, and the corresponding vector of uncertainty sets will be denoted by x.
The function g : P × ℜs → ℜq will relate observation vectors and model
parameters. Note that the example above can be placed into this framework
by defining x = (z1, z2, . . . , zs) and

g(p, x) =

h(p, z1)
h(p, z2)

...
h(p, zs)

 .

The solution set is now defined as:

S(g,P ,x) :=

{{
p ∈ P | g(p, x) = 0 for some x ∈ x

}
x 6= ∅;{

p ∈ P | g(p) = 0
}

otherwise.
(4)

Let a : P → ℜ be a function such that a parameter vector p is deemed to

174 G. D. Hager

support a decision if and only if a(p) < 0.1 In the example described above,
a(c1, c2, r) = r − s. Define the supporting set of a as

D(a,P) =
{
p ∈ P | a(p) < 0

}
.

An instantiation of a decision problem is a four-tuple I = 〈g,P ,x, a〉.
The decision value of an instantiation I = 〈g,P ,x, a〉 is defined as:

V (I) :=

true if S(g,P ,x) ⊂ D(a,P);
false if S(g,P ,x) ∩D(a,P) = ∅;
undecided otherwise.

The problem considered in this paper is the computation of V from inputs
g, a, P , and x.

3 Solving systems of nonlinear equations

3.1 Definitions and notation

The following notational conventions apply in the remainder of this article.
The closed interval of real numbers from u to v, u ≤ v, is denoted by [u, v].
If U and V are vectors in ℜn, Ui ≤ Vi, i = 1 . . . n, then the set [U, V] =
[U1, V1]× · · · × [Un, Vn] is regarded as an interval vector in ℜn. Point-valued
and interval-valued variables are distinguished by writing the latter in bold-
face type. No special distinction is made between scalar and vector quantities.
Given an interval or interval vector x, x, and x are the real-valued lower and
upper values of x, respectively. That is, x = [x,x]. When a point value x
appears with interval values in an expression, x should be thought of as
the degenerate interval x = [x, x]. The center of an interval x is defined as
x̂ := (x+ x)/2, and the width of an interval x is defined as w(x) := x− x.
An interval vector is called nontrivial if the width of every component is
nonzero.

Define an interval covering P of a set P to be a finite set of intervals

such that P ⊆
⋃

p∈P

p. The covering will be called exact if equality holds. In

1It is also possible for a to be a vector function with the interpretation that a vector p is in the

supporting set if every component of a(p) is negative. However, this modification complicates the analysis

at some points without substantially altering the final results.

Solving Large Systems of Nonlinear Constraints with Application to... 175

the sequel P will always denote an arbitrary interval covering of P unless
otherwise noted.

Let ‖ · ‖ denote the L∞ norm. For sets S1 and S2 in ℜn, define

d(S1, S2) := sup
p∈S1

inf
q∈S2

‖p− q‖.

If S ⊂ ℜn and p ∈ ℜn, the expression d(p, S) is shorthand for d
(
{p}, S

)
.

For any set S, let int(S), cl(S), and bdy(S) denote the interior, closure, and
boundary of S, respectively.

It is assumed that all arithmetic evaluations in this article are carried out
using exact arithmetic. The exact interval evaluation of a function h at x is
defined as

h̃(x) :=
{
y | y = h(x) for some x ∈ x

}
.

It is assumed that functions with interval arguments are computed using
standard definitions of interval arithmetic, e.g. that found in [Alefeld &
Herzberger 1983] or [Neumaier 1990]. Such evaluations must satisfy two
basic criteria for a function h : A → ℜn evaluated at x ⊆ A :

• h̃(x) ⊆ h(x).

• There is a value β > 0 such that for all x ⊆ A,

‖w(h(x))‖ ≤ β ‖w(x)‖ .

The latter condition is true of functions that are Lipschitz continuous on A
and are evaluated using interval arithmetic [Neumaier 1990, Chapter 2].

3.2 Constraint solving applied to decision making

It is henceforth assumed that the components of any instantiation I =
〈g,P ,x, a〉 have the following properties:

1. P is compact and admits an exact interval covering.

2. S(g,P ,x), D(a,P), and D(−a,P) are non-empty.2 Note that this,
together with the restrictions stated above, implies that S(a,P , ∅) =
bdy

(
D(a,P)

)
is also non-empty.

2This restriction is not essential, but requiring it simplies the later analysis without substantially

altering the ultimate results.

176 G. D. Hager

3. There is an α > 0 such that for all p ∈ P and x ∈ x,

α d
(
p, S(g,P ,x)

)
≤ ‖g(p, x)‖ and α d

(
p, S(a,P , ∅)

)
≤ ‖a(p)‖ .

4. There is an expression for the function g(p,x) such that the variables
associated with the components of x each appear at most once in the
expression.

In practice, satisfying conditions 1 and 2 does not generally constitute a
problem. Note that the continuity of g combined with the compactness of
the parameter space implies that solution sets are compact.

For scalar functions with a single parameter, condition 3 rules out func-
tions where both the function and its derivatives are simultaneously 0 on the
boundary of the solution set. For example, suppose g(p, x) = p2 − x. Condi-
tion 3 is not satisfied only for data values x where x = 0 or x = 0. If x is a
random variable on a subset of the (interval) real line, this is a measure zero
event and so condition 3 is satisfied with probability 1. For scalar functions
of more than one variable, condition three is equivalent to requiring that
the gradient of the function be nonzero on the boundary of the solution set.
At present, it is not possible to characterize the set of vector functions that
satisfy condition 3.

Condition 4 can often, but not always, be satisfied. The analysis in this
article is carried out assuming condition 4 holds, however comments on the
implications of not satisfying condition 4 appear at the end of Section 4.

Condition 4 has the following consequences:

Lemma 3.1. For any p ⊆ P , g(p,x) =
⋃

x∈x

g(p, x).

Proof: Construct a function g′ by replacing each occurrence of a variable in an
expression for g with a new, unique variable name. Since the components of x
appear only once in g, there is a one-to-one correspondence between these
variables in g and g′. Let the vector p′ be the interval vector constructed
by appropriate replication of the components of p so that for any x′ ⊆ x,
g′(p′,x′) = g(p,x′). Every component of both p′ and x′ occurs at most once
in the expression of g′, so by [Neumaier 1990, Corollary 1.4.4], it follows that

g(p,x) = g′(p′,x) =
{
g′(p′, x) | p′ ∈ p′, x ∈ x

}
=

⋃

x∈x

g′(p′, x) =
⋃

x∈x

g(p, x).

Solving Large Systems of Nonlinear Constraints with Application to... 177

Corollary 3.2. For any p ⊆ P , if 0 ∈ g(p,x) then there is an x ∈ x such

that 0 ∈ g(p, x).

Proof: By the previous lemma, if 0 ∈ g(p,x) =
⋃

x∈x

g(p, x) then there is some

x such that 0 ∈ g(p, x).

Given an interval vector p ⊆ P , if 0 6∈ g(p,x) then it follows that p and
the solution set are disjoint. Conversely, the fact that 0 ∈ g(p,x) does not
necessarily imply that p contains points in the solution set. However, given
the properties stated above, it is possible to place an upper bound on the
distance between p and the solution set.

Lemma 3.3. Let S∗ = S(g,P ,x). There is a K > 0 such that for any

p ⊆ P , if 0 ∈ g(p,x), then d(p, S∗) ≤ K ‖w(p)‖ .

178 G. D. Hager

Proof: Consider two cases:

x = ∅ : By assumption 3 above, for all p ∈ p, d(p, S∗) ≤ 1
α
‖g(p)‖ . But

0 ∈ g(p), so ‖g(p)‖ ≤ ‖w(g(p))‖ ≤ β ‖w(p)‖ .

x 6= ∅ : By assumption 3 above, for all p ∈ p, and x ∈ x, d(p, S∗) ≤
1
α
‖g(p, x)‖ . But 0 ∈ g(p,x), so by Corollary 3.2 there is some x∗ ∈ x

such that 0 ∈ g(p, x∗). Therefore

‖g(p, x∗)‖ ≤ ‖w(g(p, x∗))‖ ≤ β ‖w(p)‖ .

In both cases, by defining K = β/α, it follows that

d(p, S∗) = max
p∈p

d(p, S∗) ≤
β

α
‖w(p)‖ = K ‖w(p)‖ .

Lemma 3.3 is of tremendous practical importance because, as will be seen
shortly, it implies that arbitrarily good approximations to the solution set
can be constructed without expending constraint solving effort on the vector
of observed values, x. Since x is typically quite large in comparison to p, this
property substantially reduces the amount of computational effort expended
in constraint solving.

Recall that P represents an arbitrary, exact interval covering of P . Define

S(g,P,x) :=
{
p | p ∈ p ∈ P and 0 ∈ g(p,x)

}

and
D(a,P) :=

{
p | p ∈ p ∈ P and a(p) 6≥ 0

}
.

Note that it follows from the properties of interval arithmetic that

S(g,P ,x) ⊆ S(g,P,x) and D(a,P) ⊆ D(a,P).

Hence, these operators can be thought of as computing an outer approx-
imation to the solution set and supporting set from an interval covering,
respectively.

Define a covering P to be δ-fine if ‖w(p)‖ ≤ δ for all p ∈ P. With these
definitions, Lemma 3.3 can be applied to interval coverings as follows:

Corollary 3.4. For any ǫ > 0:

Solving Large Systems of Nonlinear Constraints with Application to... 179

1. There is a δ1 > 0 such that for any δ1-fine covering P of P ,

d
(
S(g,P,x), S(g,P ,x)

)
≤ ǫ.

2. There is a δ2 > 0 such that for any δ2-fine covering P of P ,

d
(
D(a,P), D(a,P)

)
≤ ǫ.

Proof: For 1, note that

d
(
S(g,P,x), S(g,P ,x)

)
≤ max

p∈P
d
(
p, S(g,P,x)

)
.

By Lemma 3.3, for any p ∈ P, d
(
p, S(g,P,x)

)
≤ K ‖w(p)‖ . Choosing

δ1 = ǫ/K, it follows that

d
(
p, S(g,P,x)

)
≤ Kδ1 ≤ K

ǫ

K
= ǫ.

For 2, note that S(a,P , ∅) = bdy
(
D(a,P)

)
is nonempty by assumption.

Therefore

d
(
D(a,P), D(a,P)

)
≤ d

(
S(a,P, ∅), S(a,P , ∅)

)

and the conclusion follows from 1.

The ultimate aim of this analysis is to make judgements about intersection
and inclusion relationships among sets. The following states the central result
used in the remainder of this paper:

Theorem 3.5. For arbitrary functions g and a,

S(g,P ,x) ∩ cl
(
D(a,P)

)
= ∅

if and only if there exists a δ > 0 such that for any δ-fine covering P of P ,

S(g,P,x) ∩D(a,P) = ∅.

Proof: In the reverse direction, the result follows directly from the fact that
S(g,P ,x) ⊆ S(g,P,x) and D(a,P) ⊆ D(a,P).

180 G. D. Hager

In the forward direction, two compact, disjoint sets must be separated
by some positive distance η. Choose a positive value ǫ < η/2. From Corol-
lary 3.4, there is a δ > 0 such that for any δ-fine covering P,

d
(
S(g,P,x), S(g,P ,x)

)
≤ ǫ and d

(
D(a,P), D(a,P)

)
≤ ǫ.

But, then for any p1 ∈ S(g,P,x) and p2 ∈ cl
(
D(a,P)

)
,

‖p1 − p2‖ ≥ η − 2ǫ > 0.

Hence, S(g,P,x) ∩ cl
(
D(a,P)

)
= ∅.

Corollary 3.6. Let S ′(g,P,x) =
{
p ∈ P | 0 ∈ g(p,x)

}
. S(g,P ,x) and

cl
(
D(a,P)

)
are disjoint if and only if there is a δ > 0 such that for any

δ-fine covering P of P ′ ⊆ P , D
(
a, S ′(g,P,x)

)
= ∅.

The proof follows directly from the previous theorem and the definitions of
S ′ and D.

Finally, a result about finding points in the solution set:

Lemma 3.7. If there is a nontrivial interval p ⊆ P such that p ⊆ S(g,P ,x)
then there is a δ > 0 such that any δ-fine covering of P contains an element

q with 0 ∈ g(q̂,x).

Proof: Since p ⊆ S(g,P ,x), g(p,x) = 0 for every p ∈ p. Define δ to be
one-half the minimum width of the components of p. Since p is nontrivial,
δ > 0. Furthermore, any δ-fine covering has an element q ⊂ p, and it follows
that 0 ∈ g(q̂,x).

4 A bisection algorithm for decision making

The previous section established an upper bound on the distance between a
solution set and an interval-based approximation to it when using a simple
interval-based consistency test. In practice there are procedures for test-
ing interval vectors that can produce more accurate approximations. This
motivates the introduction of a reduce operator R. R accepts an interval vec-
tor of model parameters, an interval vector of observations and a constraint
function, and returns an interval vector of model parameters subject to the
following conditions:

Solving Large Systems of Nonlinear Constraints with Application to... 181

1. R(g,p,x) ⊆ p.

2. p ∩ S(g,P ,x) = R(g,p,x) ∩ S(g,P ,x).

3. If 0 6∈ g(p,x), then R(g,p,x) = ∅.

Define
SR(g,P,x) :=

⋃

p∈P

R(g,p,x).

Lemma 4.1. For all interval coverings P of P ,

S(g,P ,x) ⊆ SR(g,P,x) ⊆ S(g,P,x).

Proof: The fact that S(g,P ,x) ⊆ SR(g,P,x) follows directly from condi-
tions 1 and 2 above. To show the remaining inclusion, consider an arbitrary
p ∈ P, such that R(g,p,x) 6= ∅. By condition 3, 0 ∈ g(p,x). But this
means that R(g,p,x) ⊆ p ⊆ S(g,P,x). Since p was arbitrary, it follows
that SR(g,P,x) ⊆ S(g,P,x).

An analogous operator E can be defined for inequalities. It must satisfy
the following conditions:

1. E(a,p) ⊆ p.

2. p ∩D(a,P) = E(a,p) ∩D(a,P).

3. If a(p) ≥ 0 then E(a,p) = ∅.

Define
DE(a,P) :=

⋃

p∈P

E(a,p).

In this case, the following result holds:

Lemma 4.2. For all interval coverings P of P ,

D(a,P) ⊆ DE(a,P) ⊆ D(a,P).

182 G. D. Hager

The proof is analogous to that of Lemma 4.1.

Let bisect(n) denote a function that returns ∅ if n = ∅, and otherwise
returns the set of two subintervals resulting from bisecting some component
of n. Let remove(Q) be a function that removes an element from the set Q
and returns that element. Assume that P is itself an interval vector. An
algorithm for computing the decision value of a problem instantiation is:

Algorithm 4.1.

Bisect(I):

1. Initialization:

(a) Q := {P}.

2. Termination Test :

(a) if DE(−a,Q) = ∅ return true.

(b) if DE(a,Q) = ∅ return false.

(c) if there are elements p1 and p2 in Q such that:

0 ∈ g(p̂1,x) and a(p̂1) < 0,

0 ∈ g(p̂2,x) and a(p̂2) > 0.

return undecided.

3. Reduction and Bisection:

(a) Q :=Q ∪ bisect(R(remove(Q), g,x)).

(b) Go to step 2.

The implementation details of this algorithm appear in the next section.
The following terms apply to Algorithm 4.1:

• Algorithm 4.1 is fair if, for any δ > 0, there is a value Mδ such that
after Mδ iterations Q is a δ-fine covering.

• Algorithm 4.1 is correct for a set of instantiations I if for every I ∈ I
for which Bisect(I) terminates,

Bisect(I) = V (I).

• Algorithm 4.1 is finitely complete for a set of instantiations I if it
terminates within a finite number of iterations for every I ∈ I.

Solving Large Systems of Nonlinear Constraints with Application to... 183

Not unexpectedly, Algorithm 4.1 is not finitely complete for every in-
stantiation. To see why, consider a problem where the solution set and the
supporting set are disjoint, but their closures are not. In this case, it is
never possible to separate the approximations to the solution set and the
supporting set. Thus, the algorithm will compute forever without reaching
an answer. This property is captured in the following:

Definition 4.1. An instantiation I is undecidable if

S(g,P ,x) ∩ bdy
(
D(a,P)

)
6= ∅ and int

(
S(g,P ,x)

)
∩ bdy

(
D(a,P)

)
= ∅.

An instantiation is decidable if it is not undecidable.

Theorem 4.3. Algorithm 4.1 is correct for any problem instantiation. If

the algorithm is fair, it is finitely complete for all decidable instantiations.

Proof: Correctness follows directly from Lemmas 4.1, 4.2 and Corollary 3.6.

For completeness, consider an arbitrary I = 〈g,P ,x, a〉 and let S∗ =
S(g,P ,x), D∗ = D(a,P), and Dc = D(−a,P). There are three cases.

V (I) = false: Then S∗∩D∗ = ∅. By Corollary 3.6, there exists a δ > 0 such
for that any δ-fine covering P of P ′ ⊆ P , D

(
a, S ′(g,P,x)

)
= ∅. This

property is preserved by the operators R and E. Since Algorithm 4.1
is fair, there is some number Mδ such that after Mδ iterations, Q is a
δ-fine covering. Hence the algorithm will terminate after no more than
Mδ iterations with value false.

V (I) = true: Note that for decidable problems, S∗ ∩Dc = ∅ if and only if
S∗ ∩ cl(Dc) = ∅. Hence, S∗ ⊂ D∗ if and only if S∗ ∩ Dc = ∅. Repeat
the argument for the previous case with Dc in place of D∗.

V (I) = undecided: Since I is decidable, the interior of S∗ contains points
from both D∗ and Dc. Thus, it is possible to choose two nontrivial
intervals p1 ⊂ S∗ ∩D∗ and p2 ⊂ S∗ ∩Dc.

By Lemma 3.7 there is a δ > 0 such that any δ-fine covering of S∗

contains an element q1 ⊆ p1 with 0 ∈ g(q̂1,x) and an element q2 ⊆ p2

with 0 ∈ g(q̂2,x). Furthermore, a(q̂1) < 0 and a(q̂2) > 0. Since
Algorithm 4.1 is fair, there is some number Mδ such that after Mδ

iterations, Q is a δ-fine covering which contains S∗. Hence the algorithm
will terminate after no more than Mδ iterations with value undecided.

184 G. D. Hager

Except for certain artificial constructions that seldom occur in practice,
for fixed g, a, and P , the set of observation vectors leading to undecidable
instantiations is a set of measure zero in the set of all possible observation
vectors. Consequently, Algorithm 4.1 will terminate for all but a vanishing
small set of problem instantiations.

It is worth considering what would happen if condition 4, stated at the
beginning of Section 3.2 failed, i.e. if g(p,x) 6= g̃(p,x). Lemma 3.7 would
fail making it possible that the algorithm would return undecided when
the correct decision is true or false. However, the algorithm will still never
return true when the answer is false or vice-versa. The possibility of spuri-
ous undecided answers could be minimized by using more advanced means,
e.g. Gauss-Newton style methods, of checking for the existence of roots at
step 2c of Algorithm 4.1. Note that any problem instantiation not satisfying
condition 4 can be transformed to one that does by a process of renaming
observation variables so that they appear uniquely, and replicating the com-
ponents of x appropriately. The new instantiation would satisfy condition 4,
and hence Algorithm 4.1 will terminate with an answer unless the problem
instantiation is undecidable. Thus, the only effect of dropping condition 4
is to increase the number of problem instantiations for which the algorithm
returns undecided.

5 A realization of bisection-based

decision making

The previous section described the essential structure of a decision-making
algorithm based on interval bisection. In order to implement the algorithm,
the operators R, remove, and bisect must be implemented. In practice,
the construction of these procedures has a substantial effect on the running
time of the algorithm. This section discusses some practical considerations
governing these choices, and describes methods found to work well in practice.

5.1 The R operator

The most important consideration for the R operator is its ability to re-
ject intervals that are outside the solution set as quickly as possible. A
poor choice of R can lead to excessive bisection and a combinatorial ex-
plosion of the number of intervals in Q. This behavior is exacerbated by

Solving Large Systems of Nonlinear Constraints with Application to... 185

the fact that the solution set typically has finite measure in the model pa-
rameter space. Thus, there is a potentially large set of intervals that lie
on or near the boundary of the solution set. Allowing these intervals to
multiply without rejection or reduction can exponentially increase the num-
ber of intervals that must be processed before a decision can be reached.
For this reason, implementing the R operator based on the definition given
in Section 4 is impractical. For problems of more than a few parameters,
the number of intervals to be processed grows rapidly and convergence is
extremely slow.

Much of the literature devoted to solving systems of nonlinear equations
focuses on variations of Newton-like equation solving methods [Alefeld &
Herzberger 1983, Neumaier 1990]. The major advantage of these algorithms
is their asymptotically quadratic convergence. However, as noted previously,
most of the problems that arise in the domain of data modeling have many
more equations than unknowns, and they often involve a mix of equalities and
inequalities. Furthermore, the system of equations cannot be guaranteed to
be of full rank. These considerations eliminate most Newton-like algorithms
that rely on generating and inverting the full system Jacobian.

[Alefeld & Herzberger 1983, Chapter 22] describes Newton-like methods
that do not require an explicit inverse Jacobian, but still have asymptotically
quadratic convergence. With minor modifications, these methods can be gen-
eralized to solve rectangular systems of equations. However, testing of these
methods on a variety of systems showed their initial rate of convergence to
be extremely slow. Since in practice many decisions do not require extremely
accurate approximations of the solution set, the initial convergence rate of
any method is as important as its asymptotic performance. The slow initial
convergence of Newton-like methods is fundamentally due to the fact that
the Taylor expansion of a system of equations can greatly overestimate the
range of a function until the parameter intervals are quite small.

If Taylor series expansions are to be avoided, then the only choice is
to use some type of constraint testing based on interval evaluation of g.
The major observation leading to the operator used in practice is that direct
constraint testing can work well if bisection is done well. Unfortunately, there
is no way of guaranteeing that bisection will always be done well — that is,
there is no way of predicting how to best bisect interval vectors to improve
a solution set approximation. However, by performing all bisections and
testing each of the resulting interval vectors, an algorithm is guaranteed of
capitalizing on any possible interval rejection due to bisection. Furthermore,

186 G. D. Hager

while performing this lookahead, it is possible to gather information about
the efficacy of further bisection. These observations motivated the following
definition of R:

R(g,p,x)

1. For each component i, 1 ≤ i ≤ n, trisect3 p in i, yielding interval
vectors p1,1, p1,2, . . . , pn,2, pn,3.

2. For each pi,j, if 0 6∈ g(pi,j,x) then pi,j := ∅.

3. p :=
⋂

1≤i≤n

⋃

1≤j≤3

pi,j.

Empirical tests performed on a variety of multivariate polynomials, ge-
ometric forms such as circles, ellipses, ellipsoids, and superquadrics [Hager
1992c, Solina & Bajcsy 1990], and the models used in this article have con-
firmed that, during the initial iterations of bisection, this operator causes a
faster reduction in the volume of the solution set approximation than any
Newton-like operator investigated. The operator has the additional advan-
tage that it can be easily modified to accommodate strict and nonstrict in-
equalities. It is simple to parallelize since constraint testing can be performed
independently on the 3n subintervals created.

5.2 Choosing the dimension to bisect

The main purpose of bisection is to enhance the ability of R to perform
constraint solving. For example, suppose that g(x) = x1 + 2 ∗ x2 with
x1 = x2 = [−1, 1]. Bisecting x1 leads to values for g of [−3, 2] and [−2, 3]
whereas bisecting x2 yields [−3, 1] and [−1, 3]. The latter bisection has less
overlap between the computed intervals and is more likely to enable rejection
of some interval vector of parameters. Thus, a good quantity to base bisec-
tion on is the change in the widths of the components of g relative to changes
in the widths of the input vector. This is estimated by computing a sensitiv-

ity value as follows: for an interval vector p, let pc
i be p with component i

replaced by p̂i. Define the sensitivity for component i as

si(g,p,x) = max
1≤j≤q

[
1−

w
(
gj(p

c
i ,x)

)

w
(
gj(p,x)

)
]
.

3Trisection is the division of a node into three equal parts by division of single component.

Solving Large Systems of Nonlinear Constraints with Application to... 187

Sensitivity values range from 0 to 1 with values near 1 indicating that the
parameter component has a relatively large effect on the constraint function.
Bisection is performed on the parameter component with maximum sensitiv-
ity. Intuitively, sensitivity-based bisection will lead to interval shapes that
“balance” the effect of different components of g. Note that if si(g,p,x) = 0,
then the system of constraints is independent of pi, and there is no reason
to bisect this parameter.

Could sensitivity bisection constantly neglect splitting some component of
an interval vector? To frame this question precisely, think of each application
of bisection as a node in a tree. The parent is the original interval vector,
and the two children are the interval vectors returned from bisection. The
infinite tree constructed by repeated application of bisection will be termed
the bisection tree. Intervals appearing anywhere below an interval p will be
referred to as descendents of p. Bisection will be termed fair on an interval
p if, for every δ > 0, there is a level Mδ in the bisection tree where the
descendents at that level are a δ-fine covering of p.

Lemma 5.1. Sensitivity bisection is fair on any interval vector p where, for

any nontrivial p′ ⊆ p, 0 < si(g,p
′,x) < 1, 1 ≤ i ≤ n.

Proof: Suppose that sensitivity bisection is not fair on an arbitrary interval
vector p. Then there is some δ > 0 and nontrivial interval q ⊆ p such that
‖w(q)‖ > δ, and q can be expressed as two subvectors q = (b;n) where b

contains only components of q that are fairly bisected, and n contains only
components that are never bisected below q. Let i1, . . . , in be the indices of
components of n in q and j1, . . . , jm be the indices of the components of b
in q. For b′ ⊆ b, define

s(b′) = min
k=i1...in

sk
(
g, (n;b′),x

)
and s(b′) = max

k=j1...jm
sk
(
g, (n;b′),x

)
.

Note that if s(b′)− s(b′) < 0, it follows that

sk
(
g, (n;b′),x

)
> sl

(
g, (n;b′),x

)
, k = i1, . . . , in and l = j1, . . . , im.

Hence, some component of n will be chosen for bisection.

By definition, if ‖w(b′)‖ = 0 then s(b′) = 0 and s(b′) = K > 0. By
Lipschitz continuity of g, s(b′)− s(b′) is a continuous function of b′. Hence,
there is a value ǫ such that if ‖w(b′)‖ < ǫ then s(b′)− s(b′) < 0. But, the
components represented by b′ are fairly bisected, so there is some level below

188 G. D. Hager

q when the nodes of the tree form an ǫ-fine covering of the subvector b. This
is a contradiction since at this point a component of n would be chosen for
bisection.

The conditions of this result are not restrictive. Only constraints de-
pending on only one model parameter will generate a sensitivity value of 1.
In practice, any component with a sensitivity near 1 is virtually assured of
being reduced without bisection. Hence, only considering components with
sensitivity values smaller than some threshold near 1 avoids unfair behavior
in this case. Interval vectors with components that receive a sensitivity of 0
are independent of that parameter component, and hence the solution set
computation does not need to refine that component.

5.3 Choosing elements from the active queue

The simplest fair method for choosing elements from the queue is to choose
the element with largest width at every step. However, in practice this choice
has the undesirable property that a single element or a small group of ele-
ments may be chosen several times before their largest component(s) are
bisected or reduced. Using volume as an ordering criterion turns out to work
better since each iteration reduces the volume of an element by at least a
factor of 2. In combination with the bisection method described above, vol-
ume ordering leads to a fair algorithm. Hence, Algorithm 4.1 is correct and
finitely complete using the R operator of Section 5.1, sensitivity bisection,
and volume ordering of Q.

Experimentation has shown that this method is often extremely ineffi-
cient. To see why, consider an extreme case where an interval is contained
in the solution set. Such an interval is unaffected by R, so every time it is
chosen, it is bisected, leading to two new intervals that cannot reduce. By
comparison an interval vector lying on the boundary of the solution set may
be reduced in size by R and then bisected. Both of the children are much
smaller in volume than the children of the interval in the solution set. Hence,
intervals in the solution set may be processed several times while the intervals
on or near the boundary — exactly the intervals that should be processed —
remain dormant on the queue. Ideally, such behavior should be avoided.

The ordering algorithm used in practice is based on the observation that
constraint testing can be used to classify any interval p as supporting a de-
cision if a(p) < 0, not supporting it if a(p) > 0, or undecided if neither

Solving Large Systems of Nonlinear Constraints with Application to... 189

condition holds.4 Furthermore, in order to reach a true or false decision,
all undecided intervals must be eliminated. If undecided intervals are elim-
inated, then the solution set must consist of all supporting or all refuting
intervals. In cases where the correct decision is “obvious” (the boundaries of
the supporting and solution sets are separated by a large distance), all inter-
vals of one “type” (supporting or refuting) can be quickly eliminated while
the number of intervals of the other type is unbounded. These observations
lead to the following instantiation of remove:

1. Classify all intervals in Q as supporting, refuting, or undecided.

2. If there are intervals labeled undecided choose the largest (by volume
measure), otherwise;

3. If there are fewer refuting intervals than supporting, choose the largest
refuting interval, otherwise;

4. Choose the largest supporting interval.

In most cases, this algorithm quickly classifies interval vectors as supporting
or refuting, and then concentrates on eliminating one set. If, for example,
all refuting intervals lie outside the solution set, the number of supporting
intervals quickly exceeds the number of refuting intervals, and the algorithm
then concentrates on eliminating refuting intervals at the expense of working
on supporting intervals.

With this procedure, it is no longer possible to ensure fairness as it was
defined in Section 3. However, it is still possible to ensure finite completeness.

Theorem 5.2. Algorithm 4.1 using the bisect and remove procedures de-

scribed above is finitely complete for decidable instantiations.

Proof: Suppose V (I) = true. I is decidable, so by Theorem 3.5, there
is a δ > 0 such that an interval vector p cannot be labeled undecided if
‖w(p)‖ < δ. Remove orders undecided elements of Q by volume and therefore
chooses among them fairly. By Lemma 5.1, bisect is fair. Hence, every
undecided element of Q will reduced to the point that it must be labeled as
supporting or refuting.

4In general, an interval is refuting if a(p) ≥ 0. However, this definition avoids certain technical

complications and special cases, and doesn’t change the completeness of the algorithm.

190 G. D. Hager

Since S(g,P ,x) ⊂ D(a,P), the number of supporting intervals that can
appear on Q is unbounded. Consequently, the number of times a refuting
interval is chosen is also unbounded. However, the choice of refuting intervals
is fair, and bisection is fair. Hence, for any δ > 0, the covering consisting of all
refuting intervals in Q will eventually become δ-fine. But, there is a δ′ > 0
such that for any refuting interval p with ‖w(p)‖ < δ′, R(g,p,x) = ∅.
Hence, the algorithm will terminate with value true.

A similar argument addresses the case where V (I) = false.

Finally, suppose V (I) = undecided. Since I is decidable, there is a δ > 0
such that any δ-fine partition of P has an element p such that p ⊆ S(g,P ,x)
and p ∩ bdy

(
D(a,P)

)
6= ∅. Such an element would be labeled undecided,

and has the property that every bisection of it or its descendents generates
at least one child labeled undecided. All descendents are, of course, in the
solution set. By Corollary 3.4 there is a δ′ > 0 such that any δ′-fine partition
of p has at least one element that would be labeled supporting and one
element that would be labeled refuting by the algorithm. Since bisection is
fair and selection within the group of undecided elements is fair, the set of
undecided elements in Q will eventually become δ′-fine. But, by this point
one interval vector labeled supporting and one labeled refuting must have
been generated. The centers of both elements are within the solution set.
Therefore, the algorithm will terminate with value undecided.

6 Experimental results

This section describes the results of applying the algorithm of the previous
section to a variety of problems. In order to illustrate the behavior of the
algorithm in a controlled fashion, only simulation results are presented. Ex-
perimental results on real data can be found in [Hager 1992a, Hager 1992b].
We note that none of the experiments presented in this section were imple-
mented so that g(p,x) = g̃(p,x).

Deciding the size of an ellipse. The standard equation for an ellipse in
the plane can be written as:

u′ = R(θ)(u− c)

0 =

(
u′
1

a

)2

+

(
u′
2

b

)2

− 1

Solving Large Systems of Nonlinear Constraints with Application to... 191

where R is a rotation matrix, u is a point on the boundary of the ellipse, and
the model parameters are orientation θ, location c, and axis lengths a and b.

This form of the equation has the undesirable property that rotation and
translation are coupled. An alternate form that generally leads to much
better performance can be derived by choosing a particular data point and
deriving the equation for an ellipse relative to that data point. Letting u∗

denote this distinguished point, the equation for an ellipse can be rewritten
as:

u′ = R(θ)(u− u∗)

0 =

(
u′
1

a
+ cos(α)

)2

+

(
u′
2

b
+ sin(α)

)2

− 1.

Note that this form has one less parameter than the previous expression.
It introduces a new parameter α, that describes the direction of the distin-
guished point u∗ from the center of the object. This form also decouples
rotation from translation (which is no longer explicitly represented). For this
reason, this expression is much simpler to solve than that given above. Also
note that the data variables do not appear uniquely due to the presence of
the rotation matrix R.

In order to test the bisection algorithm, 30 data points distributed evenly
about the boundary of an ellipse were generated. The interval [−0.1, 0.1] was
added to both coordinates to simulate data uncertainty. The initial range on
model parameters was

α ∈ [0, π/2]

θ ∈ [−π, π]

a ∈ [10, 50]

b ∈ [10, 50].

Performing 100 iterations of bisection for this problem consumed 6.7 CPU
seconds on a Sun Sparc 10/41.5

The decision-making goal was to determine whether a > 30 and b > 20.
Several experiments were conducted with different values of a and b. Other
parameter values were held fixed at α = 0.7 and θ = 0.0. For each trial, the
number of iterations required to reach a decision and the final result were
noted. Table 1 summarizes the results.

5These timings include some overhead for input and data generation.

192 G. D. Hager

b
15 20 25 30 35 40

15 36 F 41 F 34 F 29 F 29 F 29 F

20 48 F 52 F 59 F 62 F 62 F 62 F

a 25 48 F 76 F 109 F 209 F 209 F 209 F

30 52 F 274 U 328 U 113 U 113 U 113 U

35 52 F 109 U 121 T 278 T 278 T 278 T

40 50 F 117 U 92 T 70 T 70 T 70 T

Table 1

Note that the spatial arrangement of T’s, F’s, and U’s reflects the struc-
ture of the supporting set for this problem. As expected, the amount of
computation varies greatly. For T and F decisions it is roughly inversely
proportional to the distance between the supporting set and the solution
set. U decisions clearly require more effort. This is at least partially due
to the fact that the interval selection and bisection methods have not been
optimized to find points within the solution set.

b
15 20 25 30 35 40

15 273 F 189 F 143 F 143 F 143 F 143 F

20 * 469 U 1646 U 217 U 217 U 217 U

a 25 746 U 292 U 365 U 1181 U 1181 U 1181 U

30 476 U 157 U 145 U 93 U 93 U 93 U

35 179 U 132 U 552 U 4024 T 4024 T 4024 T

40 56 U 122 U 1588 T 106 T 105 T 52 T

Table 2

In order to illustrate the effects of missing data and larger data errors,
the same trials were performed with an error bound of [−0.5, 0.5] and only
a 220 degree arc of data. Table 2 summarizes the results. The effects of the
additional model uncertainty can be clearly seen by looking at the increase
in the number of cases marked U. In addition, in nearly all cases the amount
of computation required to solve the problem increased significantly. In one
trial, marked by *, no decision was reached in 10000 iterations.

Solving Large Systems of Nonlinear Constraints with Application to... 193

In practice, the increase in running time can be handled in many ways.
In most applications, the algorithm is run with a time bound derived from
application-specific time constraints. If that bound is exceeded, it can be
presumed that the problem is in some respect ambiguous. The problem is
assigned the value U and the action appropriate for undecidable situations
is taken. In particular, additional sensor readings can be added to the data
vector. Additional data often make up for “gaps” in the initial data set, and
also add redundant information which, when data is noisy, serves to reduce
the size of the solution set. [Atiya & Hager 1991, Hager et al. 1993] discuss
this issue in more detail.

Comparing gears. For a somewhat more complex and realistic example,
consider the problem of isolating the largest of a collection of gears based on
outer diameter. Since gears are surfaces of revolution, it suffices to consider
a planar model. Unless otherwise noted, all distances in this section will be
in millimeters.

The contours of the gear in nominal position can be defined as two explicit
functions of angle:

v1(θ) =

[
cos(θ)
sin(θ)

](
d+ k sin(Kθ + θ0)

)

v2(θ) =

[
cos(θ)
sin(θ)

]
h.

Here, d is the average outer gear diameter, h is the hub diameter, k is the
depth of the gear cut, K is the number of teeth in the gear, and θ0 is the
phase of the gear cut. Note that K is an integer value. Figure 1 shows the
data generated by sampling these contours.

With some manipulation, it is possible to derive an implicit form of these
equations:

(c1 − u1)
2 + (c2 − u2)

2 −

[
d+ k sin

(
θ0 +K atan

(
u2 − c2
u1 − c1

))]2
= 0 (5)

(c1 − u1)
2 + (c2 − u2)

2 − h2 = 0.(6)

As before, c is a vector representing the location of the center of the gear.
Once again, this form of the equations is not well-suited for interval solution.
Assuming a point u∗ on the inner hub of the gear can be reliably isolated,

194 G. D. Hager

Figure 1: The contours generated by the gear model.

(6) can be rewritten as

(
(u1 − u∗

1)

h
+ cos(θ)

)2

+

(
(u2 − u∗

2)

h
+ sin(θ)

)2

− 1 = 0 (7)

where θ is the direction of u∗ from the center. Given an arbitrary data
point u, it is not generally known if u comes from the hub contour, in which
case (7) applies, or if it comes from the outer contour, in which case (5)
applies. This ambiguity is addressed by multiplying the left hand sides of
the two expressions and setting the result equal to 0. The multiplication
forces only one of the two constraints to be satisfied for any data point.
Finally, the location of the center of the gear can be computed from u∗, h,
and θ as:

c1 = u∗
1 − h cos(θ)

c2 = u∗
2 − h sin(θ)

and this value of c can be substituted into (5) to improve performance. Also,
the value of K is known to be an integer. This information is used in com-
putations by noting that any interval value of K with nonintegral endpoints
can be reduced to an interval with integral endpoints.

When processing several gears, the full system parameter vector contains
a separate subvector of parameters for each gear. In order to be chosen as

Solving Large Systems of Nonlinear Constraints with Application to... 195

the largest, gear i must satisfy the criterion:
∧

j 6=i

[di > dj] .

This criterion must be replicated and evaluated in parallel for each gear.
While not discussed in this paper, the actual algorithm employed in these
tests has been extended to handle problems where multiple decisions must
be considered simultaneously. See [Hager 1992b] for details. These problem
attributes — multiple contours, rotational components, translation, integer-
valued variables, and multiple decisions — are all commonly encountered in
practice.

As before, artificial gear data was generated with an uncertainty of [−0.1, 0.1]
in both coordinates. 20 points were generated from the hub, and 100 points
were generated from the outer gear contour. The initial range on parameters
was

θ ∈ [−π, π]

θ0 ∈ [−π/10, π/10]

c1 ∈ [−10000, 10000]

c2 ∈ [−10000, 10000]

h ∈ [1, 10]

k ∈ [1, 10]

d ∈ [20, 100]

K ∈ [20, 50].

Performing 100 iterations of bisection for this problem consumed 84.4 CPU
seconds on a Sun Sparc 10/41.6

The algorithm was first applied to the problem of determining the largest
of two gears. One gear was held to a fixed diameter of 40 mm while the size of
the other was varied in millimeter increments from 40 to 48. Other parameters
were held fixed at c1 = c2 = 0, h = 8, θ = θ0 = 0, k = 5, and K = 25. In
order to demonstrate the effects of data uncertainty, the number of iterations
until a decision was made was recorded for four different uncertainty levels.
Decisions requiring more than 1000 iterations were assigned the value U.
All cases that terminated within 1000 iterations received the value T. The
results appear in Table 3.

6These timings include some overhead for input and data generation.

196 G. D. Hager

Gear Size
40 41 42 43 44 45 46 47 48

0.05 > 1000 86 50 58 34 34 33 29 26
Uncertainty 0.1 > 1000 208 70 50 50 42 38 30 26

Level 0.2 > 1000 > 1000 475 210 190 121 91 66 48
0.3 > 1000 > 1000 666 522 344 146 124 80 75

Table 3: The number of iterations to a decision when comparing two gears
of similar size.

As would be expected, the larger the data uncertainty, the more difficult
the comparison task becomes, as measured by the number of iterations of
the algorithm. However, it is interesting to note that the amount of work
needed to make more obvious decisions does not depend heavily on the level
of data uncertainty.

When given several gears to sort, the algorithm need only process a spe-
cific gear until it is guaranteed that some other gear is larger. The algorithm
was given gears with common parameters c1 = c2 = 0, h = 8, θ = θ0 = 0,
k = 5, K = 25, and values of d of 20, 25, 30, 32, 34, 40, 50, 50, 60, and 70.
Note that the ambiguity between the two gears in the middle of the spectrum
should not lead to an undecidable outcome since both are smaller than the
largest gear. Table 4 summarizes the number of iterations devoted to each
size gear before it was determined not to be the largest.

Gear Size
20 25 30 32 34 40 50 50 60

0.05 12 12 12 12 13 14 16 16 20
Uncertainty 0.1 12 12 12 12 15 15 16 16 26

Level 0.2 12 12 12 12 15 15 22 22 38
0.3 16 16 23 23 23 26 46 46 58

Table 4: The number of iterations to a decision when comparing several gears
at once. The largest gear has size 70.

The important point of this table is to again note that the effect of in-
creasing data uncertainty has little effect on algorithm performance except in
cases where reaching a decision depends on making fine distinctions among
data models.

Solving Large Systems of Nonlinear Constraints with Application to... 197

7 Conclusions

This paper has presented a simple-to-use algorithm for making decisions
about sensor data. The major features of this algorithm are its simplicity,
its flexibility, and the fact that for most problems, it will terminate in finite
time with a correct answer (modulo assumptions about the range of errors
in the observed data). Although not described in this paper, the algorithm
has been parallelized using the Linda [Scientific Computing Associates 1990]
distributed programming system. Near linear speedup in constraint-solving
performance has been observed for problems of the appropriate granularity.

From a practical perspective, the major hurdle when implementing prob-
lems has been ensuring that the data conform to the bounded error model,
and setting up the system of constraints so that they are efficiently solvable.
Techniques for filtering data to remove data outliers have been developed,
and some protection against data outliers has been incorporated into the al-
gorithms themselves. With these additions, the current implementation has
proven to be robust to such problems on real data.

The major drawback of the algorithm is the number of iterations it takes
to reach a decision in ambiguous situations. However, it can be argued that
this behavior is preferable to returning an incorrect answer within a specified
time bound. Moreover, in many applications it is reasonable to specify a time
bound on the algorithm. If no decision can be made within that time bound,
the problem can be declared ambiguous, and the appropriate action taken as
if the algorithm had returned U. In particular, in sensing applications the
obvious solution is to seek out more data which further constrains the data
model and permits a decision to be reached.

Work is proceeding on several improvements to the algorithms. Most im-
portantly, a data selection method has been developed so that it is possible
to choose a small subset of the available constraints to be used in the R oper-
ator. For large data sets, selection can be performed much more quickly than
performing constraint solving on the entire data set. Consequently, when the
speed of convergence can be maintained, adding a data selection step can
result in substantial time savings. Work is also being done to improve the
performance of the R operator, as well as the interval selection and bisection
choices.

198 G. D. Hager

Acknowledgements

The author would like to thank Stan Eisenstat and the anonymous review-
ers for many helpful comments and suggestions, Dana Angluin and Willard
Miranker for reading earlier drafts of this paper, and Hemant Tagare for
several useful conversations. This research was supported by DARPA grant
N00014-91-J-1577, by National Science Foundation grants IRI-9109116 and
DDM-9112458, and by funds provided by Yale University.

References

[1] Alefeld, G. and Herzberger, J. Introduction to interval computations.

Academic Press, New York, 1983.

[2] Atiya, S. and Hager, G. D. Real-time vision-based robot localization. In:
“Proceedings of the 1991 IEEE International Conference on Robotics
and Automation”, IEEE Computer Society Press, 1991, pp. 639–643.

[3] Hager, G. D. and Lu, J. C++ interval and constraint solving package.

DCS RR-953, Yale University, New Haven, CT, 1993.

[4] Hager, G. D. (1992a) Constraint solving methods and sensor-based de-

cision making. In: “Proceedings of the IEEE International Conference
on Robotics and Automation”, IEEE Computer Society Press, 1992,
pp. 1662–1667.

[5] Hager, G. D. (1992b) Task-directed computation of qualitative decisions

from sensor data. DCS RR-921, Yale University, New Haven, CT, 1992.
Submitted for review to the IEEE Transactions on Robotics and Au-
tomation.

[6] Hager, G. D. (1992c) Task-directed computation of qualitative decisions

from sensor data. Submitted for review to the IEEE Transactions on
Robotics and Automation, 1992.

[7] Hager, G. D., Engelson, S., and Atiya, S. On comparing statistical and

set-based methods in sensor data fusion. In: “Proceedings of the IEEE
International Conference on Robotics and Automation”, IEEE Com-
puter Society Press. To appear in 1993.

Solving Large Systems of Nonlinear Constraints with Application to... 199

[8] Neumaier, A. Interval methods for systems of equations. Cambridge
Univ. Press, 1990.

[9] C-Linda reference manual. Scientific Computing Associates, 246
Church St., Suite 307, New Haven, CT, 1990.

[10] Solina, F. and Bajcsy, R. Recovery of parametric models from range im-

ages: the case for superquadrics with global deformations. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 12 (2), pp. 131–
147.

Department of Computer Science
Yale University
P.O. Box 2158 Yale Station
New Haven, CT 06520
USA
E-mail: hager@cs.yale.edu

