
Interval Computations
No 2, 1993

The Bernstein Algorithm
Jürgen Garloff

We solve the problem of finding an enclosure for the range of a multivariate
polynomial over a rectangular region by expanding the given polynomial into
Bernstein polynomials. Then the coefficients of the expansion provide lower
and upper bounds for the range and these bounds converge monotonically if
the degree of the Bernstein polynomials is elevated. To obtain a faster improve-
ment of the bounds we use subdivision and present an economical procedure
for computing the bounds on subboxes. Then we apply the results to a prob-
lem of robust control, viz. checking the (Hurwitz) stability of a polynomial
with coefficients depending polynomially on parameters varying inside given
intervals. Numerical examples are also presented.

Алгоритм Бернштейна
Ю. Гарлофф

Решается задача нахождения оболочки для множества значений многоч-
лена многих переменных на прямоугольной области путем разложения за-
данного многочлена в многочлены Бернштейна. При этом коэффициенты
разложения обеспечивают нижнюю и верхнюю границы множества зна-
чений, которые монотонно сходятся при увеличении степени многочленов
Бернштейна. Чтобы ускорить сходимость границ, используется деление
исходной области и вводится экономичная процедура вычисления границ
прямоугольных областей, полученных делением. Результаты применяют-
ся в задаче робастного управления, а именно для проверки (гурвицевой)
устойчивости многочлена, коэффициенты которого полиномиально зави-
сят от параметров, изменяющихся внутри заданных интервалов. Пред-
ставлены численные примеры.

c© J. Garloff, 1994

The Bernstein Algorithm 155

Introduction

The Bernstein algorithm, e.g. [1, 2] and the references therein, is now a well
established tool for computing bounds for the range of a multivariate poly-
nomial over a rectangular region (for the univariate case cf. [3, 4]). Other
approaches tailored for this class of functions include the use of centered
forms [5] and sampling the polynomial at certain points [1, 6]. Methods for
enclosing the range of more general functions may be found in [7]. Compared
with these methods the Bernstein algorithm has the advantage that it avoids
function evaluations which might be costly if the degree of the polynomial is
high. A salient feature of the Bernstein algorithm is that the computation
of the bounds conveys an information about the sharpness of these bounds.
This knowledge plays an important role in speeding up the convergence of
the algorithm. A disadvantage is that the approach is presently restricted
to polynomials. The approach is not restricted to rectangular regions since
triangular regions can be handled in a similar way, cf. [1].

Once bounds for the range of a multivariate polynomial are computed by
the Bernstein algorithm, these bounds may be improved, e.g. by elevation
of the degree of the Bernstein polynomials or by subdivision. Bernstein
subdivision techniques have proved to be profitable in a wide variety of
algorithms for computer aided geometric design, e.g. for algebraic curve
intersection [8], intersection of a ray with a trimmed rational Bézier surface
patch [9], computation of all solutions of a system of a nonlinear polynomial
equations which lie within a box [10], and computation of the singularities
and intersections of offsets of planar integral polynomial curves [11]. Since
it turns out that in the above range problem degree evaluation is inferior
to subdivision1 we concentrate here on subdivision techniques and present
a method which leads to a considerable saving of computational cost.

The organization of the paper is as follows: in the next section we de-
scribe the method for enclosing the range of a multivariate polynomial over
the unit box. In Section 1.1 we recall the basic properties of the Bernstein
coefficients. In Section 1.2 we apply subdivision and show how the Bern-
stein coefficients of the polynomial on subboxes can be computed with less
computational effort.

In Section 2 we apply our results to a robust control problem, viz. check-
1Farouki and Rajan [12] report similar experiences in their investigation on the root condition of

polynomials in Bernstein form.

156 J. Garloff

ing the (Hurwitz) stability of a polynomial with coefficients depending poly-
nomially on parameters varying inside given intervals. For more general
problems in control theory which may be solved by the Bernstein algorithm
see [2]. Applications in other fields include e.g. testing the hypothesis in
global univalence theorems of Gale-Nikaido type, cf. [13], if the function to
be checked for univalence is in each component a multivariate polynomial.

Numerical examples are given in the last section.

1 Bounds for a multivariate polynomial
over the unit box

1.1 Basic properties of Bernstein coefficients

In this section we expand a given multivariate polynomial into Bernstein
polynomials to obtain bounds for the range of this polynomial over the
unit box I which is a Cartesian power of the unit interval [0, 1]. That we
consider here the unit box I is no restriction since any nonempty rectangular
region, i.e. the Cartesian product of nonempty compact real intervals, can
be mapped affinely onto I. Furthermore, we shall present the results only for
the minimum of the range since the results for the maximum are completely
analogous.

Let p be a polynomial (of degree r) in the variables x1, . . . , xq

p(x) =
r∑

i1,... ,iq=0

ai1...iq

q∏
j=1

x
ij
j (1.1)

where all coefficients ai1...iq are real and x = (x1, . . . , xq) ∈ Rq. We want to
know

m = min
x∈I

p(x).

To shorten the following presentation we shall often write i instead of i1i2 . . . iq
with range

K =
{
(i1, i2, . . . , iq) | i1, . . . , iq = 0, 1, . . . , k

}
.

The Bernstein Algorithm 157

The Bernstein polynomials of degree k are defined by

p
(k)
i (x) =

q∏
j=1

(
k

ij

)
x
ij
j (1− xj)

k−ij , i = (i1 . . . iq) ∈ K.

Expansion of the given polynomial p in the power form (1.1) into Bernstein
polynomials results2 in (k ≥ r)

p(x) =
∑
i∈K

b
(k)
i p

(k)
i (x), x ∈ I

where the Bernstein coefficients b(k)i are given for (i1 . . . iq) ∈ K by

b
(k)
i = b

(k)
i1...iq

=

i1∑
`1=0

· · ·
iq∑

`q=0

q∏
j=1

(
ij
`j

)
ρ
(k)
`1...`q

a`1...`q

with ρ(k)`1...`q
=
[∏q

j=1

(
k
`j

)]−1
, and a`1...`q = 0 if some `j is such that `j > r.

We set

β(k) = min
i∈K

b
(k)
i .

Theorem 1 [1, 2]. For each k ≥ r we have

(i) β(k) ≤ m ≤ β(k) + γ(k − 1)k−2

where γ =
r∑

i1,... ,iq=0

q∑
j=1
ij 6=0

(ij − 1)2|ai1...iq |;

(ii) β(k) = m iff β(k) = b
(k)
i1...iq

with ij ∈ (0, k), j = 1, 2, . . . , q.

Furthermore, it can be shown that the sequence of bounds
{
β(k)
}
con-

verges monotonically [1].
Note that if condition (ii) of Theorem 1 holds, then p assumes its min-

imum at a vertex of I. Therefore, condition (ii) will be referred to as the
vertex condition. However, p may achieve its minimum at a vertex of I while

2The question of stability of the transformation between the power and the Bernstein polynomial
forms was addressed in [14, 15].

158 J. Garloff

the vertex condition does not hold.
Example 1. Let p be the Chebyshev polynomial of 10th degree, i.e.

p(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1.

It is well known that the minimum of p on [0, 1] is −1. Therefore, we have

m = p(0) = b
(10)
0

whereas

β(10) = b
(10)
9 = −9.

In [1] a difference table method for computing the (k + 1)q Bernstein
coefficients is described. The number of operations required by this method
is qk(k + 1)q/2 additions (multiplications with ρi neglected).

1.2 Subdivision

If we want to improve the bounds (if e.g. the vertex condition does not hold)
we may elevate the degree k of the Bernstein polynomials. But numerical
examples [16] show that the convergence of the sequence

{
β(k)
}

is rather
slow (cf. the upper bound in Theorem 1 (i)). A better way to get tighter
bounds is to apply subdivision.

We divide the unit box I into 2q subboxes of edge length 1/2 and cal-
culate the Bernstein coefficients of p on these subboxes, i.e. the Bernstein
coefficients of the 2q polynomials obtained when p is shifted from the sub-
boxes to I. The process may be continued by subdividing again each of the
2q subboxes into 2q subboxes of edge length 1/4 and calculating the Bern-
stein coefficients on all resulting subboxes and so on. Then the minimum
of the Bernstein coefficients of p on all subboxes at a fixed subdivision level
s, where s = 0 refers to I, will be denoted by β

(s)
. In the following the

degree k of the Bernstein polynomials is fixed (usually one takes k = r) and
therefore we suppress the upper index (k).

The following theorem shows that the sequence {β
(s)
} converges to m

quadratically with respect to the edge length of the subboxes generated by
subdivision (for the univariate case cf. [4]).

The Bernstein Algorithm 159

Theorem 2 [2].
(i) β

(s)
≤ m ≤ β

(s)
+ ε2−2s

where ε is a constant not depending on s;

(ii) β
(s)

= m iff β
(s)

fulfills a vertex condition on a subbox.

The following proposition shows that the Bernstein coefficients at the
first subdivision level can be computed from the Bernstein coefficients of p
on I and therefore explicit transformation of the subboxes onto I is avoided.
To facilitate the description, we introduce the following notation for the
subboxes.

Let

Iν1...νq = Xν1 × · · · ×Xνq

ν = (ν1, . . . , νq) ∈ {0, 1}q

where νj are Boolean variables and the intervals Xj are given by

Xνj =

{
[0, 0.5] if νj = 0
[0.5, 1] if νj = 1.

Let bi(ν), i ∈ K, denote the Bernstein coefficients on the subbox Iν.
Proposition 1 [1, 2]. For all ν = (ν1, . . . , νq) ∈ {0, 1}q the following
relations hold

bi1...iq(ν) = 2−
∑q

j=1 ij

i1∑
s1=0

· · ·
iq∑

sq=0

q∏
j=1

(
ij
sj

)
b∗s1...sq(ν)

where b∗s1...sq(ν) = bt1...tq

with tj =

{
sj if νj = 0

k − sj if νj = 1
for j = 1, . . . , q.

Based on Proposition 1 the computational effort for computing the Bern-
stein coefficients on subboxes can be brought down considerably by the fol-
lowing procedure:

160 J. Garloff

Sweep in the first coordinate direction:
On I0...0 (we suppress the explicit reference to this subbox):

Put b(1,0)i := bi, i ∈ K.
Then define for ` = 1, . . . , k

b
(1,`)
i1...iq

:=

{
b
(1,`−1)
i1...iq

, i1 = 0, . . . , `− 1
1
2

(
b
(1,`−1)
i1−1,i2...iq + b

(1,`−1)
i1...iq

)
, i1 = `, . . . , k

}
for i2, . . . , iq = 0, . . . , k.

We obtain as intermediate values of this computation the entries resulting
by a sweep in the same coordinate direction on the neighbouring subbox
I10...0:

b
(1,k)
i1...iq

(10 . . . 0) = b
(1,i1)
ki2...iq

(0 . . . 0), (i1, . . . , iq) ∈ K.

Sweep in m-th coordinate direction, 2 ≤ m ≤ q:
For ν1, . . . , νm−1 = 0, 1 (we suppress the explicit reference to Iν1,... ,νm−1,0,... ,0
in the following formulae):

Put b(m,0)i := b
(m−1,k)
i , i ∈ K.

Then define for ` = 1, . . . , k

b
(m,`)
i1...iq

:=

{
b
(m,`−1)
i1...iq

, im = 0, . . . , `− 1
1
2

(
b
(m,`−1)
i1,... ,im−1,im−1,im+1,... ,iq

+ b
(m,`−1)
i1...iq

)
, im = `, . . . , k

}
for i1, . . . , ı̂m, . . . , iq = 0, . . . , k.

These sweeps provide as byproducts the entries on the neighbouring sub-
boxes Iν1,... ,νm−1,1,0,... ,0, ν1, . . . , νm−1 = 0, 1, resulting when the sweeps in
the m first coordinate directions are performed on these subboxes, viz.

b
(m,k)
i1...iq

(ν1, . . . , νm−1, 1, 0, . . . , 0)

= b
(m,im)
i1,... ,im−1,k,im+1,... ,iq

(ν1, . . . , νm−1, 0, . . . , 0)

with (i1, . . . , iq) ∈ K, ν1, . . . , νm−1 = 0, 1.

After the last step rearrangement of the entries b(q,k)i (ν), i ∈ K, accord-
ing to Proposition 1 gives the Bernstein coefficients of p on Iν, ν ∈ {0, 1}q.

The Bernstein Algorithm 161

The above procedure requires k(k + 1)q(2q−1 − 1
2) additions and divisions

by 2 (binary shifts) which is less than 1/q of the amount of work if the
difference table method is applied to all 2q subboxes.

The above procedure shows that the bound β
(s)

is at least as good as
the bound obtained without subdivision and that the bounds β

(s)
converge

monotonically as s→∞. Comparing with Theorem 1 (i), we see that subdi-
vision is clearly superior to degree elevation. Furthermore, when refinement
is applied iteratively the polynomial p will assume its minimum on a suffi-
ciently small subbox at one of its vertices so that the chance is high that the
bound provided by the Bernstein coefficients is sharp, cf. Theorem 2 (ii).

2 Application to a robust control problem

In this section we apply the results of Section 1 to the following robust
control problem:

Let a polynomial φ

φ(z) = a0z
m + a1z

m−1 + · · ·+ am−1z + am (2.1)

be given with coefficients ak depending polynomially on parameters q1, . . . ,
qn, q = (q1, . . . , qn), i.e.

ak(q) =
r∑

i1,... ,in=0

a
(k)
i1,... ,in

qi11 · · · qinn

where the parameters vary inside given intervals [q
i
, qi], i = 1, . . . , n, i.e.

q ∈ Q = [q
1
, q1]× [q

2
, q2]× · · · × [q

n
, qn].

We assume a0(q) > 0 for all q ∈ Q.
Then the following question arises:
Are the polynomials φ(q) (Hurwitz, asymptotically) stable for all q ∈ Q,

i.e. are all zeros of φ(q) inside the open left half of the complex plane?
In the last years much attention was devoted to the solution of this

problem, cf. the references in [2]. More recent approaches include [17, 18].

162 J. Garloff

We use the following boundary crossing theorem3 to transform the above
problem into the problem of checking a multivariate polynomial for positivity
over Q.

Boundary crossing theorem [21]

The polynomial (2.1) is stable for all q ∈ Q iff:

1. There exists a q0 ∈ Q for which φ(q0) is stable;

2. detH
(
φ(q)

)
> 0 for all q ∈ Q, where H(φ) =

(
hi,j(φ)

)
is the Hurwitz

matrix associated with φ, i.e.

hi,j(φ) = a2j−i, i, j = 1, . . . , m with a` = 0 for ` < 0 or ` > m.

Note that the determinant of the Hurwitz matrix associated with the
polynomial (2.1) is an n-variate polynomial, again named p (for larger degree
p may be computed by a symbolic manipulation package).

After having transformed the given parameter set Q onto the unit box
I, we calculate the minimum of the Bernstein coefficients of p on I. If this
minimum is positive, φ(q) is stable for all q ∈ Q. Otherwise we subdivide
I iteratively until positivity is achieved on all subboxes (then φ(q) is stable
for all q ∈ Q or the maximum4 of the Bernstein coefficients is nonpositive
on a subbox (then φ(q0) is not stable for some q0 ∈ Q).

Based on this procedure, a subdivision algorithm (called breadth-first al-
gorithm) can be designed in the spirit of the Moore-Skelboe algorithm for
unconstrained global optimization, e.g. [19]. Here the subboxes generated
by subdivision do not have the same edge length step by step. In each itera-
tion step subdivision is continued on a subbox which has smallest Bernstein
coefficient since than the chances are best for finding a subbox on which p
is not positive.

However, a serious drawback of this algorithm is that the number of
arrays of the Bernstein coefficients which are generated in each subdivision

3This theorem allows that the coefficients ak depend continuously on the parameters q1, . . . , qn
(not necessarily polynomially). Therefore, also this more general problem may be transformed into a
positivity check which may be treated efficiently by interval methods [7, 19, 20].

4As we have already noted at the beginning of Section 1.1, analogous results hold also for the maxi-
mum of the Bernstein coefficients.

The Bernstein Algorithm 163

step is in general equal to 2n. To reduce the storage requirements we propose
instead a depth-first algorithm which makes use of the relations between the
Bernstein coefficients on neighbouring subboxes derived in Section 1.2.

In the sequel, all subboxes Y , Ỹ are subboxes of I generated by sub-
division and the array bi(Y) of a triple

(
Y, t, bi(Y)

)
denotes the Bernstein

coefficients on Y (t = n) or their intermediate values obtained after t sweeps
in the first t coordinate directions (t < n).

Depth-first subdivision algorithm

1. Calculate the Bernstein coefficients bi(I).
Initialize list L =

{(
I, n, bi(I)

)}
.

2. Denote the first triple of L by
(
Y, t, bi(Y)

)
.

If t < n: Perform the sweeps on Y in the coordinate directions t+ 1,
t+ 2, . . . , n giving the Bernstein coefficients on Y named again
bi(Y) replacing the intermediate values; replace t by n. Enter
into L in the given order just behind

(
Y, n, bi(Y)

)
the subboxes(

Ỹ , j, bi(Ỹ)
)
, j = n, n − 1, . . . , t + 1, having an (n − 1)-

dimensional face in common with Y which is parallel to the
(x1, x2, . . . , x̂j, . . . , xn)-hyperplain, where bi(Ỹ) are the (in-
termediate values of the) Bernstein coefficients on Ỹ obtained as
byproducts during the computation of the Bernstein coefficients
on Y .

3. Calculate a := min bi(Y).
If (a ≤ 0 and a is sharp) or max bi(Y) ≤ 0 go to 7.
If a > 0 go to 5.

4. Subdivide Y and replace inL the triple
(
Y, n, bi(Y)

)
by
(
Y0...0, 0, bi(Y)

)
.

Go to 2.
5. Remove

(
Y, n, bi(Y)

)
from list L.

If L= ∅ go to 6.
Go to 2.

6. Stop and report that p is positive on I.

7. Stop and report that p is not positive on I.

164 J. Garloff

3 Computing the stability margin

In this section we present numerical examples for a problem closely related
to the stability problem discussed in Section 2:

Let the polynomial φ(q0) be stable. We want to find the largest ρ named
ρ∗ such that all polynomials φ(q) are stable for all q with
‖q − q0‖w∞ < ρ, where ‖ · ‖w∞ denotes the weighted infinity norm, i.e.
‖q − q0‖w∞ = maxiw

−1
i |qi − q0i |, wi > 0.

The quantity ρ∗ is called the stability margin. The algorithm presented
in this paper can be used to compute ρ∗ by a bisection search over ρ involving
a positivity check at each step.

The following examples were run (in double precision) on a workstation
HP-9000/700 [22].

Example 3 [23]. Let

φ(q1, q2; z) = z3+(q1+ q2+1)z2+(q1+ q2+3)z+6q1+6q2+2q1q2+1.25.

The stability region in parameter space contains an instability disc centered
around the point (1, 1) with radius 0.5. The parameter vector q0 is chosen
as q0 = (1.6, 0.3), and the perturbation weight vector is (0.15, 0.05). It can
be shown that in this example ρ∗ = 4. The polynomial to be checked for
positivity is

φ(q1, q2) = 6q31 + 6q32 + 2q21q2 + 2q1q
2
2 + 2q31q2 + 2q1q

3
2

− 10.75q21 − 10.75q22 − 20.5q1q2 + 8q1 + 8q2 + 2.1875.

Starting with ρ = 1, positivity was checked for (the respective deepest
subdivision level is given in brackets) ρ =1 (0), 2 (0), 4 (0), 8 (2), 6 (3),
5 (4), 4.5 (5), 4.25 (5), 4.125 (6), 4.0625 (7), . . . (successively halving) . . . ,
4.0009765625 (13). Since the required precision was reached, in a final step
the last ρ was subtracted from the last but one giving ρ = 4. The program
reported that the bound provided by the minimum of the Bernstein coef-
ficients for ρ = 4 is sharp. The computing time for this bisection search
was 120ms. The breadth-first subdivision algorithm needed 150ms with a
maximum subdivision level of 7.

The Bernstein Algorithm 165

Example 4. The polynomial to be checked for positivity in the example
presented in [24] is

φ(q1, q2, q3) = q33
(
q61q

6
2q

3
3 − q61q22q33 − q21q62q43

)
with q0 = (1.4, 1.5, 0.8).

The perturbation weight vector is w = (0.25, 0.2, 0.2). The stability margin
was found to be between 1.0898. . . and 1.0908. . . . The computing time for
the 13 bisection steps was 0.4 s. No subdivisions were needed.

Using the above factorization (which is quite natural since in the last
column of the Hurwitz matrix only the (n, n)-entry is nonzero), the result
was obtained in 0.24 s. It is our experience that only for higher degree
polynomials it is advantageous to use this factorization.
Example 5. This example is taken from [25]:

φ(z) = u(z)v(z) + x(z)y(z)

with
u(z) = r1z + r2, x(z) = z2 − r3z + r4,
v(z) = q1z + q2, y(z) = z2 + q3z + q4.

The parameters ri, i = 1, 2, 3, 4, belong to the following fixed intervals
(not depending on ρ).

r1 ∈ [2.7, 3.3], r2 ∈ [1.7, 2.3],
r3 ∈ [2.5, 3.5], r4 ∈ [9.5, 10.5].

Wanted is the stability margin with respect to parameter vector q = (q1, q2, q3, q4)
assuming that q0 = (20, 23, 10, 5) and w = (1, 1, 1, 1). The polynomial to
be checked for positivity is a polynomial in 8 variables comprising 65 mono-
mials. Positivity tests were performed for ρ = 1, 0.5, 0.25, 0.125, 0.1875,
0.15625, 0.171875, . . . , 0.1865. . . , 0.1855. . . . The stability margin was found
to be between the last two values of ρ. The computing time for these 12
bisection steps was 47.4 s and no subdivisions were needed.

Acknowledgements

We are grateful to Mrs. Dipl.-Ing. Margrit Schneider for productive discus-
sions and to Mr. cand. inf. Siegmar Maier for his job of programming the
algorithm.

166 J. Garloff

References

[1] Garloff, J. Convergent bounds for the range of multivariate polynomials.
Interval Mathematics (1985), Lecture Notes in Computer Science 212,
Springer, 1986, pp. 37–56.

[2] Malan, S., Milanese, M., Taragna, M., and Garloff, J. B3 algorithm
for robust performances analysis in presence of mixed parametric and
dynamic perturbations. In: “Proceedings of the 31th IEEE Conference
on Decision and Control, Tucson, Arisona, USA, 1992”, IEEE Control
System Society, 1992, pp. 128–133.

[3] Lane, J. M. and Riesenfeld, R. F. Bounds on a polynomial. BIT 21
(1981), pp. 112–117.

[4] Fischer, H. G. Range computation and applications. In: Ullrich, C.
(ed.) “Contributions to computer arithmetic and self-validating numer-
ical methods”, SCAN’89, Baltzer, 1990, pp. 197–211.

[5] Qun Lin and Rokne, J. G. A family of centered forms for a polynomial.
BIT 32 (1992), pp. 167–176.

[6] Gopalsamy, S., Khandekar, D., and Mudur, S. P. A new method of
evaluating compact geometric bounds for use in subdivision algorithms.
Computer Aided Geometric Design 8 (1991), pp. 337–356.

[7] Ratschek, H. and Rokne, J. Computer methods for the range of func-
tions. Ellis Horwood, 1984.

[8] Sederberg, T. W. An algorithm for algebraic curve intersection. Com-
puter Aided Design 21 (1989), pp. 547–554.

[9] Nishita, T., Sederberg, T. W., and Kakimoto, M. Ray tracing trimmed
rational surface patches. Computer Graphics 24 (1990), pp. 337–345.

[10] Sherbrooke, E. C. and Patrikalakis, N. M. Computation of the solutions
of nonlinear polynomial systems. Computer Aided Geometric Design 10
(1993), pp. 379–405.

[11] Maekawa, T. and Patrikalakis, N. M. Computation of singularities and
intersections of offsets of planar curves. Computer Aided Geometric
Design 10 (1993), pp. 407–429.

The Bernstein Algorithm 167

[12] Farouki, R. T. and Rajan, V. T. On the numerical condition of polyno-
mials in Bernstein form. Computer Aided Geometric Design 4 (1987),
pp. 191–216.

[13] Parthasarathy, T. On global univalence theorems. Lecture Notes in
Mathematics 977, Springer, 1983.

[14] Daniel, M. and Daubisse, J. C. The numerical problem of using Bézier
curves and surfaces in the power basis. Computer Aided Geometric
Design 6 (1989), pp. 121–128.

[15] Farouki, R. T. On the stability of transformations between power and
Bernstein polynomial forms. Computer Aided Geometric Design 8
(1991), pp. 29–36.

[16] Zettler, M. Gebietsunterteilung und graderhöhung bei Bernsteinpoly-
nomen. Diploma thesis, Fachhochschule Konstanz, 1991.

[17] Kaesbauer, D. On robust stability of polynomials with polynomial
parameter dependency: two/three parameter cases. Automatica 29
(1993), pp. 215-217.

[18] Kolev, L. V. A criterion for robust stability of polynomials with interval
parameters. Submitted to IEEE Trans. Circuits and Systems.

[19] Ratschek, H. and Rokne, J. New computer methods for global optimiza-
tion. Ellis Horwood, 1988.

[20] Hansen, E. Global optimization using interval analysis. Marcel Dekker,
1992.

[21] Frazer, R. A. and Duncan, W. J. On the criteria for the stability of
small motions. Proc. Royal Soc. A. 124 (1929), pp. 642–654.

[22] Maier, S. Der Bernsteinalgorithmus mit Depth-first-Strategie. Diploma
thesis, Fachhochschule Konstanz, 1994.

[23] Ackermann, J., Hu, H. Z., and Kaesbauer, D. Robustness analysis: a
case study. IEEE Trans. Automatic Control 35 (1990), pp. 352–356.

[24] Sideris, A. and Sánchez Peña, R. S. Fast computation of the multi-
variable stability margin for real interrelated uncertain parameters. In:
“Proc. Amer. Control Conf.”, Atlanta, GA, 1988.

168 J. Garloff

[25] Barmish, B. R. and Zhicheng Shi. Robust stability of a class of polyno-
mials with coefficients depending multilinearly on perturbations. IEEE
Trans. Automatic Control 35 (1990), pp. 1040–1043.

Fachbereich Informatik
Fachhochschule Konstanz
Postfach 100543
D–78405 Konstanz
FRG

