
Interval Computations
No 2, 1993

On the Non-monotonic Behaviour of
Event Calculus for Deriving Maximal

Time Intervals
Iliano Cervesato, Angelo Montanari, Alessandro Provetti∗

The Event Calculus was proposed by Kowalski and Sergot as a simple and
effective tool for dealing with time and actions in the framework of logic pro-
gramming [9]. In response to the occurrences of events, the formalism com-
putes maximal and convex intervals of validity of the relationships holding in
the modeled world. The case of interest is when the set of events is fixed,
but the order of their occurrence times is only partially known. The avail-
ability of new (pieces of) information about the relative order of events has
a non-monotonic effect, making previous intervals no longer derivable. As
a consequence, a meaningful ordering over partially specified event orderings
may not be based on inclusion of the corresponding Computed Intervals sets.
A monotonic version of the calculus is then proposed and compared to the
original. We discuss why it is not immediately viable for AI applications, and
show how it can be used to order partially specified orderings. A valuation
function is defined that chooses among alternative orderings the one(s) which
minimizes the separation from the result obtainable by the monotonic version.

Немонотонное поведение исчисления
событий для получения

максимальных временных
интервалов

И. Червесато, А. Монтанари, А. Проветти
Исчисление событий было предложено Серготом и Ковальским в качестве
простого и эффективного средства оперирования со временем и действи-
ями в рамках логического программирования. В качестве реакции на
появление событий этот формализм позволяет вычислить максимальный
и выпуклый интервалы, на которых справедливы соотношения, имеющие
место в моделируемом мире. Особый интерес представляет случай, когда

*The second author was supported in part by the Italian National Research Council and by the
Italian Department of Education (Grant MURST 60%).

c© I. Cervesato, A. Montanari, A. Provetti, 1994

84 I. Cervesato, A. Montanari, A. Provetti

множество событий фиксировано, но порядок их появления известен толь-
ко частично. Доступность новых фрагментов информации об относитель-
ном порядке событий имеет немонотонные последствия, делая ранее най-
денные интервалы больше не вычислимыми. В результате оказывается,
что осмысленное упорядочение над частично определенными упорядоче-
ниями событий не может быть основано на включении соответствующих
множеств вычисленных интервалов. Мы вводим монотонный вариант это-
го исчисления и обсуждаем, как он соотносится с ранее существующим.
Mы также обсуждаем, почему он не является непосредственно примени-
мым в приложениях искусственного интеллекта и показываем, как он мо-
жет быть использован для того чтобы упорядочить заданные упорядоче-
ния. Вводится функция нормирования, позволяющая выбрать среди аль-
тернативных упорядочений то (или те), которое минимизирует отрыв от
результатов, которые можно получить с помощью монотонного варианта.

1 Introduction

This paper analyses the non-monotonic behaviour of the Event Calculus
(hereinafter EC), first defined by Sergot and Kowalski [9], when applied
to situations where informations about the ordering of events arrive asyn-
chronously with respect to event occurrences recording. These considera-
tions apply directly to fields like narrative understanding and the manage-
ment of database updates, at which EC was initially aimed.

In the EC framework, the occurrences of events affect the representation
of the world by starting or terminating intervals of validity for relationships
on entities of the world. Starting from a description of events that have
occurred in the domain of interest (input data in a database context), EC
is able to derive intervals where relationships hold or decide whether a rela-
tionship holds at a specific date. The computed intervals are maximal and
convex and we argue that they are the most informative result that can be
extracted from such a description.

Since it has been defined in the framework of logic programming, EC
can efficiently derive intervals by running its axiomatic definition as a Pro-
log program (with slight changes). The computational cost of deriving the
validity intervals for a given property has been proven to be O(n3) in the
worst case, where n is the number of initiating and terminating events for
that property recorded in the database [4].

When a narrative is such that precise dates are not available and events
are therefore only partially ordered, new information increasing the ordering

On the Non-monotonic Behaviour of Event Calculus for Deriving... 85

may have the effect of making certain previously believed intervals of valid-
ity no longer derivable. This kind of behaviour seems typical of a human
reasoner who is told a narrative where happenings are not described in the
order as they occurred; we argue that EC is able to account for it, that is,
to produce comparable results.

The paper is structured as follows: Section 2 is dedicated to a systematic
presentation of EC. The underlying ideas are explained and a logic program-
ming axiomatization for an EC system is presented. Section 3 focuses on the
special case where events are supposed to be completely known but for their
relative order. Section 4 analyzes the non-monotonic behaviour of EC with
respect to the arrival of new ordering pieces that increase (and possibly com-
plete) the ordering information and introduces a monotonic version of the
calculus. Section 5 formalizes the notion of partially specified ordering and
provides some mathematical tools for evaluating and comparing the strength
of different partially specified orderings. In particular, we define a valuation
function which chooses among alternative, partially specified orderings the
one(s) which minimizes the separation between the results obtainable by the
non-monotonic and monotonic versions of EC. Finally, the achieved results
are discussed and the research and application perspectives that they open
are outlined.

2 The Event Calculus

The Calculus of Events was proposed by Kowalski and Sergot as a system for
reasoning about actions and their effects in the world in a logic programming
framework, i.e. Horn clauses augmented with negation as failure. Initially
aimed at dealing with database updates and narrative understanding [10],
EC has later been applied to areas such as continuous processes represen-
tation, real-time systems specification and planning [17, 5, 6]. A general
description of EC and its applications to temporal deductive databases is
given in [18], while a discussion on the evolution of the computational and
representational methods of EC can be found in [14, 15].

EC advocates an ontology of events, considered more primitive than
time. Occurrences of events induce a representation of the world by means
of relationships among the entities of interest. They constitute in fact the
boundaries of the temporal intervals of validity of the relationships: an event

86 I. Cervesato, A. Montanari, A. Provetti

causes a relationship to start holding, while the happening of another event
may cease it. Maximal, convex intervals of validity are called periods: given
a period p for a relationship r, there is no super-interval of p where r holds
continuously. Events are associated with the relationships they affect by
means of relations describing initiation, i.e. the starting a period of validity,
and termination, i.e. the ending of a period of validity. Although they may
be intended as relations in the logical sense, relationships are represented as
first-order terms. In this respect, EC is a first order theory [9].

In this paper an EC system is a database application for computing max-
imal time intervals for relationships using EC axioms and coherent domain
specifications as a logic program. Figure 1 shows the structure of an EC sys-
tem, where three main components can be distinguished: the axioms of EC,
the domain description, and the database of events. The axioms of EC are a
set of domain-independent rules that express the theory of time underlying
EC. They will be described in Section 2.2. The domain description con-
sists of axioms stating which relationships are initiated and/or terminated
by certain types of events. They characterize the domain of application.
The database of events records the specific events that have happened in
the world. These last two components of an EC system will be described in
Section 2.1.

The input of an EC system is a stream of (descriptions of) events, com-
monly known as the History of events. As soon as a new event is notified to
the system, it is recorded into the database of events. Assuming that events
appear in the history in a chronological order highly simplifies the formal-
ization. This is the case in Section 2.2, where the EC axioms are firstly
introduced. In general, however, the order of recording may differ from the
order events actually happened in the world. The general case is dealt with
in Section 2.2.1.

Albeit events are a primary representational issue, in AI the main ben-
efits of an EC system rely in its handling of relationships and its ability to
deduce maximal periods of validity. Then, we restrict our attention to the
use of EC as a system for:

• deducing periods of validity of relationships, and

• checking the validity of a relationship at a certain time.

On the Non-monotonic Behaviour of Event Calculus for Deriving... 87

Description
Domain

�
 �	
�
 �	

-
- -

Events AxiomsOrdering Intervals

Figure 1

2.1 Representation of events and domain knowledge

This section describes the two lowest levels of the EC system: the events
database and the domain description. Firstly, the representation of events
is discussed; then, we illustrate the representation of the domain knowledge
(that will be completed in Subsection 2.2); finally, we focus on the represen-
tation of time intervals.

The following example will be used through the rest of this chapter with
the intent of illustrating EC. The domain we want to model is a university
database which contains records of promotions, retirements and possibly
demotions. We assume the following sequence of events has occurred:

(e1) Jim was appointed Professor in October 1990;
(e2) Mary was hired as a Research Assistant from August 1991;
(e3) Jim resigned from Professor in November 1991.

A possible representation of these events by means of logic programming
could be1:

Happens (promoted (jim , professor), oct.90)
Happens (promoted (mary , researchAssistant), aug.91)
Happens (resigned (jim , professor), nov.91)

This representation is satisfactory as long as every event is fully specified.
In order to allow dealing with non-completely specified events, EC uses a

1We follow the syntactic convention according to which variables and predicates symbols begin with
a capital letter, while constants and function symbols begin with lowercases. Moreover, ‘←’ and ‘,’ are
to be read as ‘if ’ and ‘and’, respectively.

88 I. Cervesato, A. Montanari, A. Provetti

representation schema borrowed from semantic networks [9, 10]: each event
is described as a set of (instances of) binary predicates; moreover, each single
event is labelled with a constant. The first of the previous three events is
then recorded as:

Happens (e1)
Actor (e1, jim)
Act (e1, promotion)
Object (e1, professor)
Date (e1, 10.oct.90)

The relation Happens may seem unnecessary at a first glance. However,
it increases readability and permits to represent and to reason about hy-
pothetical events. Such an ability is useful in various applications, e.g., in
planning [6]. This aspect will not be discussed further.

The events in the departmental database initiate and terminate periods
of time during which a person has a certain rank. The fact that Jim has
the rank of professor is an example of a relationship: an assertion describing
(part of) the state of the world, whose validity is defined, and may change,
over time.

The link between events and relationships (what we called so far domain
description) is established by the definition of Initiates and Terminates;
these are given as Horn clauses partially instantiated to the relationship
names. In our example:

Initiates (E, rank (Name ,NewRank)) ← Act (E, promotion),
Actor (E,Name),
Object (E,NewRank)

Terminates (E, rank (Name ,OldRank)) ← Act (E, demotion),
Actor (E,Name),
Object (E,OldRank)

While these relations are independent from time, it is often the case
that the holding of a relationship at the time of the event is a condition for
the initiation/termination of another relationship. For istance, consider the
statutory regulation:

On the Non-monotonic Behaviour of Event Calculus for Deriving... 89

A faculty shall be appointed chairman if he/she
is full professor at the time of the election.

Given chairman and fullProfessor as relationships, such a rule can be ex-
pressed in the following form2:

Initiates (E, chairman (Name)) ← Act (E, election (chair))
Actor (E,Name)
Date (E, T)
HoldsAt (rank (Name , fullProf), T)

The intuitive reading of HoldsAt(r,t) is that the relationship r is true at time
t. It will be explained in detail in the following.

A favourable way to look to Initiates and Terminates definitions is as
of descriptions of the domain where we reason about happenings (events)
and their effects. An appropriate set of event-descriptions and Initiates and
Terminates rules will be considered accessible by the general axioms we are
going to illustrate.

Since its first formulation, EC has dealt with the necessity of giving
names to periods characterizing the validity of a relationship. The first
formulation of EC [9] defined the following mechanism:

after (ei, r) names the period for r initiated by ei;
before (et, r) names the period for r terminated by ei

Clearly, a period for r bounded by ei and et needs to be named as the
conjunction of these facts.

Our approach is different in the fact that it derives only those periods
which are bounded at both ends, that is, period(ei,r,et) represents the period
where r holds, bounded by ei on the left and et on the right. Unlike Kowalski
and Sergot’s EC, we do not want to be able to derive, say, Holds(after(e,r)).
In fact, after(e,r) may account for two different situations:

• Once initiated by e, r holds ad infinitum and we are not expecting to
record terminating events in the future. This is the case for a property
like dead (jim).

2This way to express conditionals may arise computational and semantics problems which will not
be discussed here. [15] and later EC literature can serve as a guide.

90 I. Cervesato, A. Montanari, A. Provetti

• The terminating event has not been recorded yet, and when complete
information is available the database derives a bound period for r
started by the same event.

This limitation is issued at the purpose of simplifying definitions and
results discussed in the rest of the paper.

2.2 The axioms of Event Calculus

The first type of queries we are interested in is concerned with the calculation
of periods. It will be modelled by means of the predicate Holds. For instance,
when seeking for Jim’s period of professorship, the form of the query is as
follows:

?- Holds (period (StartEvent , rank (jim , professor),EndEvent))

In case of success, the variables StartEvent and EndEvent will contain
the boundaries of Jim’s period of professorship. Note that if Jim has been
professor more than once, multiple answers will be obtained. In our specific
example, the expected answer is:

StartEvent = e1,
EndEvent = e3

Holds is the topmost predicate of EC and it is defined as follows:

(EC1) Holds (period (Ei,R,Et)) ← Happens (Ei),
Initiates (Ei,R),
Happens (Et),
Terminates (Et,R),
Before (Ei,Et),
not Terminated (Ei,R,Et)

This formulation is aimed at a simple presentation style: the conditions
of Holds focus on events while those of Initiates and Terminates refer to re-
lationships. This is the reason why Happens occurs in Holds instead than in
Initates and Terminates. Procedurally, the interpretation of Happens gen-
erates candidate events to be tested against the definitions of Initiates and

On the Non-monotonic Behaviour of Event Calculus for Deriving... 91

Terminates. As the number of events in the database grows, it is convenient
to change the order and test initiation and termination first. [4] discusses
the computational cost of EC in more detail.

The predicate Terminated is used to make sure that during the period
Ei− Et no other event affects R:

(EC2) Terminated (Ei,R,Et) ← Happens (E),
Before (Ei,E),
Before (E,Et),
Terminates (E,R)

The second type of query is for checking the validity of a property at a
certain (specified) date and it is dealt with by the predicate HoldsAt:

(EC3) HoldsAt (R, T) ← Initiates (Ei,R),
Date (Ei, T i),
Before (Ti, T),
not TerminatedAt (Ti, R, T)

The axiom EC4 for TerminatedAt is a simple transformation of Terminated
where dates replace events (it is omitted for brevity).

A sample HoldsAt query is:

?- HoldsAt (rank (jim , professor), aug.91)

Rules EC2 and EC3, on the line developed by Sergot in [15], are formu-
lated taking both simplicity and also procedural aspects into account. With
respect to the initial formulation of Kowalski and Sergot, they appear to use
a smaller number of predicates and to be more efficiently calculated.

2.2.1 Mutually exclusive relationships

Up to now, we have implicitly assumed events to be entered in the database
according to their chonological order. In the most general context, however,
events may be recorded in an order different from that of their happen-
ings. When relationships which are mutually exclusive in nature are dealt
with, this approach may lead to deriving inconsistent results (see [18] for a
discussion of these aspects in the deductive database field).

92 I. Cervesato, A. Montanari, A. Provetti

Suppose, for instance, that the positions of research assistant and pro-
fessor are incompatible, and assume that the following additional event is
recorded into our sample database:

(e4) Jim was hired as a Research Assistant in August 1991

Then, the previous answer, viz. period (e1,rank (jim ,professor),e3),
should not be derivable anymore; it would otherwise result that Jim is hold-
ing a professorship and a research assistant position at the same time.

Pictorially, the knowledge we have on the case can be represented as in
Fig. 2, where the boxes and the lines represent events and periods, respec-
tively.

-

-

�e1
rank(jim,professor)

rank(jim,researchAssistant)

e2

rank(jim,professor)

e3

Figure 2

To handle mutually-exclusive relationships correctly, Kowalski and Ser-
got [9] introduce the predicate Exclusive(r1, r2) as a constraint that forces
the derivation of r1 to fail when it is possible to conclude that r2 holds at the
same time, and vice versa. Along with Initiates and Terminates, Exclusive
is a predicate for expressing domain knowledge into EC. In our example, the
addition of the constraint Exclusive(professor,researchAssistant), together
with the new axiom EC5, blocks the derivation of incorrect periods for
rank(jim,researchAssistant).

Formally, the general version of EC is obtained by replacing axiom EC1
with axiom EC1′, where EC1′ is equal to EC1 but the replacement of the
predicate Terminated with the predicate Broken, defined as follows3:

3Also TerminatedAt should be transformed accordingly.

On the Non-monotonic Behaviour of Event Calculus for Deriving... 93

(EC5) Broken (Ei,R,Et) ← Happens (E),
Before (Ei,E),
Before (E,Et),
Initiates (E,R1),
Exclusive (R,R1)

(EC6) Broken (Ei,R,Et) ← Happens (E),
Before (Ei,E),
Before (E,Et),
Terminates (E,R1),
Exclusive (R,R1)

The first rule for Broken looks for an event that initiates an incompati-
ble relationship. The second rule checks whether there is evidence of an
incompatible relationship terminated during the one under consideration.
Whenever Broken succeeds, Holds fails.

-

-

�e1
rank(jim,professor)

rank(jim,professor)

e2

rank(jim,professor)

e3

Figure 3

Exclusivity is a convenient means to constrain interferences due to incom-
plete sequences of events relating to the same relationship. This situation
includes also the case when events are not recorded in chronological order.
In our example, suppose that e4 was mistyped and that the correct update
to be recorded is:

(e4′) Jim was hired as a Professor in August 1991

The answer of the previos section, viz. period(e1, rank(jim,professor),
e3), is again incorrect, since a still unknown event ending one period of
professorship for Jim must have happened between e1 and e4′.

94 I. Cervesato, A. Montanari, A. Provetti

This problem can be easily solved by exploiting the previously introduced
notion of exclusivity. It is in fact sufficient to specify that any relation
is exclusive with itself (axiom EC7) to prevent the absence of recorded
starting/ending points for a relationship to allow deriving incorrect intervals:

(EC7) Exclusive (R,R)

3 Managing the temporal ordering of events

Even though a History may represent only partially the actual succession of
happenings, the description of each event has been assumed so far complete.
Several components of an event description (Subsection 2.1) may be miss-
ing: the actor, the act, the object, or the date, and even combinations. In
the extreme case, we only know that a completely unspecified event has oc-
curred. The complementary case, a fully specified event without a Happens
statement, is used in [6] for hypothetical reasoning (see Fig. 4).

The rest of the paper will focus on the special case where the only source
of incompleteness concerns the ordering of events: events are fully specified
with the possible exception of the date they happened. An event may be
recorded without a date of happening. Moreover, temporal relationships
among events enter the database at any time after their occurrence. Any
fragment of information concerning the temporal relationship of events will
be called an ordering piece.

�
 �	
�
 �	
Ordering
Pieces Axioms

Ordering

Description
Domain

�
 �	
�
 �	

-

.-

Events Axioms

. - -

Ordering Intervals

Figure 4

To simplify the description, we separate the History, i.e. the set of events

On the Non-monotonic Behaviour of Event Calculus for Deriving... 95

recorded into the database, from the ordering of events. Furthermore, we
assume the set of events to be fixed once and for all so that the only infor-
mation available as input is a stream of ordering pieces. Such an assumption
leads to the specialized EC system described in Fig. 4. There are different
types of ordering pieces, including absolute dates, relative ordering, tempo-
ral displacements. Relying on its intuitive meaning, the Before predicate
expressing relative ordering has been already used in the previous axioms.
Subsection 3.2 will provide EC with a set of ordering axioms formally defin-
ing Before in terms of ordering pieces at hand.

3.1 Types of ordering pieces

So far, the only temporal information about events consisted in Date in-
stancies accompanying their descriptions. While uncoupling Date instancies
from events, temporal information will be allowed to vary in format and
type, that is, the already mentioned different types of ordering pieces.

Definition 1.

An ordering piece is an instance of the following type:

(a) dates, seen as absolute references to the time-line, e.g., e1 occurred on
October 12th;

(b) relative pair ordering, e.g., e1 before e2;

(c) temporal displacement, e.g., e1 and e2 happened at 20 units of time
from each other.

These basic temporal relationships can be used to derive several others,
including:

(d) relative set ordering, e.g., e1 before {e2, e3}, which is equivalent to: e1
before e2 and e1 before e3;

(e) ordered temporal displacement, i.e. temporal displacement coupled
with relative ordering: e1 happened 20 units before/after e2 which is
equivalent to: e1 before/after e2 and e1 and e2 happened at 20 units
of time from each other.

96 I. Cervesato, A. Montanari, A. Provetti

It is worth noting that the ordering rests defined by the time-line. In
particular, in admitting these forms of temporal displacements we commit
to a specific metric of time. Albeit EC has been upgraded for dealing with
changing time granularities, the results, as those in [7, 12], are not discussed
here.

An examination of the axioms of EC from Section 2 shows that Date and
Before only are needed for computing intervals. Therefore, the axioms of
ordering, that will be given in the next section, will be tailored for deriving
ordering information in the form of Before statements (and Date when pos-
sible). Notice also that in Subsection 2.2 a simple comparison between dates
sufficed to implement Before. In the present case, the arrival of a new order-
ing piece may trigger the axioms of ordering and may entail, by transitivity,
the validity of new (implicit) temporal relationships among events.

3.2 The axioms of ordering

The axioms of ordering will now be given for each form of ordering piece
considered in the previous section. In the case of time-stamped events (a),
dates can be reduced to numbers and then compared by standard means:

(B1) Before (E1, E2) ← Date (E1, T1),
Date (E2, T2),
TPrecedes (T1, T2)

TPrecedes(T1, T2) checks if the date T1 precedes T2. Notice that in Sub-
section 2.2 we implicity refer to this axiom defining Before in terms of Date.

In the case of relative pair ordering (b), the calculus of relations is based
on transitivity. In order to avoid loops and make Before effectively com-
putable, the ordering pieces need to be instantiated with the BeforeFact
predicate:

(B2) Before (E1, E2) ← BeforeFact (E1, E2)

(B3) Before (E1, E2) ← BeforeFact (E1, E3),
Before (E3, E2)

Temporal displacement (c) per se does not allow one to derive any instance
of the Before relation. Relative set ordering (d) requires the following addi-
tional axiom and the new predicate BeforeSet(element, set):

On the Non-monotonic Behaviour of Event Calculus for Deriving... 97

(B4) Before (E1, E2) ← BeforeSet (E1, S),
Member (E2, S)

Finally, for ordered temporal displacements (e), it appears convenient to
instantiate the predicate Apart(E1, E2, n) to express that E1 happened n
time units after E2. Clearly, if the date of one of the event is known, it is
possible to calculate that of the other:

(B5) Before (E1, E2) ← Apart (E2, E1, N)

(B6) Date (E1, T1) ← Apart (E1, E2, N),
Date (E2, T2),
TPlus (T2, N, T1)

(B7) Date (E2, T2) ← Apart (E1, E2, N),
Date (E1, T1),
TMinus (T1, N, T2)

4 The non-monotonic behaviour
of Event Calculus

In this chapter we discuss in detail the non-monotonic behaviour of EC when
dealing with incomplete information and how to possibly ‘cure’ this aspect
of EC. As an example, when events are recorded in an order different from
the order they happened in the world, the deductions made by EC at a
certain point may be invalidated by the arrival of new pieces of information.

Consider the example introduced in Subsection 2.1 and suppose that
only e1, e2, and e3 are recorded. Then, the period:

Holds (period (e1, rank (jim , professor), e3))

is derivable. However, as soon as the event e4 or e4′ is recorded into the
database of events, the very same sentence is not derivable anymore. This
kind of reasoning actually corresponds to the way a human would reason,
assuming the same information available.

When answering such kind of queries, EC shows a non-monotonic be-
haviour: any time a new event is recorded, earlier results may become no

98 I. Cervesato, A. Montanari, A. Provetti

longer deducible; the new event can indeed break the period of validity of
a relationship. This behaviour is due to the use of negation as failure that
allows EC to automatically withdraw conclusions that the addition of new
information renders inconsistent. It is worth noting that in EC no belief
revision mechanism is needed to restore consistency [9]. While a bare in-
tegrity constraints approach would refuse contrasting updates to preserve
the database consistency, EC takes contrasting information not as ‘wrong’
or ‘mistaken’, but simply as incomplete. We claim that this approach is
more fitted for AI applications and reasoning under uncertainty.

Restricting updates to the addition of new pieces of information about
the relative ordering of events does not make EC monotonic as shown in the
next section. Again, any time a new ordering piece is recorded, previous
intervals may be no longer derivable. To make EC monotonic with respect
to the addition of ordering pieces, EC axioms have to be revised so that
they derive validity periods only when the knowledge on event ordering at
hand rules out the possibility of contrasting future information. Such a
monotonic EC is needed, for instance, in situations where a “don’t know ”
answer is better than a defeasible instantiation.

4.1 Dealing with ordering pieces in Event Calculus

Restricting the dynamic component of the database to the management of
ordering pieces, instead of completely-new events, allows us to focus on the
effects of ordering updates in isolation.

Consider the following example. Suppose that our fixed set of events
consists of e1, e2 and e3, all concerning a relationship r. Suppose also that
the domain description is as follows:

Initiates (e1, r)
Initiates (e2, r)
Terminates (e3, r)

Now, consider two possible input streams. In the first case, the following
ordering pieces t1 and t2 are initially given in input to the EC system:

(t1) BeforeFact (e1, e2)
(t2) BeforeFact (e1, e3)

On the Non-monotonic Behaviour of Event Calculus for Deriving... 99

EC computes the interval:

Holds (period (e1, r, e3))

As soon as the ordering piece t3 = BeforeFact (e2, e3) appears in the order-
ing stream, however, the previous conclusion is no longer valid and it must
be replaced with:

Holds (period (e2, r, e3))

So, increasing the initial information may yield a different set of computed
intervals which is not a superset of the previous one, a clear manifestation
of non-monotonicity.

Suppose now that the following ordering pieces t1 and t2 are initially
given in input to the EC system:

(t1) BeforeFact (e1, e3)
(t2) BeforeFact (e2, e3)

EC derives the following intervals:

Holds (period (e1, r, e3))
Holds (period (e2, r, e3))

The two computed interval answers are clearly incompatible (see Subsec-
tion 2.2.1), and, in principle, the calculus could be refined to produce the
answer:

Holds (period (e1, r, e3)) exclusive_or Holds (period (e2, r, e3))

Information at hand, however, does not suffice to discriminate between them.
As soon as the ordering piece t3 = BeforeFact (e2, e1) appears in the input
stream, the system is obliged to retract the second of these intervals.

Notice that the previous answer is still a logical consequence of the de-
ductive closure of the database given that:

Holds (period (e1, r, e3))) & not Holds (period (e2, r, e3))→
Holds (period (e1, r, e3)) exclusive_or Holds (period (e2, r, e3))

In this second case, the behaviour of the system is monotonic, wrt the ex-
clusive_or computed answers.

100 I. Cervesato, A. Montanari, A. Provetti

4.2 A monotonic version of Event Calculus

Let us now introduce a weaker variant of EC that forces the monotonicity
of the calculus. It implements a sort of absolute persistence so as to exclude
the possibility of deriving information that could be later retracted, pro-
vided that the event history does not change (such an assumption plays an
essential role). Although its deductive power is rather limited, it will be used
in later sections as a tool for comparing partially specified orderings. The
idea is to transform the definition of Holds so that Holds(period(ei, r, et))
succeeds if and only if it is possible to conclude that no event affecting r may
have occurred after ei and before et. We call this version Monotonic Event
Calculus (MEC) since the periods derived in this case are indefeasible wrt
augmenting the ordering of events (deletion of ordering pieces is forbidden):
new ordering pieces coming in may result in new periods being derived, but
every old result is still available.

MEC is made up of the previous conventions and predicate definitions
except for the definition of Broken, which turns to be the following:

(EC5m) Broken (Ei,R,Et) ← Happens (E),
not Before (E,Ei),
not Before (Et,E),
Initiates (E,R1),
Exclusive (R,R1)

(EC6m) Broken (Ei,R,Et) ← Happens (E),
not Before (E,Ei),
not Before (Et,E),
Terminates (E,R1),
Exclusive (R,R1)

Let us apply MEC to the example of the last section. In the both proposed
cases, nothing is derivable until only t1 and t2 are known to the system.
However, as soon as t3 becomes available, MEC is able to derive the intervals:

Holds (period (e2, r, e3)) and Holds (period (e1, r, e3))

respectively.
It is quite straightforward to prove that every interval derived by MEC

is also derived by EC. This result can be formally stated as follows.

On the Non-monotonic Behaviour of Event Calculus for Deriving... 101

Proposition 1.

Let Hi be a history and ≺i a set of mutually consistent ordering pieces.
Let EC (MEC) ∪ Hi ∪ ≺i the logic program obtained by the union of the
axioms contained in EC (MEC), Hi and ≺i.

For any pair of events ei, ej belonging to Hi and any relationship r:
if MEC ∪Hi ∪ ≺i ` Holds (period (ei, r, ej))

then EC ∪Hi ∪ ≺i ` Holds (period (ei, r, ej)).

Proof:

MEC only differs from EC in the definition of the predicate Broken
occurring in the body of EC1′. Let us denote the predicate Broken in EC
and MEC by BrokenEC, defined respectively by axioms EC5 and EC6,
and BrokenMEC, defined by axioms EC5m and EC6m. Furthermore, let
us define ORD = {B2, B3} ∪ ≺i (notice that the fact that {B2, B3} is a
subset (subprogram) of both EC and MEC is used in the proof).
The basic steps of the proof are:

if MEC ∪Hi ∪ ≺i ` Holds (period (ei, r, ej))

then MEC ∪Hi ∪ ≺i ` not BrokenMEC (period (ei, r, ej))

then MEC ∪Hi ∪ ≺i 6` BrokenMEC (period (ei, r, ej))

then for each event e and each relationship r1 such that:
Happens(e), Initiates(e, r) (or Terminates(e, r)) and Exclusive(r, r1)

succeed,
either ORD 6` not Before (e, ei) or ORD 6` not Before (et, e).

Then either ORD ` Before (e, ei) or ORD ` Before (et, e)

then either ORD 6` Before (ei, e) or ORD 6` Before (e, et),

given that the ordering is antisymmetric (antisymmetry can be
expressed by means of the integrity constraint: ← Before(X, Y),
Before(Y,X))

then EC ∪Hi ∪ ≺i 6` BrokenEC (period (ei, r, ej))

then EC ∪Hi ∪ ≺i ` not BrokenEC (period (ei, r, ej))

102 I. Cervesato, A. Montanari, A. Provetti

then EC ∪Hi ∪ ≺i ` Holds (period (ei, r, ej)).
Q.E.D.

It is easy to see that the opposite implication does not hold in general.

5 Relating orderings to answer sets

In this Section we shall apply the definitions given in the previous sections
for studying the effect of ordering updates. The initial idea is to relate
partially-specified orderings to the sets of intervals computed by EC given
the corresponding ordering pieces as input. The goal is to devise a mecha-
nism which can choose (among two or more partially specified, alternative
orderings) the one which better ‘fits’ the constraints in the domain descrip-
tion (including the exclusive instancies).

5.1 Partially specified orderings

In this section we focus on finite histories of lenght n events and such that,
for each pair of distinct events ei and ej, the date of ei differs from the date
of ej. Under such an assumption, the total orderings over Hi are n!.

We look at the input of ordering pieces as at the process of putting new
constraints that narrow the specification of the actual event ordering and,
then, reduce the number of admissible orderings that can be consistently
foreseen. Let us call each of these admissible orderings an extension of the
given partial specification. As the ordering specification becomes complete,
the “surviving extensions” reduce to just one.

Now the notion of partially specified ordering has to be formalized. First
of all, given a finite set E of n events, a total ordering ≺ over E is a
antireflexive, antisymmetric and transitive binary relation such that:

∀x, y ∈ E, x 6= y → x ≺ y or y ≺ x

It univocally identifies a subset of E×E. Further, let Ord(E) be the set of
all possible total orderings over E:

Ord(E) = {≺i | ≺i ⊂ E × E and

On the Non-monotonic Behaviour of Event Calculus for Deriving... 103

≺i is total and

∀x, y, z ∈ E ¬(x ≺i x), x ≺ y → ¬(y ≺ x),

x ≺ y and y ≺ z → x ≺ z}

It consists of n! elements, each one consisting of n · (n − 1)/2 mutu-
ally consistent ordering pieces. Each element of Ord(E) is then completely
specified by n · (n− 1)/2 ordering pieces. On the contrary, any proper sub-
set of ordering pieces provides a partial specification of the actual ordering
only and it univocally identifies the subset of Ord(E) consisting of all its
admissible extensions.

On the basis of the correspondence between ordering pieces and Before
statements, we can equivalently define as partial specification the transitive
closure of a set of Before statements. The input process can then be seen
as a sequence of partial specifications ≺0= {},≺1,≺2,≺3, . . . ,≺m, . . ., such
that:

≺i+1= (≺i ∪ {Before (ej, ek)})∗ and ∀i ≺i is consistent

where ()∗ denotes the transitive closure and ≺i is consistent if and only if
the ordering pieces belonging to it are mutually consistent.

Of course, for each i, the set of admissible extensions of ≺i+1 is a subset
of those of ≺i. Moreover, it is easy to prove that, for all i, the admissible
extensions are less than or equal to dn!/2ie. Finally, it is worth noting that
in the worst case

(≺i ∪{Before (ei, ej)})∗ = ≺i ∪{Before (ei, ej)}

This is the case in the following example. Let Hi = {e1, e2, e3}. In the case
of the input stream:

≺1 = (≺0 ∪ {(e1, e3)})∗ = {(e1, e3)}
≺2 = (≺1 ∪ {(e1, e2)})∗ = ≺1 ∪ {(e1, e2)} = {(e1, e3), (e1, e2)}
≺3 = (≺2 ∪ {(e2, e3)})∗ = ≺2 ∪ {(e2, e3)} = {(e1, e3), (e1, e2), (e2, e3)}

the number of inputs required to completely specify a total ordering is equal
to the number of pieces of information which univocally characterize it, i.e.
n · (n− 1)/2.

104 I. Cervesato, A. Montanari, A. Provetti

5.2 An ordering over partially specified orderings

In this section, we outline a way for studying formally the relations between
partially specified orderings on events ≺i and interval answer sets, i.e. the
sets of intervals that EC and MEC derive from a given ≺i.

Let H be the deductive closure of the set of event descriptions Hi and of
the domain-dependent predicates present in the system. The sets Ans(H,≺i

) and Ansm(H,≺i) of intervals derivable respectively from EC and MEC are
defined as follows:

∀ ≺i, Ans(H,≺i)=
{period (ei, r, ej)/EC , H,≺i ` Holds (period (ei, r, ej))}

∀ ≺i, Ansm(H,≺i)=
{period (ei, r, ej)/MEC , H,≺i ` Holds (period (ei, r, ej))}

From Proposition 1, it follows that, for any history H and any ordering ≺i,
the following holds:

Ansm(H,≺i) ⊆ Ans(H,≺i)

It is easy to prove that Ans(H,≺i) and Ansm(H,≺i) coincide when ≺i is
the empty set of ordering pieces as well as when it is a total ordering.

5.3 Results from logic programming

The sets Ans(H,<i) and Ansm(H,<i) above prove to be well-defined with
respect to the declarative semantics of the following logic programs:

PEC = {EC1′, EC5, EC6, EC7} ∪ {B1, B2, B3, B4, B5, B6, B7} ∪
{Initiates ,Terminates ,Exclusive }

PMEC = {EC1′, EC5m,EC6m,EC7} ∪ {B1, B2, B3, B4, B5, B6, B7} ∪
{Initiates ,Terminates ,Exclusive }

where {Initiates, Terminates, Exclusive} denotes a given set of axioms ex-
pressing domain knowledge.

In fact, it is possible to prove that PEC is a stratified logic program (no
recursion through negation) [1]. The following results also holds for PMEC

with minor modifications in the stratification policy.

On the Non-monotonic Behaviour of Event Calculus for Deriving... 105

Proposition 2.

PEC is stratified, in particular with respect to the following partition:

PEC = {EC1′} ∪ {EC5, EC6} ∪ {Initiates ,Terminates , B2, B3} ∪
{Happens , EC7,Act ,Actor ,Date ,BeforeFact }

Proof:

It follows directly from Definition 3 of [1].
Q.E.D.

Proposition 3.

PEC has a unique minimal model.

Proof:

Taking the partition of PEC as an ordering over predicates, i.e. as an
ordering <p such that Holds <p Broken <p . . ., it satisfies Definition 4
(stratification) of [13]. Hence, PEC has a a unique perfect model which is
minimal as defined by Przymusinski (Definition 2) [13].
Q.E.D.

Notice that this model coincides with the Iterated Fixpoint of [1] (The-
orem 4) and that the perfect model of PEC is also a model of Prioritized
Circumscription CIRC (PEC , <p). Furthermore, other semantics defined for
broader classes of logic programs, viz. Stable Models, agree in the case of
stratified programs. Finally, as for the proof-theory, we stress that sub-
sequent results, like Conjecture 1 of [1], ascribe to PEC the property of
completeness of SLDNF resolution.

Unfortunately, stratification may disappear when HoldsAt atoms are in-
cluded in the body of Terminates and Initiates definitions. In [16] Shanahan
sketches how to get round this problem by proving a weaker property of Lo-
cal Stratification [13].

As long as the HoldsAt predicate is excluded, however, it is possible
to guarantee that Ans(H,<i) and Ansm(H,<i) are actually computable.
Transitive closure of the Before predicate over any finite history can indeed
be proved to be finite. Then, it is possible to remove B2 and B3 from PEC as
well as from PMEC and to replace them by the finite set of facts constituting

106 I. Cervesato, A. Montanari, A. Provetti

the transitive closure of Before, i.e., transitive closure can be pre-processed
and then added to PEC and PMEC . The resulting versions of PEC and PMEC

are hierarchical and then terminating. The thesis immediately follows from
the boundedness of Holds goals [3].

5.3.1 Termination

The valutation of ground queries to PEC with the usual Prolog interpretation
rule is always terminating.

Proposition 4.

PEC is (left) terminating.

The proof, given in Appendix A, is obtained by applying the compositional
methodology defined in [3] that combines termination proofs of separate
programs to obtain proofs of larger programs.

In this case PEC is proven terminating by separately proving that PB =
{B2, B3,BeforeFact } and PEC \ PB are terminating.

5.4 Defining the persistence degree

Relying on the formalization that has been introduced so far, the results on
non-monotonicity and monotonicity of PEC and PMEC are summarized by
the following relations:

≺i⊆≺j 6→ Ans(H,≺i) ⊆ Ans(H,≺j)

≺i⊆≺j → Ansm(H,≺i) ⊆ Ansm(H,≺j)

The non-monotonicity of PEC makes absolute persistence of computed
intervals unviable. Nevertheless, it is possible to associate a persistence
degree with the set of intervals computed from a history Hi and an ordering
≺i that gives us an idea of the number of intervals that will remain valid
independently of the arrival of new ordering pieces.

A plausible definition of persistence degree is:

||Ans(H,≺i)|| = (|Ansm(H,≺i)|+ 1)/(|Ans(H,≺i)|+ 1)

On the Non-monotonic Behaviour of Event Calculus for Deriving... 107

where |Ansm(H,≺i)| and |Ans(H,≺i)| denote the number of validity in-
tervals computed by PMEC and PEC , respectively. This definition is de-
vised to make ||Ans(H,≺i)|| equal to 1 if and only if Ans(H,≺i) and
Ansm(H,<i) coincide; otherwise, it is a rational number in the open in-
terval (0, 1). Clearly, when ≺i is a total ordering on H its measure is equal
to 1.

When trying to compare the inferential strength of different partially
specified orderings, a measure based on the persistence degree is at least
more general than the obvious criteria relying on partial specification inclu-
sion (which is not always applicable), and more appropriate than comparing
derivable interval sets by means of set inclusion.

An example should illustrate the concept. Suppose we have the history
Hi:

Hi = {Happens (e1),Happens (e2),Happens (e3),
Happens (e4),Happens (e5),Happens (e6)}

where the actual ordering is such that, for i = 1, . . . , 5, Before (ei, e(i+ 1)).
Moreover, assume the following domain description:

Initiates (e1, r),Terminates (e2, r),
Initiates (e3, p),Terminates (e4, p),
Initiates (e5, r),Terminates (e6, r),Exclusive (r, p)

The result is pictorially represented in Fig. 5.

-

r

�

r

- �

p p
e3 e4

-

r

�

r

e1 e2 e5 e6

Figure 5

Consider now the sequence of partial ordering specifications:

Σ0 = {}, Σ1 = Σ0 ∪ σ1, . . . ,

108 I. Cervesato, A. Montanari, A. Provetti

where σ’s are ordering pieces. In the following example, based on a random
sequence of σ’s, Ans, Ansm and the persistence degree evolve as follows (B
will stay for Before and A for Ans):

σ1 = {B(e1, e4)} |A(H,Σ1)| = 0 |Am(H,Σ1)| = 0 ||A(H,Σ1)|| = 1
σ2 = {B(e1, e6)} |A(H,Σ2)| = 1 |Am(H,Σ2)| = 0 ||A(H,Σ2)|| = 0.5
σ3 = {B(e2, e4)} |A(H,Σ3)| = 1 |Am(H,Σ3)| = 0 ||A(H,Σ3)|| = 0.5
σ4 = {B(e1, e2)} |A(H,Σ4)| = 2 |Am(H,Σ4)| = 0 ||A(H,Σ4)|| = 0.33
σ5 = {B(e3, e4)} |A(H,Σ5)| = 3 |Am(H,Σ5)| = 0 ||A(H,Σ5)|| = 0.25
σ6 = {B(e4, e5)} |A(H,Σ6)| = 3 |Am(H,Σ6)| = 0 ||A(H,Σ6)|| = 0.25
σ7 = {B(e2, e3)} |A(H,Σ7)| = 3 |Am(H,Σ7)| = 0 ||A(H,Σ7)|| = 0.25
σ8 = {B(e2, e6)} |A(H,Σ8)| = 3 |Am(H,Σ8)| = 1 ||A(H,Σ8)|| = 0.5
σ9 = {B(e5, e6)} |A(H,Σ9)| = 3 |Am(H,Σ9)| = 3 ||A(H,Σ9)|| = 1

5.5 Choosing between alternative orderings

Let us show now how the concept of persistence degree of computed inter-
val sets can be actually used to discriminate between alternative, partially
specified orderings. Suppose we have the simple history Hi:

Hi = {Happens (e1),Happens (e2),Happens (e3)}

Moreover, assume the following domain description:

Initiates (e1, r), Initiates (e2, r),Terminates (e3, r)

Let ≺1 be equal to {Before (e1, e3)}. The interval sets Ans(H,≺1) and
Ansm(H,≺1) are equal to period (e1, r, e3) and to the empty set, respec-
tively. The degree of persistence ||Ans(H,≺1)|| is then equal to 0.5.

In the case there are contrasting pieces of information about, for instance,
the relative ordering of e1 and e2 and there are no reason to prefer one
piece of information to the other (i.e. sources of contrasting information
are equally reliable), the persistence degree of the corresponding sets of
computed intervals can be used to choose between the two alternatives:

1. If we assume that BeforeFact(e1, e2) holds, then:

≺2a= {Before (e1, e3),Before (e1, e2)}

On the Non-monotonic Behaviour of Event Calculus for Deriving... 109

In such a case, the interval sets Ans(H,≺2a) and Ansm(H,≺2a) are
equal to Ans(H,≺1) and Ansm(H,≺1), respectively. As a conse-
quence, the degree of persistence also remains unchanged:

||Ans(H,≺2a)|| = ||Ans(H,≺1)|| = 0.5

2. Differently, if BeforeFact(e2, e1) is assumed, then:

≺2b= {Before (e1, e3),Before (e2, e1),Before (e2, e3)}

The transitive closure of the Before relationship univocally deter-
mines the total ordering of events. We know that in such a case
Ans(H,≺2b) and Ansm(H,≺2b) coincide (both of them are equal to
{period (e1, r, e3)}). Therefore:

||Ans(H,<2b)|| = 1

While in the first case the persistence of {period (e1, r, e3)} depends on
the relative ordering of e2 and e3, in the second case it is definitively valid.
The different degree of persistence of the answer sets leads us to prefer the
second configuration of events to the first one. It is worth noting that the EC
computed answer sets by themselves are not able to discriminate between
the two configurations, given that Ans(H,≺2a) = Ans(H,<2b).

It is quite straightforward to generalize the proposed example with re-
spect to both the number of events and the number of contrasting pieces
of information about their ordering. It should be clear, however, that we
are not simply claiming that a total order is better than a partial one with
respect to the inferential strenght (it is true, but obvious). We dealt with
the problem to guess the correct order of a set of events, or, at least, to
find out a partial order that is closed as much as possible to it, when only
incomplete information is available and recognized that contrasting ordering
pieces are not equally informative. The notion of persistence degree is then
introduced as a formal tool to identify and select more informative ordering
pieces.

6 Conclusions

EC is a well-suited formalism for computing maximal and convex valid-
ity intervals for relationships represented in databases that are updated by

110 I. Cervesato, A. Montanari, A. Provetti

recording further events (database expansion by append-only updates [8]).
Such an ability makes EC a candidate for supporting AI applications involv-
ing temporal intervals calculation with time-line adjustments [9].

The paper has shown that the interesting case of a partially known order
of events happenings, dealt with by the original EC, has a non-monotonic
behaviour with respect to the availability of new pieces of information about
the ordering of events. In fact, when precise dates are not available and
events are only partially ordered, new pieces of information further specifying
temporal ordering may have the effect of making certain previously believed
intervals of validity no longer assumable.

The paper focuses on updates of an EC-style database that increase the
knowledge about event ordering and analyzes their non-monotonic effects.
It formally relates partially-specified orderings to the corresponding sets
of computed intervals Ans. The inadequacy of an ordering over partially
specified orderings based on inclusion of the Ans sets was discussed and a
taxonomy based on the ‘distance’ between Ans and Ansm was defined to
overcome this limitation. To measure such a distance the notion of persis-
tence degree of an ordering is introduced. Finally, an example of how to use
persistence degrees to choose among alternative, partially specified orderings
is provided.

It is not claimed that the definition of persistence degree that has been
proposed is always the better. According to the application domain, the
answer of the monotonic and of the non-monotonic versions may indeed
acquire a different relevance. Rather than trying to provide a ‘universal’
definition of persistence degree, the paper aimed at contributing to a bet-
ter understanding of the possibilities of using EC for calculating temporal
relations and to push further its range of application by introducing the no-
tion of persistence degree. Along this direction, future work will be devoted
to extend the achieved results and to take into account different types of
ordering pieces.

Acknowledgements

The authors thank Vladik Kreinovich for having first pointed to EC as a
viable system for interval calculation. Johan van Benthem provided use-
ful discussions on the properties of partially-ordered sets of events. Paulo

On the Non-monotonic Behaviour of Event Calculus for Deriving... 111

Azevedo and Alberto Paccanaro kindly proof-read and commented early
versions of this paper.

Appendix A. Proof of Proposition 4

In order to understand the proof, some preliminary notions must be briefly
introduced. A detailed definition of them can be found in [3].

First of all, we need the notion of LD-derivation, which only differs from
the standard notion of SLD-derivation in the use of the Prolog first-left
selection rule. A program is said left terminating if all its LD-derivations
starting with a ground goal are finite. Secondly, we need the notion of level
mapping | |, which is a function from program atoms to natural numbers.
A program is said acceptable if it is acceptable with respect to some level
mapping | | and a model I of it, and it is acceptable wrt | | and I if all its
clauses are. A clause of the program is acceptable wrt | | and I if I is a model
of it and, for every ground instance A← A1, . . . , Ai−1, B,Ai+1, . . . , An of it
such that I |= A1, . . . , Ai−1, |A| > |B|. A program is left terminating if and
only if it is acceptable (Corollary 3.11 of [3]).

To deal with modular programs the notion of acceptability must be re-
placed by the notion of semi-acceptability. Let rel(A) be the relation symbol
occurring in atom A. For any pair of atoms A and B of a given program,
we say that rel(A) refers to rel(B) if there is a clause with A in its head
and B in its body. Furthermore, we say that rel(A) depends on rel(B)
(rel (A) w rel (B)) if the pair (rel (A), rel (B)) is in the reflexive and transi-
tive closure of the relation refers to. On the basis of w, we can define two
meaningful relations, viz.

rel(A) ' rel(B) ≡ (rel(A) w rel(B) ∧ rel(B) w rel(A))

rel(A) = rel(B) ≡ (rel(A) w rel(B) ∧ rel(B) 6w rel(A))

The definition of semi-acceptable program is equal to the one of accept-
able program but the replacement of the condition |A| > |B| with

(i) |A| > |B| if rel(A) ' rel(B);

(ii) |A| ≥ |B| if rel(A) = rel(B)

112 I. Cervesato, A. Montanari, A. Provetti

[3] proved that a program is acceptable if and only if it is semi-acceptable
(Corollary 5.5).

In case of terminating programs, i.e. programs such that all their SLD-
derivations starting with a ground goal are finite, the notions of acceptable
and semi-acceptable programs can be replaced by the simpler notions of
recurrent and semi-recurrent programs. Such notions can be obtained from
the notions of acceptability and semi-acceptability by removing the model
parameter [3].

Finally, given two programs P and Q, we say that a relation rel(A) is
defined in P if rel(A) occurs in the head of a clause from P and that P
extends Q if no relation defined in P occurs in Q.

[3] proved that if P and Q are two programs such that P extends Q and
there exists a model I of P ∪Q such that:

(i) Q is semi-acceptable wrt a level mapping | |Q and I ∩ BQ, where BQ

is the Herbrand Base of Q;

(ii) P is semi-acceptable wrt a level mapping | |P and I;

(iii) there exists a level mapping || ||P such that for every ground in-
stance A← A1, . . . , Ai−1, B,Ai+1, . . . , An of a clause from P such that
I |= A1, . . . , Ai−1

(a) ||A||P ≥ ||B||P if rel(B) is defined in P ;

(b) ||A||P ≥ |B|Q if rel(B) is defined in Q

then P ∪Q is semi-acceptable wrt | | and I, where | | is defined as follows:

1. if rel(A) is defined in P , then |A| = |A|P + ||A||P ;

2. if rel(A) is defined in Q, then |A| = |A|Q

Let us now prove Proposition 4. First of all, let P and Q be equal to
PEC \ {B2, B3,BeforeFact } and {B2, B3,BeforeFact }, respectively.

It is immediate to prove that P is hierarchical wrt the partition of Propo-
sition 2, provided that B2, B3 have been removed and BeforeFact have been
replaced by Before. A hierarchical program P is recurrent wrt the level map-
ping | |P that associates the index of the stratum within which rel(A) is

On the Non-monotonic Behaviour of Event Calculus for Deriving... 113

defined with each atom A such that rel(A) is defined in P (indices of strata
are formally defined in [2]) and 0 with each atom A such that rel(A) is not
defined in P (this is the case of Before, which is defined in Q).

[3] proved that if P is recurrent wrt | |P , then it is semi-recurrenct wrt
| |P (Lemma 4.3), and then P is semi-recurrent wrt | |P if and only if it is
semi-acceptable wrt | |P and BP (Lemma 5.2).

Les us introduce the interpretation IP∪Q = BP ∪ BeforeFact of P . It is
immediate to prove that IP∪Q is a model of P (the relation BeforeFact does
not occur in P) and that P is semi-acceptable wrt | |P and IP∪Q. Now, we
are able to prove now that Q is acceptable wrt a level mapping | |Q and a
model IQ such that

IQ = IP∪Q ∩BQ

that is, IQ includes [Before (X, Y)] (the set of all ground instances of the
atom Before(X, Y)) and all and only the ground instances of the atom
BeforeFact(X, Y) recorded in the database (the set {BeforeFact}), and | |Q
is defined as follows.

Let E and TotOrd(E) be the set of events {e1, .., en}, with n > 1,
and a total ordering over E extending {BeforeFact }, respectively. For the
sake of simplicity, suppose also that, for i = 1, .., n, Before (ei, e(i + 1)) ∈
TotOrd(E). We define | |Q so that:

(i) |Before (ei, ej)|Q = j − i+ 1 + n if Before (ei, ej) ∈ TotOrd(E);

(ii) |Before (ei, ej)|Q = (1/(i− j + 1)) + n otherwise

| |Q is equal to the number of events occurring between ei and ej (ei
and ej included) plus n (total number of events) in case (i) and the
inverse of the number of events occurring between ej and ei (ej and
ei included) plus n in case (ii). It is immediate to prove that:

if |Before (ei, ek)|Q = k−i+1+n and |Before (ek, ej)|Q = j−k+1+n,

then |Before (ei, ej)|Q = |Before (ei, ek)|Q + |Before (ek, ej)|Q − (n+
1) = m+ 1 + n with m > 2.

This simple lemma will be used in the rest of the proof.

(iii) |BeforeFact (ei, ej)|Q = j − i+ 1 if Before (ei, ej) ∈ TotOrd(E);

(iv) |BeforeFact (ei, ej)|Q = 1/(i− j + 1) otherwise.

114 I. Cervesato, A. Montanari, A. Provetti

Let us prove now that each clause of Q is acceptable wrt | |Q and IQ:

1. {BeforeFact }: immediate, given that they have an empty body;

2. B2: immediate, given that, for all ei, ej ∈ E, |Before (ei, ej)|Q =
|BeforeFact (ei, ej)|Q + n, with n > 1;

3. B3: for all ei, ej, ek ∈ E, we must consider separately the first and
the second atom in the body.
With respect to the first atom,

|Before (ei, ej)|Q > |BeforeFact (ei, ek)|Q
immediately follows from
|BeforeFact (ei, ek)|Q = m ≤ n < |Before (ei, ej)|Q = m′ + n

with m′ > 0.
With respect to second atom, there are two cases:

3.1 IQ 6|= BeforeFact (ei, ek), i.e. BeforeFact(ei, ek) 6∈ {BeforeFact }:
immediate;

3.2 IQ |= BeforeFact (ei, ek), i.e. BeforeFact(ei, ek) ∈ {BeforeFact };
three different cases must be considered:
3.2.1

Before (ei, ej) ∈ TotOrd(E)

and
Before (ek, ej) ∈ TotOrd(E) :

the proof is by contradiction.
Let |Before (ei, ej)|Q = m + n, with m > 1 and suppose
that |Before (ek, ej)|Q = m′ + n, with m′ ≥ m. Given that
TotOrd(E) is an extension of {BeforeFact}, Before(ei, ek) ∈
TotOrd(E) and |Before (ei, ek)|Q = m′′ + n, with m′′ > 1.
From the previous lemma, it follows that:

|Before (ei, ej)|Q
= |Before (ei, ek)|Q + |Before (ek, ej)|Q − (n+ 1)

= (m′′ + n) + (m′ + n)− (n+ 1)

> (1 + n) + (m′ + n)− (n+ 1) ≥ m+ n

(contradiction).

On the Non-monotonic Behaviour of Event Calculus for Deriving... 115

3.2.2
Before (ei, ej) ∈ TotOrd(E)

and
Before(ek, ej) 6∈ TotOrd(E) :

immediate, given that from |Before (ei, ej)|Q = m + n with
m > 1 and |Before (ek, ej)|Q = m′ + n, with m′ ≤ 1, it
follows that

|Before (ei, ej)|Q > |Before (ek, ej)|Q

3.2.3
Before(ei, ej) 6∈ TotOrd(E)

and
Before(ek, ej) 6∈ TotOrd(E) :

the proof is by contradiction.
Let |Before (ei, ej)|Q = m + n, with m = 1/(i − j + 1)
and suppose that |Before (ek, ej)|Q = m′ + n, with m′ =
1/(k − j + 1) and m′ ≥ m. It is immediate to prove that
i − k ≥ 0. On the other hand, given that TotOrd(E) is an
extension of {BeforeFact}, Before(ei, ek) ∈ TotOrd(E) and
|Before (ei, ek)|Q = m′′+n, withm′′ = k−i+1 andm′′ > 1.
It is immediate to prove that i− k < 0 (contradiction).

Notice that the fourth case Before (ei, ej) 6∈ TotOrd(E) and
Before (ek, ej) ∈ TotOrd(E) is inherently contradictory. From
BeforeFact (ei, ek) we can derive that

Before (ei, ek) ∈ TotOrd(E);

then, from BeforeFact(ei, ek) ∈ TotOrd(E) and Before(ek, ej) 6∈
TotOrd(E), the previous lemma allows us to conclude that

|Before (ei, ej)|Q = m+ n,

with m > 1, while, from Before (ei, ej) 6∈ TotOrd(E), it follows
that |Before (ei, ej)|Q = m′ + n, with m′ < 1 (contradiction).

116 I. Cervesato, A. Montanari, A. Provetti

From Lemma 5.3 [3], it follows that Q is semi-acceptable wrt the level map-
ping | |Q and the model IQ.

To conclude the proof, we need to identify a suitable level mapping || ||P .
Let ||A||P be equal to |A|P + 2n. For each ground instance

A← A1, . . . , Ai−1, B,Ai+1, . . . , An

of a clause from P such that I |= A1, . . . , Ai−1:

(a) if rel(B) is defined in P , then ||A||P ≥ ||B||P follows from |A|P > |B|P ;

(b) if rel(B) is defined in Q, then ||A||P ≥ |B|Q follows from |A|P > 2n
and |B|Q ≤ n− 1 + 1 + n = 2n

This allows us to conclude that PEC = P ∪Q is semi-acceptable, and then
left terminating, wrt | |P∪Q and IP∪Q.
Recall that | |P∪Q is defined as follows:

1. if rel(A) is defined in P , then |A|P∪Q = |A|P + ||A||P ;

2. if rel(A) is defined in Q, then |A|P∪Q = |A|Q.

Q.E.D.

References

[1] Apt, K. A., Blair, H. A., and Walker, A. Towards a theory of declarative
knowledge. In: Minker, J. (ed.), “Foundations of deductive databases
and logic programming”, Morgan Kaufman publ., Los Altos, CA, 1988.

[2] Apt, K. A. Logic programming. In: van Leeuwen, J. (ed.), “Handbook of
theoretical computer science. Volume B: formal models and semantics”,
Elsevier and The MIT Press, 1990, pp. 493–574.

[3] Apt, K. A. and Pedreschi, D. Modular termination proofs for logic
and pure prolog programs. Technical Report TR-6/93, Università di
Pisa, Dipartimento di Informatica, 1993 (to appear also in: Levi, G.
(ed.), “Proceedings of fourth international school for computer science
researchers”, Acireale, Oxford University Press).

On the Non-monotonic Behaviour of Event Calculus for Deriving... 117

[4] Chittaro, L. and Montanari, A. Reasoning about discrete processes in
a logic programming framework. In: “Proceedings of GULP’93 — eight
Italian conference on logic programming”, Gizzeria Lido (CZ), Italy,
1993, pp. 407–421.

[5] Chittaro, L. and Montanari, A. Experimenting a temporal logic for ex-
ecutable specifications in an engeneering domain. In: Rzevski, G., Pas-
tor, J., and Adey, R. A. (eds), “Artificial intelligence in engineering
VIII. Vol. 1: design, methods and techniques”, Computational Mechan-
ics Publications & Elsevier Applied Science, Boston and London, 1993,
pp. 185–202.

[6] Eshghi, K. Abductive planning with event calculus. In: “Proceedings of
the 5th international conference on logic programming”, Seattle, 1988,
pp. 562–579.

[7] Evans, C. The macro-event calculus: representing temporal granularity.
In: “Artificial intelligence in the Pacific rim. Proceedings of PRICAI’90
conference”, Nagoya, Japan, IOS Press, 1991.

[8] Gardenfors, P. and Rott, H. Belief revision. To appear in: “Handbook
of logic in AI and logic programming. Vol. IV: epistemic and temporal
reasoning”, 1993.

[9] Kowalski, R. and Sergot, M. J. A logic-based calculus of events. New
Generation Computing 4, Springer Verlag, 1986, pp. 67–95.

[10] Kowalski, R. Database updates in the event calculus. Journal of Logic
Programming 12 (June 1992), pp. 121–146.

[11] Lloyd, J. W. Foundations of logic programming, 2nd extended edition.
Springer-Verlag, 1987.

[12] Montanari, A., Maim, E., Ciapessoni, E., and Ratto, E. Dealing with
time granularity in the event calculus. In: “Proceedings of FGCS’92,
fifth generation computer systems”, Tokyo, Japan, 1992, pp. 702–712.

[13] Przymusinski, T. On the declarative semantics of deductive databases
and logic programs. In: Minker, J. (ed.), “Foundations of Deductive
Databases and Logic Programming”, Morgan Kaufman publ., Los Altos,
CA, 1988, pp. 193–216.

118 I. Cervesato, A. Montanari, A. Provetti

[14] Sadri, F. Three recent approaches to temporal reasoning. In: Galton, A.
(ed.), “Temporal logics and their application”, Academic Press, 1987,
pp. 121–168.

[15] Sergot, M. J. (Some topics in) logic programming in AI. Lecture Notes
of the GULP, Advanced School on Logic Programming, Alghero, Italy,
1990 (unpublished).

[16] Shanahan, M. Prediction is deduction, but explanation is abduction. In:
“Proceedings of IJCAI’89 conference”, Detroit, The MIT press, 1989,
pp. 1055–1060.

[17] Shanahan, M. Representing continuous change in the event calculus. In:
“Proceedings of ECAI’90 conference”, Stockholm, 1990, pp. 598–603.

[18] Sripada, S. Temporal reasoning in deductive databases. PhD thesis in
Computing, Imperial College, London, 1990.

I. Cervesato
Dipartimento di Informatica
Università di Torino
Corso Svizzera 185, Torino,
I-10149, Italy.
iliano@di.unito.it

A. Montanari
Dip. di Matematica e Informatica
Università di Udine
Via Zanon 6, Udine,
I-33100, Italy.
montanari@uduniv.cineca.it

A. Provetti
C.I.R.F.I.D. “H. Kelsen”
Università di Bologna
Via Galliera 3/a, Bologna,
I-40121, Italy.
provetti@cirfid.unibo.it

