
Interval Computations
No 2, 1993

Use of a Real-Valued Local Minimum in
Parallel Interval Global Optimization

Ole Caprani, Brian Godthaab, and Kaj Madsen

We consider a parallel method for finding the global minimum (and all of the
global minimizers) of a continuous non-linear function f : D → R, where
D is an n-dimensional interval. The method combines one of the well known
branch-and-bound interval search methods of Skelboe, Moore and Hansen with
a real-valued optimization method.

Initially we use a standard real-valued optimization method to find a local
minimizer xp (or rather: a prediction of a local minimizer). Then the interval
Newton method is applied to an interval Ip containing xp as its midpoint. Ip
is chosen as large as possible under the restriction that the Newton interval
method must converge when Ip is used as starting interval. In this way the
original problem has been reduced to the problem of searching a domain D\Ip
which does not contain the local (and perhaps global) minimizer. The remain-
ing domain is searched by the branch-and-bound interval method, starting by
splitting the remaining domain into 2n intervals and hence avoiding Ip. This
branch-and-bound search then either verifies that the point xp is the global
minimizer, or the opposite is detected and it finds the global minimum (and
the global minimizers) in the usual way.

The combined method parallizes well. On one test case the combined me-
thod is faster than the branch-and-bound method itself. However, for another
test case we get the opposite result. This is explained.

Использование вещественнозначного
локального минимума для

параллельной интервальной
глобальной оптимизации

О. Капрани, Б. Годтхааб, К. Мадсен
Рассматривается параллельный метод нахождения глобального минимума
и всех глобальных минимизаторов непрерывной нелинейной функции f :
D → R, где D — n-мерный интервал. Подход совмещает в себе один
из известных методов ветвей и границ (МВГ) для интервального поиска
Скелбоу, Мура и Хансена и вещественнозначный метод оптимизации.

c© O. Caprani, B. Godthaab, K. Madsen, 1994



72 O. Caprani, B. Godthaab, K. Madsen

Вначале с использованием стандартного вещественнозначного метода
оптимизации находится локальный минимизатор xp (точнее, его при-
ближение). Затем к интервалу Ip, содержащему xp как среднюю точку,
применяется интервальный метод Ньютона. Интервал Ip выбирается
насколько возможно бо́льшим с учетом того, что метод Ньютона, в
котором Ip является начальным интервалом, должен сходиться. При
этом исходная задача сводится к поиску области D \ Ip, не содержащей
локального (и, возможно, глобального) минимизатора. В оставшейся
области производится поиск с применением интервального МВГ, первым
шагом которого является ее деление на 2n интервалов (таким образом,
избегая Ip). Затем МВГ либо подтверждает, что xp является глобальным
минимизатором, либо устанавливает обратное. В этом случае глобальный
минимум и все глобальные минимизаторы отыскиваются как обычно.

Комбинированный метод хорошо поддается распараллеливанию. На
одном из тестовых примеров он работает быстрее, чем сам МВГ. Однако
в другом примере получен противоположный результат, что находит свое
объяснение.

1 Introduction

Consider a continuous non-linear function f : D → R, where D is an n-
dimensional interval. Consider the problem of finding the global minimum
of f over D, f ∗ = min{f(x) | x ∈ D} (and the global minimizers G =
{x ∈ D | f(x) = f ∗}). A branch-and-bound search method based on
interval tools [2] can be used to solve this problem. This was first suggested
by Skelboe, [1]. During the branch-and-bound search we have:

• a finite number of subintervals Si ofD (called boxes). This set of boxes
is called the candidate set and denoted S.

• lower bounds, LB(Si) on min{f(x) | x ∈ Si},

• an upper bound on the global minimum fbound ≥ f ∗.

Any global minimizer is contained in the union of all the boxes from S :

G ⊆
⋃
S

Si ⊆ D

and furthermore we have that:

LB(Si) ≤ fbound.



Use of a Real-Valued Local Minimum in Parallel Interval Global Optimization 73

A subbox Si of S is marked as terminated if either the width of Si is less
than a given accuracy ε or the width of an interval extension of f on the
subbox Si is less than ε. The purpose of the search is to try to reduce the
total volume of S until S consists of only terminated subboxes. This is done
as follows: At each iteration of the search the box with the lowest lower
bound is selected from the non-terminated subboxes of S (best-first), split
into two subboxes (bisection), for each subbox a lower bound is obtained,
each subbox is either eliminated (because the lower bound is greater than
fbound), marked as terminated and inserted into S or put back into the set
S. Also fbound may be updated and further elements of the candidate set
eliminated. The search stops when S consists of only terminated subboxes.
The convergence properties of this method have been extensively studied by
Ratschek and Rokne, [3].

This search method has been refined by Moore, [2] and Hansen, [4],
among others, with what Ratschek and Rokne [3] has called accelerating
devices. These are the monotonicity test, concavity test, and search for min-
imizers by means of e.g. an interval Newton method. It is, however, a rather
expensive method in terms of computation time if we compare the method
with a standard local real-valued optimization methods like those described
in [6]. Consider the two test cases listed in Appendix 1. A real-valued opti-
mization method from [7] uses less than a second for each test case on e.g. a
T800 transputer, [8]. An interval branch-and-bound method with accelerat-
ing devices also implemented on the T800 processor, [14], takes 1858 seconds
and 390 seconds on the two test cases. The disappointing computation times
are not caused by the interval arithmetic. The implementation makes use
of an efficient IEEE based interval arithmetic implementation, [10]. Similar
disappointing computation times have been reported in e.g. [11].

Attempts to parallize the branch-and-bound method to get better per-
formance have also been reported e.g. in [11]. For a simple centralized mas-
ter/slave parallel program structure good efficiencies for up to 32 processors
on an Intel iPSC/1 Hypercube have been obtained on problems like the two
test cases in Appendix 1. Also on Meiko’s T800 based Computing Surface,
[9], similar efficiencies have been obtained, [12]. However, even with a speed
up of 32 for the parallel branch-and-bound methods, the computation times
are large compared to the time used by standard real-valued methods.

This suggests that it might be a good idea to try to make use of the
solution found by a real-valued method in the branch-and-bound search



74 O. Caprani, B. Godthaab, K. Madsen

method. This has been tried in [12] where an initial phase of the calculation
uses a real-valued method to find a good estimate of the global minimum f ∗.
This estimate is then used as the initial value of the upper bound fbound used
in the branch-and-bound search. If initially fbound = f ∗, a depth-first search
strategy can be used instead of the usual best-first strategy (called breath-
first in [12]). The depth-first strategy works the boxes off from S one at a
time in a last-in-first-out manner, i.e. the candidate set can be organized as
a stack. This requires much less storage for the candidate set than in the
best-first strategy, and furthermore, the depth-first strategy parallizes more
efficiently than the best-first strategy. In the sequential case the number
of iterations is the same in the two methods if fbound = f ∗ initially. The
reason is that the two strategies treat the same boxes of the candidate set,
only in a different order. However, if fbound is larger than f ∗ initially this
depth-first strategy is slower than best-first. Hence, this usage of a real-
valued method often results in worse computation times and at best gives
only minor computation time improvements in the sequential case. If the
real-valued initialization of fbound is followed by a best-first search nothing
is gained as far as computation time is concerned if global minimizers is
searched for. This observation has also been reported by Hansen, [5], and
Ratschek and Rokne, [3].

In this paper we consider another usage of a real-valued method. We
use not only the minimum found but also the minimizer. As explained in
Section 2 this gives a different candidate set to be considered in the search.
In the third section we describe results from a sequential implementation of
this combined method. For one of the test cases the improvement is 28% in
computation time, for the other the combined method is 27% slower than
the branch-and-bound search in itself. This rather disappointing result is
explained. Then results from a parallel implementation are presented. Also
this combined method parallelizes well and computation times of 179 seconds
and 10 seconds are obtained for the two test cases on 32 processors. All the
results have been obtained on Meiko’s T800 based Computing Surface. It is
reported in detail elsewhere, [14].

2 Initial phase of combined method

Initially we use a standard real-valued optimization method to find a local
minimizer xp ∈ D. Then a symmetric interval Ip with xp as its midpoint is



Use of a Real-Valued Local Minimum in Parallel Interval Global Optimization 75

searched for so that the interval Newton method applied to Ip converges to
xp. Ip is found iteratively. In each step the width of Ip is increased with a
fixed step size. This continues until Ip = D or the interval Newton method
applied to Ip no longer converges. This means that Ip is chosen as large
as possible with the given step size under the restriction that the Newton
method converges when Ip is used as a starting interval. Only for the first
interval Ip the full Newton iteration is carried out. For the other Ip’s only
one Newton iteration is performed to ensure existence of the solution. Some
results for the two test cases are shown in the following table:

test case n w(Ip) time (seconds)
1 10 0.80 79.16
2 3 0.40 0.62

A step size of 0.2 has been used. Unfortunately, the times are rather large.
This is caused by the time consuming Newton method used where sets of
linear interval equations are solved by the sign accord algorithm, [13]. The
Newton method has been used in an attempt to get Ip as large as possible.
A Krawzcyk method has also been tried. It is faster but the resulting Ip’s
are smaller in the two test cases. It might turn out that the width of Ip
is not important for the overall performance of the combined method, and
therefore we will not improve on the time for the initial phase until further
experiments have been carried out with the combined method.

When we have found an interval Ip that does contain a local (and per-
haps global) minimizer, the original problem has been reduced to the prob-
lem of searching D \ Ip for intervals that can be eliminated in the light
of the knowledge of Ip and fbound = f(xp). Of course, the remaining do-
main can be split in many different ways into intervals to be used as the
initial candidate set in the following branch-and-bound method. However,
it is important to avoid a split that results in a number of intervals that
grows exponentially with the dimension. We have chosen to split into
2n intervals as illustrated in Figure 1 for n = 2. In general, if D =
X1 ×X2 × · · · ×Xn each Xi is split into three disjoint intervals Xi,1, (Ip)i,
the i’s component of Ip, and Xi,2. Here, Xi,1 is the interval to the left
of (Ip)i in Xi and Xi,2 is the interval to the right of (Ip)i. The 2n boxes
are then obtained as S2k−1 = ((Ip)1, . . . , (Ip)k−1, Xk,1, Xk+1, . . . , Xn) and
S2k = ((Ip)1, . . . , (Ip)k−1, Xk,2, Xk+1, . . . , Xn), k = 1, 2, . . . , n. The compu-
tation time for the splitting and calculation of lower bounds are 0.3 seconds



76 O. Caprani, B. Godthaab, K. Madsen

and 0.03 seconds for the two test cases.

S2

S4

Ip

S3

S1

Figure 1: Initial splitting of D \ Ip for n = 2.

3 Combined sequential method

After the initial phase has initialized the candidate set and the upper bound
on the global minimum, the branch-and-bound interval method is applied
in a version as described in [12]. In this section we compare the results of
the combined method obtained on the two test cases on a single processor
with the results obtained when the branch-and-bound is used as in [12]. To
see the effect of the initial phase when it succeeds we have initialized xp

as a global minimizer in the first comparison. For the two test cases the
number of iterations used, the computation time and the maximum number
of elements in the candidate set during the computation are shown in the
tables below.

test case B&B iterations time (sec) combined iterations time
1 4874 1858 6484 2581
2 6250 390 5545 282

test case B&B, max candidate set combined, max candidate set
1 1277 25
2 3647 13

When time is considered the combined method is better in test case 2
and worse in test case 1. Rather disappointing. However, the combined



Use of a Real-Valued Local Minimum in Parallel Interval Global Optimization 77

method is far better when it comes to space requirements. This is caused by
the depth-first search strategy. Problems with storage overflow in best-first
search have been reported by Hansen, [5], and Ratschek and Rokne, [3]. So
depth-first may have its merits.

To investigate the combined method applied to test case 1 a little closer
we have traced the 2n = 20 initial boxes of the candidate set. Half of the
boxes are eliminated in one iteration (by the monotonicity test) but one
of the boxes (which is almost as large as the original domain D) requires
3267 iterations before it can be eliminated. This is 50% of the iterations.
The problem is that xp is close to a corner of D. For n = 2 the problem
can be illustrated by Figure 1. The boxes S4 and S2 are easily eliminated.
The box S3 is more difficult, and S1 is almost as hard to search as D. This
phenomena is also illustrated with the results in the table below. This shows
the number of iterations required in the branch-and-bound method and in
the combined method when different sizes of the initial domain D are used.

domain D B&B iterations combined iterations
[2.001, 9.999]10 4874 6484
[3.001, 9.999]10 3998 6292
[4.001, 9.999]10 3955 5039
[5.001, 9.999]10 3062 178
[6.001, 9.999]10 79 32
[7.001, 9.999]10 69 20

In the last line of the table we see that the combined method only requires
20 iterations to eliminate the 20 boxes in S. This is only one iteration for
each box in the initial candidate set. This behavior seems to indicate that
when the boxes have a width below a certain threshold they are very easily
eliminated and above that threshold the exponential nature of the bisection
in each dimension results in the large number of iterations.

The splitting strategy has a dramatic influence on the number of iter-
ations needed in test case 1. To carry the experiment a little further we
have tried to slice the box that caused 50% of the iterations. It has been
sliced into 10 boxes parallel to that side of Ip which is a part of the box. In
Figure 1 this corresponds to a vertical slicing of S1 in 10 tall boxes similar to
S2. The resulting 10 boxes are eliminated immediately by the monotonicity
test. If we use the same splitting on the other difficult boxes all of these
are also eliminated immediately. The result is that it takes 110 iterations



78 O. Caprani, B. Godthaab, K. Madsen

for the original domain D = [2.001, 9.999]10 for the combined method if the
slicing is used on all the difficult boxes. Ten iterations are used on the easy
boxes and 10 ∗ 10 on the difficult boxes. This is a dramatic reduction in the
number of iterations compared to 6484 and a great improvement over the
4874 of the usual branch-and-bound method. This suggests that it might
be a good idea to look into alternative splitting methods in the initial phase
after Ip has been found and maybe also in an alternative splitting of a box
into subboxes in the branch-and-bound method.

Now, we return to the case when the initial phase fails to find a global
minimizer. In test case 1 there is only one minimizer inD and the real-valued
method finds this minimizer. But in test case 2 the real-valued method
finds a local minimizer [−0.49, 2.54, 2.54] far away from the global mini-
mizer [−0.49,−0.49,−0.49]. This results in a larger number of iterations as
described in the following table.

xp fbound iterations time (sec)
[−0.49,−0.49,−0.49] -36.09 5545 282
[−0.49, 2.54, 2.54] -17.35 9391 479

The number of iterations has almost been doubled.
This effect of initial phase failure can be reduced if the real-valued me-

thod is also used during the branch-and-bound search to improve fbound.
This has been suggested by Ratschek and Rokne, [3].

4 Combined parallel method

The combined method has been parallelized with a simple centralized mas-
ter/slave program structure as described in [12]. The initial phase is per-
formed by the master before the branch-and-bound search is carried out by
the slaves in parallel. The results obtained for the two test cases on 32
processors are shown in the following table:

test case time (sec) efficiency
1 79.2 + 79.5 = 178.7 0.98
2 0.6 + 9.8 = 10.4 0.89



Use of a Real-Valued Local Minimum in Parallel Interval Global Optimization 79

The sum in the second column is the sum of the time it takes to perform the
initial phase in the master and the time it takes to do the parallel search in
the slaves. The efficiency is a measure of the percentage of time the slaves
are busy during the search. In this case the rather fine efficiencies show that
the combined method parallelizes well. This was also reported in [12] for a
similar depth-first strategy.

The effect of initial phase failure has also been studied for the parallel
method. For test case 2 we obtain the following results:

slaves time (sec) iterations
1 479 9391
2 159 7215
4 80 7204
8 40 7054

16 26 6985
32 16 8687

The number of iterations used decreases with the number of slaves because
the global minimum is found faster when more slaves search in parallel. The
increase for 32 slaves is explained by the increasing time it takes when more
slaves are present for the master to get a better fbound from the slaves and
to broadcast a better fbound to all the slaves.

The effect on the number of iterations of initial phase failure is reduced
when the search is done in parallel. This also shows that usage of a real-
valued method during the search as suggested in the previous section might
decrease the number of iterations even further.

5 Conclusion

We have considered the global optimization problem and solution of this by
branch-and-bound interval methods. Our test cases demonstrate that it can
be very fast to find a local minimizer by means of a standard real-valued
method compared to the time it takes to find the global minimizers by the
interval method. If we only use the result of a real-valued method to initialize
the bound on the global minimum before we apply an interval branch-and-
bound search nothing is gained as far as computation time is concerned.



80 O. Caprani, B. Godthaab, K. Madsen

However, a depth-first search strategy can reduce storage requirements very
much.

On the other hand, if we use the local minimizer to guide the splitting of
the initial domain into boxes we find that a considerable gain in computation
time can be obtained, especially when non-bisection splitting is used. Fur-
ther test cases need to be investigated to assess the merits of the usage of the
local minimizer to guide the splitting during the interval branch-and-bound
search.

References

[1] Skelboe, S. Computation of rational interval functions. BIT 14 (1974),
pp. 87–95.

[2] Moore, R. E. Methods and applications of interval analysis. SIAM,
Philadelphia, 1979.

[3] Ratschek, H. and Rokne, J. New computer methods for global optimiza-
tion. John Wiley & Sons, 1988.

[4] Hansen, E. Global optimization using interval analysis — the multidi-
mensional case. Numerische Mathematik 34 (1980), pp. 247–270.

[5] Hansen, E. Global optimization using interval analysis. Marcel Dekker,
Inc., 1992.

[6] Dennis Jr., J. E. and Schnabel, R. B. Numerical methods for uncon-
strained optimization on nonlinear equations. Prentice-Hall, 1983.

[7] Madsen, K. and Hegelund, P. Robust C subroutines for non-linear opti-
mization. Report 91-03, Institute for Numerical Analysis, The Technical
University of Denmark, Lyngby, Denmark, 1991.

[8] Inmos. Transputer reference manual. Prentice Hall, 1988.

[9] Computing Surface technical specifications. Meiko Ltd, 1987.

[10] Caprani, O. and Madsen, K. Performance of an Occam/transputer im-
plementation of interval arithmetic. Lafayette, 1993.



Use of a Real-Valued Local Minimum in Parallel Interval Global Optimization 81

[11] Madsen, K. Parallel algorithms for global optimization. Report 91-07,
Institute for Numerical Analysis, The Technical University of Denmark,
Lyngby, Denmark, 1991.

[12] Henriksen, T. and Madsen, K. Use of depth-first strategy in parallel
global optimization. Interval Computations 3 (5) (1992), pp. 88–95.

[13] Toft, O. Sequential and parallel solution of linear interval equations. In-
stitute for Numerical Analysis, Report 92-04, The Technical University
of Denmark, Lyngby, Denmark, 1992.

[14] Godthaab, B. Parallel interval methods for global optimization. Insti-
tute for Numerical Analysis, The Technical University of Denmark,
Lyngby, Denmark, 1993 (in Danish).

O. Caprani
Computer Science Department
Aarhus University
Denmark

B. Godthaab, K. Madsen
Institute for Numerical Analysis
Technical University of Denmark
Denmark



82 O. Caprani, B. Godthaab, K. Madsen

Appendix 1 Test cases

Test case 1:
This is the function of 10 variables:

f(x) =
n∑

i=1

((ln(xi − 2))2 + (ln(10− xi))2)− (
n∏

i=1

xi)
0.2

The domain D is [2.001; 9.999]10. The accuracy is ε = 10−10.

Test case 2:
This is the function of 3 variables:

f(x) = −
n∑

i=1

5∑
j=1

j sin((j + 1)xi + j)

The domain D is [−5; 5]3. The accuracy is ε = 10−10.


