
Interval Computations
No 2, 1993

The VPI Software Package for Variable
Precision Interval Arithmetic

Jeffrey S. Ely

The VPI (Variable Precision Interval) software package is a collection of rou-
tines written in C++ (by this author) to support variable precision interval
arithmetic. It appears to be the oldest of the various C++ packages, having
been used as early as 1988, although it has endured many modifications and
enhancements since then. Here, the author discusses its capabilities, flaws,
evolution (including the development of a vectorized version for the CRAY-
YMP), and a variety of pedagogical and research applications to which the
author has put it.

Пакет программ VPI для
интервальной арифметики с

переменной точностью
Дж. С. Или

Программный пакет VPI (Variable Precision Interval) является набором
программ, написанных автором на С++ для поддержания интервальной
арифметики с переменной точностью. Он, видимо, является самым ста-
рым из разнообразных пакетов на С++. Eго использование началось
в 1988 году, но с тех пор в него внесены многочисленные изменения и
улучшения. Автор описывает его возможности, недостатки, эволюцию (в
том числе разработку векторизованной версии для CRAY-YMP), а также
множество педагогических и исследовательских приложений, для кото-
рых автор его предназначал.

c© J. S. Ely, 1994

136 J. S. Ely

1 Introduction

The VPI software package is a collection of routines written in C++ to
support variable precision interval arithmetic. This author has applied it
to a problem in fluid dynamics [1]. That application shaped much of its
current design and also motivated the development of a vectorized version
for a CRAY-YMP.

2 Capabilities of VPI

The software package VPI (Variable Precision Intervals) is structured as
shown in Figure 1. At the bottom are low level procedures for manipulat-
ing bit strings. On top of this, variable precision floating-point numbers
(afloat) are constructed, while on top of this rests intervals (interval).
On top of the interval layer, there are three extensions: complex intervals
(compivl), matrices (matrix), and Taylor series (taylor). Additionally,
complex Taylor series (ctaylor) are built from the complex intervals.

bit strings

afloat

interval

compivlmatrix taylor

ctaylor

6

6

6PP
PPPi

��
���1

��
���1

Figure 1: The data types of VPI and their dependence.

The VPI Software Package for Variable Precision Interval Arithmetic 137

Bit strings. The lowest level contains routines to manipulate arbitrarily
long strings of bits. Bit strings can be moved, cleared, added, subtracted,
multiplied, divided, rotated left or right, or tested for zero. The routines
for doing these operations are bimov, biclear, biadd, bisub, biunsmul,
biunsdiv, bircl, bircr, and bizerotest, respectively. Typically, these
routines require the starting address of the bit strings involved and the
length (in words) of the strings. This layer will seldom interest high level
users, but is the one where most of the effort at efficiency is spent. In early
versions of VPI, these routines were written in assembly language, although
the current version is all C++ code for portability. This is also the layer
that was vectorized on a CRAY-YMP (more on this later).

Variable precision floating-point numbers. The original plans for
VPI called for truly arbitrary precision floating-point numbers, limited only
by available memory, hence the name of the data type afloat. Early tim-
ing tests indicated an inordinate amount of time was being consumed in the
memory management phase of these procedures, so arbitrary precision was
dropped in favor of variable precision up to a limit (currently 34 words). A
variable of type afloat is an array of 34 words, not all of which are used. A
word is reserved for the exponent, one for the sign, and one to indicate the
number of other words being used for the mantissa. This mantissa length
was incorporated for an earlier design where some variables might have 3
words of mantissa, others might have 7 or 8. This scheme was abandoned
in favor of a global variable lenMANT, which indicates the number of words
currently being used by all variables of type afloat.

Reserving an entire word (32 bits) for the exponent means that numbers
can become quite large and further implies the infeasibility of an accurate
dot product such as exists in Pascal–SC [5], Pascal–XSC [3], or C–XSC [4].
The sign word has 3 possible values; −1 indicating a negative number, +1
for a positive number, 0 if the number is zero. Original plans to support
−2 for −infinity, +2 for +infinity were never realized. The binary point
is assumed to be immediately prior to the bits of the mantissa. Hence, a
normalized mantissa represents a number in [12 , 1).

There are five categories of procedures that operate on afloats: con-
structors, I/O routines, arithmetic operators and functions, relational op-
erators, and a few oddities. A C++ constructor exists for constructing an
afloat from an int. The procedure dblfromafl will construct a double

138 J. S. Ely

from an afloat (if possible). This is useful for producing results that con-
ventional programs can then read. For input and output, the usual C++
operators >> and << have been overloaded to give conversions between the
internal binary representation and an external decimal one. No effort is
made for directed rounding of these results. If directed rounding is desired,
the procedures dirin and dirout permit the specification of rounding di-
rection. For exact I/O, aflhexin and aflhexout read and write the data
in a hexadecimal form. This is seldom pleasant to read, but very handy
as a medium of exchange between two different programs written in VPI,
enabling the sharing of data via files without the round-off errors that a
decimal exchange would incur.

The full set of relational and arithmetic operators, ==, !=, <, <=, >,
>= , +, −, ∗, and /, have been overloaded to operate on afloats. The
arithmetic operators do not permit a rounding direction to be specified,
but the alternate procedures, dirplus, dirminus, dirmul, and dirdiv, do.
While not as convenient to use for complicated expressions as their operator
counterparts, these procedures are (appropriately) more thought-provoking
and form the basis for the subsequent interval arithmetic. The absolute
value, abs, change sign, chs, and mulbypow2 (multiplication by a power of
two) are all exact.

A few final oddities should be mentioned. The separate procedure ex-
tracts the integer part from the fractional part of an afloat, whenever the
integer part will fit into one word. This turns out to be handy in doing
decimal I/O and later in the interval calculation of trigonometric and expo-
nential values.

For something as simple as this array definition of an afloat, it is not
really necessary for VPI to have its own code for the assignment operator =
since C++ will default to a bitwise copy of the entire array. However, this
default is not satisfactory for two reasons. First, if the precision being used
is low (say lenMANT = 3, implying only 3 words of mantissa), copying all 34
words is inefficient. The second reason is specific to the CRAY. It is unclear
if the default C++ data movement procedure has been vectorized on the
CRAY, whereas VPI’s bimov definitely is.

The interval data type. An interval is defined as two afloats, a left
and a right. An interval may be constructed from an int, from a single
afloat (which gives an interval with left part equal to the right part), or

The VPI Software Package for Variable Precision Interval Arithmetic 139

from a pair of afloats (one for the left part, one for the right).
The I/O operators, >> for input and << for output, bound the errors

as they convert between the internal binary format and an external decimal
format. Procedures ivlhexin and ivlhexout are analogous to their afloat
counterparts and provide exact hexadecimal I/O.

The arithmetic operators +, −, ∗, and / have been overloaded with
their obvious definitions. Additionally, there is a reasonable selection of
mathematical functions, abs, arccos, arccosh, arctan, cos, cuberoot,
exp, ln, mulbypow2, sin, sqrt, and square. The square function does
the correct thing for intervals, as opposed to merely implementing x∗x. The
function mulbypow2multiplies by a power of 2 and is exact, as is the absolute
value function abs. The functions sqrt and cuberoot are implemented with
an interval version of Newton’s method, while the transcendental functions
are built on power series (since the error terms are nicely computed). The
non-monotonic nature of sin and cos required special care to ensure both
correctness and “tightness”.

While the procedures leftpart, rightpart, mid, and width should be
obvious, the procedure intersect, for intersecting two intervals, requires
some explanation. A program might invoke it as

signal = intersect(iV1, iV2, iV3)

where iV2 and iV3 are the two intervals being compared, and iV1 is to be
their intersection. The returned int, signal, is

0 if iV2 and iV3 are equal,
1 if they do not overlap, in which case iV1 is left alone,
2 if iV2 is properly contained in iV3,
3 if iV3 is properly contained in iV2, and
4 otherwise.

This is cumbersome but thought-provoking to use.
The user may select the precision to be used by VPI in two ways. If no

transcendental functions are to be used, a simple change to the global con-
stant lenMANT will establish the number of words to be used for mantissas.
For instance,

lenMANT = 5 ;

will cause 5 words of mantissa to be used in all subsequent calculations. On
most machines, this will mean 5 ∗ 32 = 160 bits of precision. However, on
the CRAY, this will mean 5 ∗ 64 = 320 bits of precision. If transcendental
functions are to be invoked, the user should establish the precision by a call
to the function precision such as

140 J. S. Ely

precision(5) ;

This call changes the constant lenMANT and also alters certain other global
constants such as pi and lntwo (the natural log of 2). Normally, the preci-
sion is established at the beginning of a program, before even any variable
declarations of type afloat or interval are made and is the same throughout
the running of the program. The user can, however change the precision
in midstream (although with care). If no transcendental functions are in-
volved, the simple reassignment of lenMANT is very fast, but if transcendental
functions are involved, precision must be called. This can be quite slow,
especially if the new precision is large.

Complex intervals. Several different data types have been built on top
of type interval. One of these is compivl, the complex interval, with an
interval real part and an interval imaginary part.

Complex numbers can be constructed directly from ints, from a single
interval (which assigns this single interval to the real part and sets the
imaginary part to zero), or from a pair of intervals (the first specifies the
real part, the second, the imaginary part).

The I/O operators >> and << allow for decimal input and output, but
there are no hexadecimal I/O functions, as there are for afloats and intervals.
The functions realpart and imaginarypart return the real and imag-
inary components of compivls. For arithmetic, VPI supports +, −, ∗,
and /, arccos, arccosh, arctan, cos, exp, ln, and sqrt. Addition-
ally, conjugate and modulus are available. Modulus carefully computes
sqrt

(
square(a) + square(b)

)
instead of sqrt(a ∗ a + b ∗ b) to avoid possibly

taking the square root of an interval containing negative numbers.
The only oddity is the function cossin. This is to be used when the

cosine and sine of the same argument are desired. For example, the call
cossin (cs,sn,x) is equivalent to, but more efficient than, cs = cos(x);
sn = sin(x).

A favorite way to test VPI is to check the results of both sides of math-
ematical identities. If the interval results of the two sides do not overlap,
then there is a bug somewhere. Continued overlap of the two sides at higher
and higher precisions builds confidence in the correctness of the code. The

The VPI Software Package for Variable Precision Interval Arithmetic 141

file civlTEST.c (below) shows one such test, computing both sides of the
complex number identity

n−1∑
k=0

cos(kt) + i sin(kt) =
1− eint

1− eit
.

civlTEST.c

100 #include <compivls.h>

110 main()
120 {
130 int k ,n = 10 ;
140 precision(3) ; // select 3 word mantissas

150 compivl s, check, t, i = compivl(0,1);

160 cout << "\n enter t(complex interval)" ;
170 cin >> t ;
180 cout << "\nt = " << t ;

190 s = 0 ;
200 for (k = 0 ; k < n ; k++) {
210 s = s + cos(k*t) +i*sin(k*t) ;
220 }

230 check = (1 - exp(i*n*t)) / (1 - exp(i*t)) ;
240 cout << "\ns = " << s ;
250 cout << "\ncheck = " << check ;
260 }

142 J. S. Ely

civlTEST.res

precision of 96 bits.
enter t(complex interval)

t = [+0.999999999999999999999999999959e+0 ,
+0.100000000000000000000000000005e+1]

+ i [+0.199999999999999999999999999995e+1 ,
+0.200000000000000000000000000010e+1]

s = [+0.106284612572701631042920044536e+1 ,
+0.106284612572701631134441954489e+1]

+ i [+0.130586411984344094858218838302e+0 ,
+0.130586411984344095636006842118e+0]

check = [+0.106284612572701631088692349925e+1 ,
+0.106284612572701631088692350043e+1]

+ i [+0.130586411984344095247182131154e+0 ,
+0.130586411984344095247182131619e+0]

Line 100 shows the inclusion of the proper include file compivls.h that
contains the definitions of complex interval (compivl) operators and func-
tions. Line 140 sets the precision to 3 words of 32 bits. Notice that this
comes before the declarations of the compivls, s, check, t, and i. Line 150
further initializes i via a call to the constructor

i = compivl (0, 1) ;
The precision needs to be established before this initialization.

Line 170 waits for the user to enter a complex value for t. A typical
response would be [1, 1] + i [2, 2]. Line 180 immediately echoes the
input. Notice in the output file civlTEST.res that the I/O combination has
introduced some small error in merely echoing t.

Lines 190 through 220 compute the left hand side of our identity,
n−1∑
k=0

cos(kt) + i sin(kt)

while line 230 computes the right hand side, 1−eint

1−eit . This code is entirely as
natural as if complex intervals were a built-in type.

The VPI Software Package for Variable Precision Interval Arithmetic 143

Matrices. Another layer built on top of the type interval is type matrix.
Beyond the usual I/O and arithmetic operators, >>, <<, +, −, ∗, /, and the
functions,

int numrows(matrix &),
int numcols(matrix &),
interval norm(matrix &) (Euclidian norm), and
matrix transpose(matrix &),

the constructor,
matrix(int, int),

permits the user to construct a matrix with specified numbers of rows and
columns at run time (instead of at compile time). This is the only data type
in VPI that performs run time memory management.

The program conditionnumTEST.c computes the condition number of
an m×m Hilbert matrix. It indicates how to use many of the matrix class
procedures, including the obscure dptrptr, which is needed to manipulate
the individual components of a matrix. The output of a test run can be
found in conditionnumTEST.res.

conditionnumTEST.c

100 #include <matrix.h>

110 void makehilbert(matrix& u)
120 // makes Hilbert matrix in left half,

// identity in right
130 {
140 int i,j ;
150 int m = numrows(u) ;
160 int n = numcols(u) ; // should be = 2*m
170 DPTRPTR up = dptrptr(u) ;

180 for (i=0;i<m;i++) {
190 for (j=0;j<m;j++) {
200 up[i][j] = interval(1)/interval(i+j+1) ;
210 }
220 for (j=m;j<n;j++) {
230 if (i==j-m) { up[i][j] = interval(1) ; }

144 J. S. Ely

240 else { up[i][j] = interval(0) ; }
250 }
260 }
270 } // end makehilbert

280 main()
290 {
300 lenMANT = 1 ; // 1 word of precision
310 int m = 3 ; // numrows of Hilbert matrix

320 matrix mat(m,2*m) ; // create the space
330 makehilbert(mat) ;

340 matrix H(m,m) ;
350 embed(H,0,0,mat,0,0,m-1,m-1) ;

360 solve(mat) ;

370 if (errval(mat) == 0) {
380 cout << "\nCan’t invert with given precision." ;
390 exit(0) ;
400 }

410 matrix Hi(m,m) ;
420 embed(Hi,0,0,mat,0,m,m-1,n-1) ;

430 matrix Icheck(m,m) ;
440 Icheck = H*Hi ;

450 interval condition = norm(H)*norm(Hi) ;

460 cout << "\n\nHilbert matrix, H = " << H ;
470 cout << "\n\nInverse matrix, Hi = " << Hi ;
480 cout << "\n\nIdentity check, H*Hi = " << Icheck ;
490 cout << "\n\n\ncondition number = " << condition ;
500 }

The VPI Software Package for Variable Precision Interval Arithmetic 145

conditionnumTEST.res

Hilbert matrix, H =
[+0.099999999962e+1, [+0.500000000000e+0, [+0.333333333116e+0,

+0.100000000046e+1] +0.500000000000e+0] +0.333333333488e+0]

[+0.500000000000e+0, [+0.333333333116e+0, [+0.250000000000e+0,
+0.500000000000e+0] +0.333333333488e+0] +0.250000000000e+0]

[+0.333333333116e+0, [+0.250000000000e+0, [+0.199999999925e+0,
+0.333333333488e+0] +0.250000000000e+0] +0.200000000186e+0]

Inverse matrix, Hi =
[+0.899999878555e+1, [-0.360000074561e+2, [+0.299999934136e+2,

+0.900000134110e+1] -0.359999931976e+2] +0.300000071991e+2]

[-0.360000018961e+2, [+0.191999993100e+3, [-0.180000010207e+3,
-0.359999987855e+2] +0.192000010535e+3] -0.179999993275e+3]

[+0.299999988339e+2, [-0.180000010207e+3, [+0.179999993499e+3,
+0.300000018440e+2] -0.179999993313e+3] +0.180000009872e+3]

Identity check, H*Hi =
[+0.999997459352e+0, [-0.142157077789e-4, [-0.137686729431e-4,

+0.100000254111e+1] +0.142157077789e-4] +0.137686729431e-4]

[-0.152364373207e-5, [+0.999991461634e+0, [-0.827014446258e-5,
+0.152550637722e-5] +0.100000853883e+1] +0.827014446258e-5]

[-0.110827386379e-5, [-0.621378421783e-5, [+0.999993979930e+0,
+0.111013650894e-5] +0.619888305664e-5] +0.100000603543e+1]

condition number = [+0.276843083277e+6,
+0.276843137852e+6]

After the user specifies the precision of the interval arithmetic (line 300)
and the matrix size m (line 310), line 320 invokes a constructor to create a
matrix called mat of size m × n, where n = 2 ∗ m. Line 330 calls a procedure
to initialize the left half of mat with a Hilbert matrix and the right half with
the identity matrix. The code for this procedure, makehilbert, is also given
(see lines 110 to 270), mainly to show how to use the function dptrptr to

146 J. S. Ely

obtain the address where the data of a matrix is stored. Once obtained (in
line 170), lines 200, 230, and 240 show how to naturally use this address and
common matrix subscripting to access arbitrary elements of the matrix.

Returning to the main program, lines 340 and 350 extract the left half
(the Hilbert half) of matrix mat and save it in matrix H using procedure
embed. Line 360 calls the procedure solve to perform Gaussian elimination
on mat. If successful, the right half of mat should now contain the inverse,
which is extracted by embed and saved in Hi in lines 410 and 420. If, for
some reason, solve cannot do its job, it sets an error code in the err field
of the matrix mat to 0. This can be checked by the function errval, as
in lines 370 through 400. If all goes well, lines 430 and 440 compute H ∗
Hi (which ideally would be the identity matrix). The condition number
= norm(H) ∗ norm(Hi) is computed on line 450, and various information is
output in subsequent lines.

The file conditionnumTEST.res shows the details of H, Hi, and H ∗ Hi,
and the condition number for the 3 × 3 Hilbert matrix using 32 bits of
precision. In order to explore Hilbert matrices of size 8 or more, the high
precision that VPI affords becomes critical.

Taylor series arithmetic. A third extension of class interval is class
taylor. This is a realization of recursive differentiation arithmetic which is
sometimes called automatic differentiation [2].

The file tay.example.c shows how to manipulate this class in VPI.

tay.example.c

100 #include <taylor.h>

110 main()
120 {
130 precision(1) ; // use 1 word (32 bits) of precision
140 int n = 6 ; // degree of taylor series

150 taylor c = taylor(interval(1),0,n) ;
// deg n, 0th term = 1

160 taylor x = taylor(interval(1),1,n) ;
// deg n, 1st term = 1

The VPI Software Package for Variable Precision Interval Arithmetic 147

170 taylor expc = exp(c) ;
180 taylor expx = exp(x) ;
190 taylor s = sin(x) ;
200 taylor y = 1/(1+x*x) ;
210 taylor z = 2*cos(x)*s ;

220 interval expsum = taysum(expx) ;
230 taylor txivl =

taylor(interval(0,1),0,interval(1),1,n+1) ;
240 taylor terr = exp(txivl) ;
250 interval errorterm = termselect(terr,n+1) ;

260 cout << "\ndegree " << n << " selected." ;
270 cout << "\nexp(x) = " << expx ;
280 cout << "\nsin(x) = " << s ;
290 cout << "\n1/(1+x*x) = " << y ;
300 cout << "\n2*cos(x)*sin(x) = " << z ;
310 cout << "\nsum of terms of exp(x) = " << expsum ;
320 cout << "\nthe error term of exp(x) = " << errorterm ;
330 cout << "\ninclusion of e = " << expsum + errorterm ;
340 }

After declaring the precision of the interval arithmetic to be used in
subsequent calculations in line 130, the degree n of the Taylor series is set
to 6 in line 140. Lines 150 and 160 invoke the class constructor

taylor (interval & , int, int) ,

to initialize
c= [1, 0, 0, 0, 0, 0, 0], and
x= [0, 1, 0, 0, 0, 0, 0].

Lines 170, 180 compute
ec = [e1, 0, 0, 0, 0, 0, 0], and
ex = [1, 1

1

1! ,
12

2! ,
13

3! ,
14

4! ,
15

5! ,
16

6!].

The output file tay.example.res shows some of these calculations in interval
form. By comparing the program and the output, the reader will also see

sin(x) =
[
0, 1, 0, −13

3! , 0,
+15

5! , 0
]

1
1+x2 =

[
1, 0,−12, 0,+14, 0,−16

]
and

148 J. S. Ely

2 ∗ cos(x) ∗ sin(x) =
[
0, 2, 0, −23

3! , 0,
25

5! , 0
]
(recall = sin 2x).

Line 220 invokes the function,
interval taysum(taylor &),

to sum the terms of ex, producing an approximation to e1. Line 230 invokes
another constructor to initialize the variable

txivl =
[
[0, 1], 1, 0, 0, 0, 0, 0, 0

]
of degree n + 1, which is 7 in this example, one more than for x or ex.
Line 240 computes etxivl, and line 250 extracts the term of degree 7. This
term added to the earlier sum of the 7 terms of ex (see line 330), gives a
guaranteed inclusion for e1 (see output file tay.example.res).

tay.example.res

precision of 32 bits. degree 6 selected.

exp(x) =
[[+0.099999999962e+1 , +0.100000000046e+1] ,

[+0.099999999962e+1 , +0.100000000046e+1] ,
[+0.500000000000e+0 , +0.500000000000e+0] ,
[+0.166666666548e+0 , +0.166666666753e+0] ,
[+0.416666666232e-1 , +0.416666666977e-1] ,
[+0.833333332091e-2 , +0.833333333954e-2] ,
[+0.138888888619e-2 , +0.138888888992e-2]]

sin(x) =
[[-0.351150604244e-7 , +0.415730120986e-7] ,

[+0.999999930337e+0 , +0.100000000046e+1] ,
[-0.207865060493e-7 , +0.175575302131e-7] ,
[-0.166666666753e+0 , -0.166666655093e+0] ,
[-0.146312751807e-8 , +0.173220883831e-8] ,
[+0.833333274349e-2 , +0.833333333954e-2] ,
[-0.577402946352e-10 , +0.487709173001e-10]]

1/(1+x*x) =
[[+0.099999999962e+1 , +0.100000000046e+1] ,

The VPI Software Package for Variable Precision Interval Arithmetic 149

[+0.000000000000e+0 , +0.000000000000e+0] ,
[-0.100000000046e+1 , -0.099999999962e+1] ,
[+0.000000000000e+0 , +0.000000000000e+0] ,
[+0.099999999962e+1 , +0.100000000046e+1] ,
[+0.000000000000e+0 , +0.000000000000e+0] ,
[-0.100000000046e+1 , -0.099999999962e+1]]

2*cos(x)*sin(x) =
[[-0.702301208674e-7 , +0.831460242718e-7] ,

[+0.199999972246e+1 , +0.200000000186e+1] ,
[-0.166292048487e-6 , +0.140460241772e-6] ,
[-0.133333333441e+1 , -0.133333314768e+1] ,
[-0.468200805969e-7 , +0.554306828416e-7] ,
[+0.266666629351e+0 , +0.266666667070e+0] ,
[-0.739075771532e-8 , +0.624267741665e-8]]

sum of terms of exp(x) = [+0.271805555280e+1 ,
+0.271805555839e+1]

the error term of exp(x) = [+0.198412698060e-3 ,
+0.539341636002e-3]

inclusion of e = [+0.271825396548e+1 ,
+0.271859490033e+1]

Complex Taylor series. The last class currently supported by VPI is
ctaylor, which, as its name suggests, is the complex version of taylor and
requires no special discussion. Although ctaylor is the last class which
VPI supports, it should be clear that users of VPI can implement their own
classes with ease. Beyond the examples given here, serious users should
consult Stroustrup [7] for details about C++. This is a small book, well
written, offering numerous examples. Anyone familiar with Pascal, Fortran,
or “C”, will quickly comprehend C++.

150 J. S. Ely

3 A vectorized version for the CRAY-YMP

Originally, VPI was written for an HP-9000 Unix workstation, and the bit
string layer was written in assembly language for speed. Shortly thereafter,
an opportunity arose to apply VPI to a problem in fluid dynamics [6]. It was
felt that a vectorized version for a CRAY-YMP might give rise to a much
needed speedup. Again, the low level bit string routines were the logical
candidates for vectorization, so these routines were re-written in C++, and
much time was spent trying to vectorize them. Vectorization is most easily
implemented when some simple operation must be performed on every ele-
ment in an array. While these simple operations are not done on each array
element in true parallel fashion, yet it is true that the operation on x[7] may
have commenced before that same operation on x[6] is finished. For such
operations as array movement (bimov), no complications arise, but for an
operation such as array addition (biadd), where the carry out of adding
x[6] and y[6] will affect the result of adding x[7] and y[7], special care must
be taken. Trickier still are the multiplication and (especially) the division
operations.

The vectorization effort produced substantial improvement over either
the HP or the non-vectorized CRAY version (it is possible to compile with
the vectorization turned off), but is disappointing when compared to a work-
station of more recent vintage such as a DEC 5000.

Table 1 compares running times of the vectorized CRAY-YMP version
versus the DEC 5000 version on various mathematical functions. Table 2
compares the two on the problem of inverting a 15 × 15 Hilbert matrix
using various precisions, while Table 3 compares the two on the program
civlTEST.c, which makes heavy use of the complex interval transcendental
functions (see the earlier section on complex interval arithmetic).

As might be expected at low precisions, very little is gained by vector-
ization. For example, inverting the 15 × 15 Hilbert matrix at 192 bits of
precision (6 words of 32 bits for a DEC 5000 but only 3 words of 64 bits for a
CRAY-YMP) took 1.38 seconds on the CRAY and only a little longer (2.30
seconds) on the DEC. The higher precision of 768 bits gives 8.94 seconds
for the CRAY and 27.20 seconds for the DEC, i.e. the CRAY is only 1.67
times as fast as the DEC for 192 bits but is 3.04 times as fast for 768 bits.
The 768 bits is still only 12 CRAY words and is considered a “small” vector.
One expects that for still larger vectors (higher precisions), the improvement

The VPI Software Package for Variable Precision Interval Arithmetic 151

CRAY-YMP DEC 5000
64 bits 256 bits 768 bits 64 bits 256 bits 768 bits

+ 70 100 100 50 100 200
− 80 100 100 80 100 200
∗ 90 200 400 80 400 3,200
/ 340 1,800 12,400 430 3,500 29,200
sqrt 10,000 50,000 340,000 11,000 90,000 740,000
exp 30,000 210,000 2,800,000 20,000 300,000 5,200,000
ln 30,000 310,000 5,200,000 20,000 530,000 11,100,000
cos 50,000 490,000 7,100,000 60,000 840,000 13,700,000
sin 60,000 500,000 7,000,000 60,000 830,000 13,800,000

Table 1: Timing of various interval math functions (in microseconds).

CRAY-YMP DEC 5000

192 bits 1.38 2.30
384 bits 2.97 7.30
768 bits 8.94 27.20

Table 2: Timing comparison: inversion of 15 × 15 Hilbert matrix (in sec-
onds).

would be more marked, but most of the author’s applications so far have
not required precisions much larger than the 768 bits. On these problems,
it makes little sense to consume expensive CRAY time when a workstation
is available.

4 Applications

To date, the author’s only research application of VPI has been the previ-
ously mentioned problem in fluid dynamics. Several pedagogical opportu-
nities have surfaced as illustrated in the examples of the condition number
and the calculation of an inclusion of e by Taylor’s theorem. Additionally,
VPI is ideal for use by students to numerically calculate limits or to find

152 J. S. Ely

n−1∑
k=0

cos(kt) + i sin(kt) =
1− eint

1− eit
, with n = 10, t = [1, 1] + i[2, 2]

CRAY-YMP DEC 5000

64 bits 4.78 5.10
256 bits 42.08 70.50
768 bits 600.19 (10 minutes) 1199.90 (20 minutes)

Table 3: Timing comparison: complex transcendental identity (in seconds).

formulae via the method of undetermined coefficients. Both of these appli-
cations frequently challenge the numerical soundness of typical calculators
and programming languages.

5 Future directions

Several future projects involving VPI have occurred to this author. One
would be to write and freely distribute over the internet some sort of soft-
ware interval calculator such as xcalc. This might help familiarize a larger
audience with at least naive interval computation.

Another project would extend VPI’s interval data type to also support
hardware-based interval computation. Perhaps a specification of 0 precision
could invoke the underlying floating-point hardware instead of the software
intensive afloats. The virtue of this would be speed when only low precision
was required.

A final suggestion would be to explore parallelism via a network of work-
stations. The use of a CRAY has lost its appeal, but a network approach to
parallelism might prove practical.

The VPI Software Package for Variable Precision Interval Arithmetic 153

References

[1] Ely, J. and Baker, G. High-precision calculations of vortex sheet motion.
Submitted 1992.

[2] Kagiwada, H., Kalaba, R., Rasakhoo, N., and Spingarn, K. Numerical
derivatives and nonlinear analysis. Plenum, New York, 1986.

[3] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch. Pascal–
XSC: language reference with examples. Springer-Verlag, Berlin, 1992.

[4] Klatte, R., Kulisch, U., Lawo, Ch., Rauch, M., and Wiethoff, A. A C++
class library for extended scientific computation. Springer-Verlag, Berlin,
1993.

[5] Kulisch, U. Pascal–SC, a Pascal extension for scientific computation.
Wiley, New York, 1987.

[6] Meiron, D., Baker, G., and Orszag, S. Analytic structure of vortex sheet
dynamics. Part 1. Kelvin-Helmholtz instability. J. Fluid Mechanics 114
(1982), pp. 283–298.

[7] Stroustrup, B. The C++ programming language. Addison-Wesley, Read-
ing, Mass., 1986.

Department of Mathematical Sciences
Lewis and Clark College
Portland, OR 97219
USA
E-mail: jeff@lclark.edu

