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Information about a value is frequently best expressed with an interval. Fre-

quently also, information is best expressed with a probability density function.

We extend automatically verified numerical inference to include combining

operands when both are intervals, both are probability density functions, or

one is an interval and the other a probability density function. This technique,

termed the automatically verified histogram method, uses interval techniques

and forms a sharp contrast with traditional Monte Carlo methods, in which

operands are all intervals or all density functions, and which are not automat-

ically verifying.

Автоматически проверяемые

рассуждения с использованием

интервалов и функций плотности

вероятности

Д. Берлеант

Информация о значении величины часто лучше всего может быть выра-

жена с помощью интервала, а также и с помощью функции плотности

вероятности. Мы обобщаем автоматически проверяемый численный вы-

вод таким образом, чтобы включить случай комбинированных операндов,

то есть случай, когда оба операнда являются интервалами, или оба функ-

циями плотности вероятности, или когда один является интервалом, а

другой — функцией плотности вероятности. Этот метод, называемый ме-

тодом гистограмм с автоматической проверкой, использует интерваль-

ную технику и резко отличается от традиционного метода Монте-Карло,

в котором все операнды являются либо интервалами, либо функциями

плотности вероятности, и в котором отсутствует автоматическая верифи-

кация.
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1 Introduction

Accurate and precise numerical information is often unavailable. Therefore
we wish to be able to reason with the less exact information that is available.
Frequently such information about a value is in the form of an interval

bounding an actual but unknown value. Frequently also, that information
is in the form of a probability density function, which describes the relative
likelihoods of what the value might be.

One important property of interval mathematics is its ability to support
automatically verified — hence correct — inference in the presence of uncer-
tain values. We extend automatically verified numerical inference to include
cases where input values may be intervals, or probability density functions,
or some inputs may be intervals and others probability density functions.

The method described, called the automatically verified histogram me-

thod, uses interval techniques. The automatically verified histogram method
is compared to traditional Monte Carlo methods, which disallow combining
interval operands with density function operands, and which do not provide
automatic verification.

2 Operations on intervals:

a probabilistic view

In many real world problems, numerical values are not precisely known. In
many such cases, an interval may be used to bound the range of belief about
what the constant value could be [1]. Probabilistically, such an interval
constitutes a statement that we are modeling the constant (but unknown)
value as being within the bounds of the specified interval with probability 1.
In other words, the interval has a probability mass of 1. If we wish to apply
some binary operation op to values x ∈ X and y ∈ Y , X and Y intervals,
to get a result z = x op y, we can say that z ∈ Z = X OP Y .1 Probability
p(z ∈ Z) conforms to p(z ∈ Z) = p(x ∈ X) × p(y ∈ Y ) = 1 × 1 = 1, in

1 OP is the interval extension of op , which might be +,−,×,÷, or any binary operation with

a corresponding interval analog defined for X and Y . Unary and other n-ary operations are treated

similarly.
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this case. In general: p(x ∈ X) ∈ [0, 1], p(y ∈ Y ) ∈ [0, 1], and

p(z ∈ Z) = p(x ∈ X)p(y ∈ Y ). (1)

Equation 1 requires two assumptions:

1. x and y are independent. If there is some degree of dependency, much
less can be said about p(z ∈ Z) unless the dependency is characterized,
and even then equation (1) will not hold in most cases.

2. Operation OP avoids introducing excess width. If excess width
could occur, then the equation (1) is weakened to p(z ∈ Z) ≥
p(x ∈ X)p(y ∈ Y ).

3 Operations on probability density

functions using interval arithmetic

The probabilistic view of interval operations above leads naturally to an
existing histogram discretization algorithm called the histogram method for
doing operations on probability density functions (PDFs). The histogram
method discretizes PDF operands using intervals, uses interval operations to
generate intermediate results, and then constructs a result PDF. This tech-
nique, also known as “discrete combination of random variables” was first
described by Ingram et al. in 1968 [2] and further developed by Colombo
and Jaarsma in 1980 [3]. It has subsequently generated attention mostly in
reliability analysis [4, 5, 6, 7] although the technique itself is a general one.
Kaplan’s method [8] is a popular variation, generating over 50 citations in
Science Citation Index over the years, but it is unclear how to make Ka-
plan’s method automatically verifying. Moore [9] independently developed
another variation in which results are expressed as cumulative distribution
functions (CDFs). We describe the histogram method next, extending it
later into the automatically verified histogram method.

3.1 The histogram discretization algorithm

In the histogram method, PDFs are discretized using histograms. Each
histogram bar is characterized both by an interval describing its placement
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on the real number line and by a probability mass. To operate on a pair of
PDFs X and Y , their histogram discretizations are combined as follows.

1. Compute the Cartesian product of the bars of the histograms describ-
ing X and Y .

2. For each member (Xi, Yj) in the Cartesian product, produce an inter-

mediate result interval by:

(a) executing the corresponding interval arithmetic operation on Xi

and Yj to get Zij = Xi OP Yj; then

(b) associating with Zij the probability p(Zij) = p(Xi)p(Yj), in ac-
cordance with equation 1.

3. The intermediate result intervals are each part of an intermediate re-

sult collection, exemplified by the table in Figure 1. The intermediate
result intervals may be combined to get a final result, as follows.

(a) Decide on a set of intervals partitioning the domain of Z. This
partition determines the placement of the bars in a histogram
approximating the distribution function. The particular partition
is unspecified by the algorithm, but few bars will tend to provide
coarse results.

(b) Calculate the area (i.e. the probability mass) for each histogram
bar of Z defined by the partition (Figure 1), as follows.

i. Any intermediate result interval Zij that falls completely
within some member of the partition has its entire probabil-
ity mass assigned to the bar corresponding to that member.

ii. Any intermediate result interval that overlaps more than one
member of the partition has its probability mass divided
among them, with mass assigned to each partition mem-
ber in proportion to the fraction of the intermediate result
interval it overlaps. For example, intermediate result inter-
val #1 in the table of Figure 1 is [2, 6] with probability 1

8 .
The partition of the domain of Z (Figure 1, bottom) con-
tains intervals [2, 5] and (5, 8], so [2, 5] is assigned 3

4 of the 1
8

probability, or 3
32 , because 3

4 of the width of intermediate re-

sult interval [2, 6] overlaps [2, 5]. Similarly 1
4 of the width of
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Figure 1: Multiplication of two histograms. The Cartesian product
of the 2 bars in X and the 3 bars in Y leads to an intermediate result
collection containing 6 intermediate result intervals. A result histogram for
Z = X × Y was defined to have several bars, each with a width of 3 and
placed from 2 to 20 on the horizontal axis. The mass of each intermediate
result interval was divided among the bars of the result histogram, based on
the mass of the intermediate result interval and what proportion of its width
overlaps with a given histogram bar in the PDF for Z. The contribution of
each intermediate result interval to a bar of the result histogram is indicated
by printing its number in a section of the bar, with the size of the section
indicating the probability mass contributed.
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[2, 6] overlaps (5, 8], which is therefore assigned probability
mass 1

4 ∗
1
8 = 1

32 . This process will be termed proportional

assignment.2

iii. All of the probabilities assigned to a partition member are
summed to give the total probability of the member. This is
done for each partition member.

(c) The probability of each bar equals its area, so its height h can

be calculated from h =
area

width
=

probability

width
and the histogram

can be drawn, as at the bottom of Figure 1.

While the example in Figure 1 happens to be of multiplication, many
different operations and functions of two variables can be used to get an
intermediate result collection. If the calculation produces an intermediate
result collection whose intervals may have excess width, then proportional
assignment (item 3(b)ii above) will tend to cause the result PDF to spread
out. Dependencies between operands may cause even less predictable dis-
tortion in the result PDF.

So far, the algorithm is essentially as described by Ingram et al. [2].
Colombo and Jaarsma’s further development [3] uses histogram bars of vary-
ing width but constant mass, as does A. S. Moore [10]. Kaplan’s variation
[8] approximates the bars with their midpoints and probability masses. It
is unclear how Kaplan’s variation could be made automatically verifying.
R. E. Moore [9] and A. S. Moore [10] foreshadow the present paper by ex-
pressing results as CDFs. R. E. Moore discretizes results more wisely than
the previous (and the present) work. Both R. E. Moore and A. S. Moore
apply their methods to non-trivial problems. Unlike the present paper they
do not address automatic verification.

While the histogram method has an established place in the literature,
it produces approximations and so is not automatically verifying. The ap-
proximating character of the algorithm is due to two problems:

1) discretizing a PDF into a histogram seems at first glance to produce
merely an approximation of the PDF; and

2Since we are working with probability masses, whether the interval is open or closed is irrelevant

for PDFs not containing impulses.
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2) the proportional assignment step makes assumptions about how the
probability mass of an intermediate result interval is distributed over
that interval.

These two problems are discussed in turn.

3.2 Automatically verified discretization

Discretizing a PDF as a histogram may at first appear to force a possibly
smooth and continuous PDF into the outline or silhouette of a histogram —
a piecewise continuous curve with horizontal line segments (the tops of the
bars) connected by vertical line segments. This interpretation is both un-
necessary and, from the perspective of correctness, highly undesirable. An
appropriate change in our interpretation of what a histogram means allows
us to view the histogram as correct, rather than a (very likely) incorrect
approximation. Let us elaborate.

3.2.1 The histogram representation as correct, not approximate

Observe that here a histogram defines:

• a set of non-overlapping intervals, and for each member interval Ij,

• the probability p(Ij) that the uncertain variable’s value is in Ij.

Note that no assumption is required about how the probability mass
p(Ij) is distributed over Ij. Any apparent flatnesses in the outline of the
histogram are due to an artifact: the graphical representation used to show
histograms, which depicts bars with flat tops. In fact, a histogram repre-
sentation of a PDF actually corresponds to any PDF which has the same
probability masses over the intervals specified by the histogram bars as do
the bars themselves. To maintain correctness, we need simply adopt the
reasonable and useful interpretation that the apparent flat tops of the bars

are for graphical purposes only and a histogram bar leaves undefined how its

probability mass is actually distributed over its interval. Figure 2 illustrates
this by showing some obviously different PDFs that are correctly represented
by the same histogram.
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Figure 2: A few of the infinite number of probability density functions cor-
responding to the same two-bar histogram. The histogram partitions its
domain into two intervals. Each histogram bar represents an interval Ij,
and also has a height which encodes an area and hence a probability mass.
This area equals the probability mass over Ij of each PDF above.

A histogram which is interpreted this way is not really a PDF, because
a PDF fully defines how probability mass is distributed over its domain.
In contrast, the histogram only partially defines how probability mass is
distributed over its domain. Discretizing a PDF as a histogram, then, in-
volves not an approximation but rather a relaxation in representation, and
correctness is maintained (although some information is lost).

Histograms, PDFs, and CDFs. We have just seen how a histogram
is a weaker description than a PDF, and correctly describes any PDF in
a family of PDFs. This family of PDFs can also be felicitously described
as two cumulative distribution functions (CDFs) that bound the family of
CDFs corresponding to the family of PDFs. The faster rising of the two
bounding CDF is obtained by taking the mass of each histogram bar to be
concentrated at the low bound of its interval. The slower rising CDF is
obtained by concentrating the mass of each bar at its interval’s high bound.
For each point u in domain x, the pair of CDFs provides bounds for an
interval P (x ≤ u) =

[

p(x ≤ u), p(x ≤ u)
]

(see Figure 3).
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Cartesian
product
term #

Bar intervals
and masses

Operand 1
(Xi)

Operand 2
(Yj)

Intermediate
result

collection
intervals (Zij)

#1
interval
probability

[1, 2]
1/2

[2, 3]
1/4

[2, 6]
1/8

#2
interval
probability

[1, 2]
1/2

[3, 4]
1/2

[3, 8]
1/4

#3
interval
probability

[1, 2]
1/2

[4, 5]
1/4

[4, 10]
1/8

#4
interval
probability

[2, 4]
1/2

[2, 3]
1/4

[4, 12]
1/8

#5
interval
probability

[2, 4]
1/2

[3, 4]
1/2

[6, 16]
1/4

#6
interval
probability

[2, 4]
1/2

[4, 5]
1/4

[8, 20]
1/8

Integrating the table above (↑) produces the curves below (↓).

0
0.125
0.25

0.375
0.5

0.625
0.75

0.875
1

1 2 3 4 6 8 10 12 14 16 18 20

Figure 3: Bounding the family of CDFs coded by an intermediate result
collection. If the probability mass of each intermediate result interval is
assumed to be concentrated at its low bound, we get the higher CDF curve.
If masses are concentrated at the high bounds of the intervals, we get the
lower CDF curve. Any other distribution of mass produces a CDF falling
somewhere between the two CDFs shown. If interval #1 is widened to [1, 7]
(simulating excess width) then the curves shown are widened out to the
dotted portions — less constraining but still automatically verified.
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3.3 Creating result histograms assumes

flat distributions

Let us move from the problem of verified operands to the problem of verified
results.

To create a result histogram, previous work has assumed that the mass
of an intermediate result interval can be proportionally assigned to the bars
of the result histogram with which it intersects, as in Section 3.1, item 3(b)ii.
Unfortunately this proportional assignment assumption is in general unjus-
tified, and usually false. One way to circumvent this problem is to discretize
input PDFs using histograms with a large number of narrow bars: as the
number of bars in the operands increases toward ∞, the percentage of inter-
mediate result intervals (and the total of their probability masses) involved in
proportional assignment calculations decreases toward zero. Unfortunately,
at the same time computational cost rises toward ∞. A computationally
cheaper way to avoid proportional assignment is simply to refuse to assume
how the probability mass is distributed over an intermediate result interval.
We will avoid proportional assignment and therefore retain the automatic
verification property associated with the intermediate result collection itself.
This is elaborated next.

4 Automatically verified operations

on PDFs

Observe that an intermediate result collection contains intervals and their
associated probability masses, but does not define how the masses are dis-
tributed over the intervals. The intermediate result collection is already
automatically verified. We need simply process this intermediate result col-
lection in some way which avoids assumptions about the distributions of
probability masses within intermediate result intervals, thereby preserving
automatic verification. Creating a result histogram requires the assumptions
we must avoid, so we cannot create a result histogram. If instead of insisting
on ending up with histograms representing result PDFs we are willing to be
satisfied with cumulative distribution functions (CDFs), which are the inte-
grals of PDFs, we can avoid the unwanted assumptions and thereby retain
the automatic verification property of intermediate result collections. An in-
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termediate result collection may be represented as a pair of CDFs bounding
the family of possible CDFs in the same way a histogram can be represented
using bounding CDFs (Section 3.2.1).

The present method is best introduced with an example (Figure 3). Since
no assumption may be made about the distribution of mass within any
intermediate result interval, of course the integral of the intermediate result
collection cannot be fully defined. Instead we bound it with upper and
lower CDFs. These CDFs bound a space of CDFs containing all CDFs

corresponding to some distribution of the intermediate result interval masses

over their respective intermediate result intervals.

We now explain the process illustrated in Figure 3 in detail. The inter-
mediate result collection forms a kind of Cartesian product derived from the
bars of the operand histograms. The lowest low bound in the intermediate
result collection is for Cartesian product term #1 which is an intermediate
result interval specifying a probability mass of 1

8
distributed over the interval

[2, 6]. If that mass was concentrated at the interval’s low bound of 2, then
the integral of the intermediate result collection would jump to 1

8 as soon
as the domain value increased past 2. This is a faster rise than any other
distribution of 1

8 mass over the interval [2, 6]. Similarly, if the 1
4 mass of

Cartesian term #2 was concentrated at its low bound of 3, the CDF would
jump by an additional 1

4 as the domain value passed 3, and its value at 3+ ǫ
would now be the sum of the total mass that has been expended so far,
1
8 +

1
4 = 3

8 . Continuing this process, we take the masses of the remaining
Cartesian product terms to be concentrated at their low bounds as well.
Then, the integral of the intermediate result collection rises faster than it
would for any other distribution of the masses within the intermediate result
collection intervals. The result is the higher of the two CDFs pictured in
Figure 3.

To get the lower of the CDFs in Figure 3, we take the mass of each
Cartesian product term to be concentrated at its high bound, instead of
its low bound as before. Then the CDF representing the integral of the
intermediate result collection rises more slowly than it would for any other
distribution of the masses over the intervals in the Cartesian product forming
the intermediate result collection. The result is an automatically verified
answer: two CDFs bounding the family of CDFs that might be produced
from the operand PDFs by the operation.
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4.1 Dependencies among input variables

The automatically verified histogram method requires independent inputs,
because the probability mass calculations that are an essential part of pro-
ducing an intermediate result collection use equation 1 which assumes operands
are independent: if bar Xi of histogram X has probability p(Xi) and bar Yj

of histogram Y has probability p(Yj), then p(Xi)p(Yj) =
p(x ∈ X ∧ y ∈ Y ) only if x and y are independent. Appropriate mod-
ification would be needed to extend the automatically verified histogram
method to dependent or partially dependent inputs. One appropriate modi-
fication would be to calculate each intermediate result interval’s probability
mass directly from a 2-D histogram of 4-sided bars (Xi, Yj) describing the
distribution of mass over the plane of possibly dependent input variables x
and y. Then, the weight of an intermediate result interval would be taken
directly from the weight of the 4-sided bar determined by the two operand
intervals, rather than by multiplying the weights of the operand intervals
as before. Another appropriate modification would be to reformulate the
problem in terms of inputs that are independent, as in Moore [9].

4.2 Excess width

As with many applications of interval calculations, excess width may appear
due to variables appearing repeatedly in expressions.

With the automatically verified histogram discretization method, the
effect of excess width is to enlarge intervals in the intermediate result col-
lection. This in turn enlarges the family of CDFs by causing the higher of
the bounding CDFs to rise too quickly, or the lower to rise too slowly, or
both. For example, suppose the intermediate result interval of Cartesian
term #1 of Figure 3 had excess width sufficient to enlarge both its bounds
by 1. Then the interval would be [1, 7] instead of [2, 6] and its mass of 1

8
could be concentrated as low as 1, leading to a CDF which rises faster over
a portion of the domain than for the original low bound of 2. This situation
is shown with a dotted line in Figure 3. Similarly, a high bound of 7 instead
of 6 means that the mass could be concentrated as high as 7, so that the
lower of the two bounding CDFs shown could “wait” until 7 before rising
by 1

8 . This means the lower of the bounding CDFs would be rising even
slower than before over a portion of its domain. The new, less constraining
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portion of the lower bounding CDF is also indicated with a dotted line in
Figure 3. To summarize: Excess width in intermediate result intervals leads

to more relaxed bounds on the family of plausible CDFs. This constitutes a

weaker but still automatically verified result.

When expressions consist solely of independent variables occurring once,
excess width is not a problem. In other cases, approaches such as various
centered forms [11, 12] often provide narrower results than näıve evaluation
of the interval expression. Supplementing these forms are techniques for re-
moving arbitrary amounts of excess width from expression evaluations. Such
techniques are usually described as “computing the range of values” (Moore
1976 [13], Asaithambi et al. 1982 [14], and Cornelius and Lohner 1984 [15])
or as “enclosure methods” (Alefeld 1990 [16]) and have been applied e.g. to
electrical circuit tolerance analysis [17]. Artificial intelligence work in this
area includes Hyvönen (1992) [18]. Computation time tends to be a problem
with these excess width removal techniques.

As is often the case in interval mathematics, excess width can severely
weaken the answers obtained. Therefore, it is necessary to assess the quality
and usefulness of the results obtained when excess width is present in an
application.

5 When some operands are PDFs

and others are intervals

So far, we have discussed automatically verified operations when both operands
are PDFs. The ideas are easily extended to the case where one operand is
a PDF and another is an interval. This is done by using histograms to rep-
resent not only PDFs but also intervals. Once both intervals and PDFs are
described using histograms, the algorithm developed previously for operat-
ing on histograms applies.

We have already seen how a PDF may be represented using a histogram.
The alert reader might immediately observe how an interval can be repre-
sented as a one-bar histogram:

Let interval Y be the range of plausible values for y. Then
p(y ∈ Y ) = 1, although the distribution of that probability
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mass of 1 over Y is undetermined. Recall that here a histogram
consists of intervals and the probability mass within each with
no assumption about how the probability mass associated with
an interval is distributed within the interval. Therefore a single
interval with probability 1, such as Y above, may be represented
using a one-bar histogram.

We can do automatically verified operations on histograms, and we now
know how to describe both PDFs and intervals using histograms. Therefore:
We can do automatically verified operations when both operands are PDFs,

both are intervals, or one is an interval and one is a PDF.

The result of such an operation, as before, is an intermediate result collec-
tion. As before, since the distribution of probability masses is not specified
completely by an intermediate result collection, integrating it cannot result
in a single CDF. Instead, integration produces a family of CDFs, bounded
by upper and lower CDFs.

We next apply these ideas to an example.

6 Example: overloading a disk

Consider a simple model of a computer disk filling with data. Data is
assumed to flow in with rate [0.033, 0.047] megabytes per hour. Data is
deleted, freeing up disk space, at rate [0.007, 0.012] megabytes per hour.
The free disk space is initially [60, 80] megabytes. The time t it takes to
overload the disk is then described by

t =
[60, 80]

[0.033, 0.047]− [0.007, 0.012]
. (2)

We are given some additional information about the free disk space as well:
its value is normally distributed within [60, 80] with a mean of 70. The
problem is to describe how long it takes for the disk to become completely
filled with data. Results were obtained with the help of the Q3 software
package [19] and are shown by the thinly drawn outer curves in Figure 4.

The outer curves in Figure 4 are weak. Nevertheless they constitute a
stronger result than would be derived by simple conventional means: solving
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equation (2) gives t ∈ [1500, 3810], yet the outer curves provide more infor-
mation than that, showing for example that overload probably will occur at
or after time 1700, and probably will have occurred by time 3400.

Stronger initial data leads to stronger conclusions. When the data
inflow rate specification is narrowed from [0.033, 0.047] to [0.037, 0.043]
megabytes/hr, the conclusions are correspondingly better (thickly drawn
inner curves, Figure 4). In related work, Post and Diltz [20] report on risk
analysis of computer systems using pairs of CDFs.

1500 1800 2100 2400
Time =⇒

2700 3000 3300 3600 3900
0

0.2

⇑
p

0.4

0.6

0.8

1.0

Figure 4: A disk slowly fills with data. The thinly drawn outer CDFs bound
the space of possible CDFs that describe the probability of the disk becoming
filled with data as time progresses, given a data write rate in [0.033, 0.047].
The more thickly drawn inner CDFs bound a smaller family of CDFs that
describe the probability of the disk becoming filled over time as well, but with
a narrower interval for write rate of [0.037, 0.043]. The narrower input led
to stronger conclusions, as shown by CDF bounds that are closer together.
CDF bounds that are close together constrain the space of possible CDFs
describing the probability of disk overload over time more than CDF bounds
that are far apart.
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Intervals

PDFs
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————>
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relax-to
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subset-of
————>

First Order
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Figure 5: The relationships among intervals, PDFs, histograms, intermediate
result collections, and first order stochastic dominance representations. The
subset-of relations also involve shifts in representational formalism. Going
from left to right, none of the relationships above involves approximation,
so correctness is preserved.

7 Bounded CDF families and stochastic

dominance

The bounding CDFs derived by the automatically verified histogram do not
cross, since the lower CDF is as low as possible at every point, and the
higher CDF is as high as possible at every point. Further, the two CDFs
are different from one another because they are constructed from histograms
which in turn are constructed from finite-width intervals each with different
possible distributions of mass. Two different, non-crossing CDFs are said to
stand in a relationship of first order stochastic dominance. Formally,

F (x) ≤ G(x) for all x (3)

where F and G are cumulative distributions and the inequality is strict for
at least one point in x [21].

The conceptual connections between intervals, PDFs, histograms, inter-
mediate result collections, and first order stochastic dominance relations are
shown in Figure 5.

Two CDFs in a first order stochastic dominance relationship bound the
family of CDFs consisting of all CDFs that dominate one bounding CDF
and are dominated by the other. There are other ways to define CDF fami-
lies. These include higher order forms of stochastic dominance, which allow
CDFs in a stochastic dominance relation to cross. Higher order forms of
stochastic dominance relax (3) by placing the inequality condition on inte-
grals of CDFs rather than directly on CDFs, or on integrals of integrals of
CDFs, etc. Nth order stochastic dominance has been found useful for n up
to 3. In this paper we deal only with first order stochastic dominance, the
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most important. Since the bounding CDFs of our example stand in a first
order stochastic dominance relation, the body of existing work on stochastic
dominance can be drawn upon for methods of using the derived bounding
CDFs. The theory and application of stochastic dominance is fairly well
developed, with at least one book [22] and hundreds of papers. Stochastic
dominance has been most extensively investigated in economics and finance
as a basis for optimization and decision making. Stochastic dominance has
also been applied to computer systems analysis [20]. A survey of recent work
and many references appear in Levy [21].

The mathematics field of majorization theory is closely related to sto-
chastic dominance.

Another way to define a family of CDFs is useful in answering questions
like, “What actual but unknown CDFs are consistent with a set of measure-
ments?” Some general results were developed by Kolmogorov and Smirnov
and summarized by Kolmogorov in 1941 [23], and are easily restated using
interval terminology. Such results, as well as the present work, help indicate
some significant advantages of CDFs over PDFs in representing probabilistic
information.

8 Discussion

Let us review some promising applications, then compare the automatically
verified histogram method with the better known Monte Carlo methods.

8.1 Applications

An important next step in the development of the automatically verified
histogram method is to apply it to interesting problems. A simulation ap-
plication similar to the disk overloading problem is described in great detail
by Berleant et al. [24]. More complex simulation problems are a natural ex-
tension. One simulation problem is described briefly next, after which two
other areas of application are mentioned.

Consider the problem of forecasting the spread of the disease AIDS (ac-
quired immune deficiency syndrome) among intravenous drug abusers due
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to sharing of needles. Rate of spread has been modeled as

dN(t)

dt
= cN(t)v − µN(t) (4)

where N(t) is the number of intravenous drug abusers, c is a constant factor,
v is a constant exponent, and µ is the constant rate at which individuals
leave the population. The exponent v is believed to be in the interval [0, 1).
Yet there seems no good reason to consider any particular distribution of
probability mass over that interval a better description of our knowledge of
the value of v than many other distributions [25]. Therefore v is best de-
scribed with an interval. However N(t) is known well enough to be described
by a PDF [26]. Hence simulation modeling of this problem [27] appears to
be a good candidate for the automatically verified histogram method.

The fields of economics and finance are also natural candidates for apply-
ing the automatically verified histogram method, as stochastic dominance
has been best developed in those fields.

The conventional histogram method has been applied mostly in relia-
bility analyses. Thus reliability analyses and decision analyses in which
reliability plays an important role also form a promising application area for
the verified histogram method.

8.2 Monte Carlo methods

The automatically verified histogram method forms an interesting compar-
ison with the well known Monte Carlo approach. Table 1 summarizes.

8.2.1 Comparative disadvantages of the automatically verified

histogram method

Monte Carlo methods may be applied to models with dependent inputs,
if those dependencies are well characterized. The automatically verified
histogram method cannot be, although if the dependencies are well char-
acterized, a modification of the automatically verified histogram method in
accordance with Section 4.1 should be feasible.
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Automatically
verified

histogram
method

Histogram
discretization

method

Monte
Carlo

methods

Handles
dependent
inputs?

× × √

Automa-
tically

verifying?

√

(excess width
likely)

×
×

(insufficient width
almost certain)

Handles
interval
inputs?

√ √ √

Handles
PDF

inputs?

√ √ √

Handles
PDFs and
intervals?

√ √ ×

Table 1: Comparison of Monte Carlo and histogram methods.

8.2.2 Comparative advantages of the automatically verified

histogram method

With Monte Carlo methods, input values are chosen randomly for each input
variable to generate a vector of input values. This input vector generation
process is done numerous times to sample the space of possible input vectors
in a statistically adequate way. Each input vector is applied to the model,
which produces the corresponding output vector. If inputs are interval val-
ued, the range of values that are observed for a particular output variable
over the set of input vectors is used to describe the range of values that are
possible for that output variable — a process that inherently produces un-
guaranteed results. Thus we must be satisfied with some notion of statistical
adequacy that falls short of a guarantee.

If the inputs to a model are PDFs instead of intervals, the space of
possible input vectors can be randomly sampled in such a way that samples
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are generated consistently with the PDFs describing the inputs. The set
of output values produced for a given output variable can be statistically
analyzed to describe its PDF, or better its CDF (Kolmogorov 1941) [23],
although results are still not guaranteed.

Monte Carlo methods have difficulty with situations in which some in-
put variables are intervals and others are PDFs, due to the difficulty of
adequately sampling an input space consisting of both intervals and PDFs.

Thus there are two main advantages of the automatically verified his-
togram method over the Monte Carlo approach:

• The automatically verified histogram method produces guaranteed re-

sults, unlike Monte Carlo methods.

• The automatically verified histogram method appears better suited to a

mixture of interval and PDF valued inputs than Monte Carlo methods.
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