
Interval Computations
No 2, 1993

UniCalc, a Novel Approach to Solving
Systems of Algebraic Equations

A. B. Babichev, O. B. Kadyrova, T. P. Kashevarova,
A. S. Leshchenko, and A. L. Semenov

This paper describes a novel approach to solving systems of algebraic equa-
tions and inequalities that is based on subdefinite calculations. The use of these
methods makes it possible to solve overdetermined and underdetermined sys-
tems, as well as systems with imprecise and incomplete data. The approach
was implemented with the help of the methods of interval mathematics. The
UniCalc solver, also described in this paper, was developed on the basis of
this approach. To illustrate the capabilities of UniCalc, we give examples of
problems solved with its help.

UniCalc: новый подход к решению
систем алгебраических уравнений

А. Б. Бабичев, О. Б. Кадырова, Т. П. Кашеварова,
А. С. Лещенко, А. Л. Семенов

Описан новый подход к решению систем алгебраических уравнений и не-
равенств. Данный подход основывается на аппарате недоопределенных
вычислений и позволяет решать недоопределенные и переопределенные
системы уравнений, а также задачи с неточными и неполными данными.
Для реализации аппарата недоопределенных вычислений используются
методы интервальной математики. В статье также описывается реша-
тель UniCalc, реализованный на базе рассматриваемого аппарата. Для
иллюстрации возможностей UniCalc’а приводятся примеры задач, решен-
ных с его помощью.

c© A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenov, 1994



30 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

1 Introduction

Solving systems of algebraic equations attracts considerable interest, and
numerous methods exist for solving such systems. As a rule, these algo-
rithms are based on approximate methods of numerical mathematics; in the
following they are referred to as the classical methods. (Examples of such
methods are Newton’s method, bisection methods, relaxation methods, gra-
dient methods etc.) Normally, each classical method is designed for a par-
ticular class of systems of equations. Moreover, most of these methods are
iterative and require a good initial approximation. In addition, the classical
methods are good only for systems that are fully defined with deterministic
equations. However, the systems that describe phenomena of real life may
be either underdetermined or overdetermined; they may include inequalities,
uncertain and imprecise values. To solve such classes of problems, several
approaches exist.

One is interval analysis [1, 2] allowing some classical methods to be
adapted to systems with imprecise data and making it possible to tackle
some problems unsuitable for classical methods.

There are some other approaches to problems with uncertain data such as
fuzzy set theory [3]. The degree of uncertainty is described by some function
called the membership function.

To solve real systems containing additional conditions formulated as
equations and inequalities, an approach called constraint propagation is used
[4]. Although this method makes it possible to consider certain constraints,
it fails in the same manner as classical methods with underdetermined and
overdetermined systems with imprecise data. One way to obviate these
drawbacks is to combine constraint propagation methods with interval math-
ematics [5].

This paper considers an approach for solving algebraic equations created
in the framework of artificial intelligence research [6, 7]; this approach is free
of almost all drawbacks of the aforementioned approaches. It is applicable
to a wide class of systems and does not require any initial approximations.
This approach is called the method of subdefinite calculations. It has some
parallels with the constraint propagation method, except for its greater gen-
erality. Based on the method of subdefinite calculations, the UniCalc solver
was developed in the Novosibirsk Division of the Russian Research Institute



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 31

of Artificial Intelligence.
The rest of the paper is organized as follows. Sections 2 and 3 present the

algorithm of subdefinite calculations and some implementation questions.
Sections 4, 5, and 6 consider both the UniCalc solver as a whole and some
of its components. Numerical experiments with UniCalc are described in
Section 7. Section 8 provides a summary, UniCalc’s technical characteristics
and some conclusions.

2 The algorithm

This section briefly describes the algorithm used by the UniCalc solver. The
algorithm is fully described in [6, 7].

2.1 Concepts and designations

Let a calculation model M be determined by the set of variables X and
the set of relations over these variables R. We shall denote the model by
M = (X,R). Let A be the value domain of the model’s variables, and
let ∗A denote the set of all nonempty subsets of the set A. The values
∗a ∈ ∗A containing one member only are called precise, while other values
are called subdefinite. The value ∗a corresponding to the entire set A is the
fully indefinite value. Let us map uniquely each variable x in the set X into
a variable ∗x whose value domain is the set ∗A. This maps the set of variables
X onto a set ∗X of variables ∗x. The variables ∗x will be called subdefinite
variables.

The subdefinite description of the model M is a set (M,h), where h =
(∗a1, . . . , ∗an) is a vector of subdefinite values. Narin’yani showed in [6, 7]
that for subdefinite descriptions it is possible to construct a finite automaton
that generates finite sequences of states. The sequences are terminated either
with the ‘end’ state, or the ‘conflict’ state. In the first case, the automaton
produces a vector h which is an n-dimensional parallelepiped in the space
An containing the set of the values of the variables X that satisfy the model
M .



32 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

The process of inference/calculations over models usually involves inter-
preting each relation with a help of a set of functions allowing us to find the
values of other variables from known values of some variables. For example,
the relation

ea − 2b2 + c+ 7 = 0

is interpreted via the following three functions:

a := ln(2b2 − c− 7); b :=
(
(ea + c+ 7) : 2

) 1
2 ; c := 2b2 − ea − 7.

Since the variables ∗X rather thanX are used while working with subdef-
inite descriptions, it is necessary to define operations over subdefinite values
and subdefinite functions. Narin’yani showed [6] that if we map each m-ary
operation s over values from A into an operation ∗s over undefined values
from ∗A according to the formula

∗s(∗a1, . . . , ∗am) =
{
a = s(b) | b ∈ ∗a1 × ∗a2 × · · · × ∗am

}
(1)

and if each m-ary function f of variables in X is mapped into a function ∗f
of variables in ∗X by the formula

∗f(∗x1, . . . , ∗xm) =
{
x = f(b) | b ∈ ∗x1 × ∗x2 × · · · × ∗xm ∩R

}
(2)

where R is an additional relation connecting the variables x1, . . . , xm
(for uncorrelated variables R = ∗Am), then it is possible to use the infer-
ence/calculation apparatus for the initial models for inference/calculations
on subdefinite models.

2.2 The calculation algorithm for subdefinite models

Suppose we have a model with a subdefinite description (in [7] such models
are called GCM, generalized calculation models). According to Section 2.1,
the inference/calculation procedure for such models may be described as a
procedure of calculating the interpretation functions of subdefinite variables.
If a certain relation of the initial model relating variables x1, . . . , xm is
interpreted by a set of the following functions:

xi := fi(x1, . . . , xi−1, xi+1, . . . , xm), i = 1, . . . , m (3)



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 33

then, using formula 2, the corresponding interpretation functions for the
subdefinite model may be defined as follows:

∗xi :=
∗fi(
∗x1, . . . , ∗xi−1, ∗xi+1, . . . , ∗xm) ∩ ∗ai, i = 1, . . . , m (4)

where ∗ai is the current value of ∗xi.
The inference/calculation process formulated in [7] for GCM may be

presented in the form of the following algorithm (let ∗Xt denote the set of
the variables in ∗X whose values have become more precise at the step t,
and let F | ∗Xt denote the set of interpretation functions having at least one
argument which belongs to ∗Xt):

Step 1. t = 1; ∗Xt = {∗x1, . . . , ∗xn}.
Note that all model variables have values: they are either initialized
or their value is fully indefinite, i.e. the set A.
All the model interpretation functions are placed in set F | ∗X1 and
all the members of this set form the set of active functions.

Step 2. Combine the function set F | ∗Xt with the active interpretation
functions.

Step 3. Choose an arbitrary subset in the produced set. This subset is
joined to the working function set and removed from the active func-
tion set.

Step 4. Remove an arbitrary subset of functions from the working function
set. The functions of the subset are calculated at this step. The
results of these calculations are compared with the values of subdefinite
variables in the common memory, and variables that have changed
their values form the set ∗Xt+1 defining set the F | ∗Xt+1.
If a subdefinite variable yields, as a result of calculating some inter-
pretation function, the value that is equal to the empty set the model
is incompatible. The algorithm terminates.

Step 5. If the set of active functions, the working function set and the set
∗Xt+1 are simultaneously empty, go to Step 7.

Step 6. t = t+ 1 and go to Step 2.
Step 7. Output the values in the set ∗X = {∗x1, . . . , ∗xn}.

This algorithm has the following features:



34 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

• The model can be underdetermined or overdetermined and the param-
eters of the model may be imprecise or unknown;

• No distinction is made between the model’s arguments and results:
all variables have values that are subdefinite in various degrees; the
calculations are performed for all variables of the model;

• This algorithm determines a parallel, asynchronous, undetermined
process with data-driven flow control;

• According to formula 4, subdefiniteness of the variables never increases
and the calculation is converging. For all models having only finite
subdefinite values, this procedure terminates in a finite number of
steps.

Consider an example. Let the model be specified by two equations:

8a− b = 15, 6b+ 4c = 230

and suppose that it is known that a, b, and c are integers in the range
from 1 to 100. Hence, the subdefinite value of each of these variables can
be represented by a set of integers with the initial state A = {1, . . . , 100}.
These relations are interpreted by the following functions:

f1 : a := (b+ 15)/8

f2 : b := 8a− 15

f3 : b := (230− 4c)/6

f4 : c := (230− 6b)/4.

Introducing the subdefinite description, we have:

∗f1 : ∗a :=
{
a = (b+ 15)/8 | b ∈ ∗b

}
∩∗a

∗f2 : ∗b :=
{
b = 8a− 15 | a ∈ ∗a

}
∩∗b

∗f3 : ∗b :=
{
b = (230− 4c)/6 | c ∈ ∗c

}
∩∗b

∗f4 : ∗c :=
{
c = (230− 6b)/4 | b ∈ ∗b

}
∩∗c.

In compliance with the above algorithm, we obtain

∗X1 =
{∗a = {1, . . . , 100}, ∗b = {1, . . . , 100}, ∗c = {1, . . . , 100}

}
F | ∗X1 =

{∗f1, ∗f2, ∗f3, ∗f4}.



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 35

The table below illustrates the algorithm’s execution:

Subdefinite Working Active
values function functions
∗a = {2, 3, . . . , 14} ∗f1

∗f2, ∗f3, ∗f4
∗b = {1, 9, . . . , 97} ∗f2

∗f3, ∗f4
∗b = {1, 9, 17, 25, 33} ∗f3

∗f1, ∗f4
∗c = {8, 20, 32, 44, 56} ∗f4

∗f1, ∗f3
∗a = {2, 3, 4, 5, 6} ∗f1

∗f2, ∗f3
∗b = {1, 9, 17, 25, 33} ∗f3

∗f2
∗b = {1, 9, 17, 25, 33} ∗f2

Therefore, the algorithm yields the following result:{∗a = {2, 3, 4, 5, 6}, ∗b = {1, 9, 17, 25, 33}, ∗c = {8, 20, 32, 44, 56}
}
.

To find an every separate solution one should combine the values from dif-
ferent sets and verify the system. In our case such solutions are:

{2, 1, 56}, {3, 9, 44}, {4, 17, 32}, {5, 25, 20}, {6, 33, 8}.

3 Implementation of the algorithm

The implementation of the algorithm just described assumes the choice of
a set (sets) A corresponding to the class of models; in addition acceptable
operations and functions over values inA and variables inX are to be defined
and extended for objects in ∗A and ∗X. Furthermore, the model should
be represented in a form ensuring efficient organization of the calculation
process. To represent subdefinite objects, the active data type apparatus [8]
has been proposed and used to implement various types of subdefinite data
(integers and reals, sets, logical and enumerable data, objects of planimetry,
etc.) [9].

3.1 Implementation of subdefinite numbers

We consider only computational models over real numbers; therefore the
set A is the field of real numbers R or the ring of integer numbers Z. We as-
sume that all the arithmetic operations {+,−, ∗, /} as well as exponentiation



36 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

and root extraction are defined over values in the set A. The set of accept-
able functions includes exponential, logarithmic and all direct trigonometric
functions. Since computer number representations are finite, the set A will
be represented by finite intervals in R or Z which are bounded from below
and from above by some boundary numbers MinA and MaxA playing the
role of −∞ and +∞, respectively (these numbers differ for real and integer
sets A). The operations on elements of A are defined as follows: if a, b ∈ A,
and � is some operator, then

a� b = max(a� b,MinA) if a� b < 0

a� b = min(a� b,MaxA) if a� b ≥ 0.

Assuming these conventions and considering ∗A as the set of all intervals
in the set A, we can extend all operations on elements of A to operations
on ∗A defined by formula 1, using the appropriate operations of interval
mathematics. Note that any nonempty subset of the set Amay be embedded
into some interval. Therefore, assuming that ∗A is the set of all intervals of A,
we can only increase subdefiniteness of solutions without losing any of them.
These operations must be supplemented by the operations of conversion of
subdefinite types and of assigning subdefinite values. Alefeld [2] showed that
interval continuous analytic functions are monotonic by inclusion, i.e. if f
is a continuous analytic function of the interval variables X1, . . . , Xn and
X1 ⊆ Y1, . . . , Xn ⊆ Yn, then f(X1, . . . , Xn) ⊆ f(Y1, . . . , Yn). In view
of this property, to extend functions over variables from A, it is possible
to use their interval extensions in the corresponding continuity domains,
since the interval thus obtained will always include the set determined by
formula 2. Considering the possibility of using intervals with infinite limits,
we can continue interval expansion to discontinuous functions, assuming, for
example, that 1/0 = (0,MaxA) and 1/(−1, 1) = (MinA,MaxA). Such an
approach makes it possible to avoid the divide-by-zero situation that is fatal
for other methods.

3.2 Some implementation problems

Beside the aforementioned divide-by-zero problem, some other implementa-
tion problems have been solved. They are mostly due to violation of unique-
ness in computing some functions of interval parameters (for instance, for



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 37

the inverse trigonometric functions or for even power roots) which may re-
quire using of multiintervals (unavailable in the current implementation).
The violation of uniqueness in the course of calculations is rather a com-
mon problem since for each relation we have to calculate the interpretation
functions for each of its variables. To overcome this difficulty, the intervals
of function monotonicity are extracted to calculate the function’s values,
and the general solution is constructed as the union of all solution intervals
obtained. Suppose we have the model presented below.

x2 − a = 0

4 ≤ a ≤ 25

The interpretation function x :=
√
a yields two intervals x1 = (−5,−2)

and x2 = (2, 5), and the interval x = (−5, 5) will be returned as the result.
However, if the relation x > 0 is added to the system, the resulting interval
will be x = (2, 5).

Another problem of interval calculations worth mentioning is the prob-
lem of indefiniteness of the origin. Indefiniteness arises, for instance, when
evaluating expressions like x/y or xy, where x and y are intervals contain-
ing zero. The method for handling such situations is chosen by the user
who can use options to specify whether the presence of such arguments in
these expressions is contradictory or not. The latter case requires the user
to specify what should be considered to be the result of the expression —
the fully indefinite value or the value defined by continuity.

3.3 Representation of models

The most appropriate method for the algorithm described above is the
network representation of models. The virtual flow data-driven processor
[10, 11] is based on such a representation using the apparatus of active data
types. It is the kernel of the UniCalc system. In this processor, a net-
work is represented as a bipartite oriented graph with two types of vertices:
objects and operators. Objects represent model variables, and operators
represent functional links between objects (interpretation functions). The
outgoing edges point to the operators whose arguments are the correspond-
ing objects, and incoming edges specify objects which provide values to these
operators. A network is associated with a discipline of its execution, which



38 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

substantiates the inference algorithm. This substantiation depends on the
computer’s architecture, its computational capabilities, as well as a number
of other factors. For instance, sets may be selected at Step 3 according to
certain priorities, from a queue or randomly. Interpretation functions are
computed at Step 5 sequentially or in parallel, etc. In the current implemen-
tation of the processor, the interpretation functions are selected depending
on their ordinal number and are computed sequentially. If one uses comput-
ers designed for parallel processing or transputers, the strategy of network
execution should be changed.

4 The UniCalc solver

The algorithm described above provides a novel approach to solving systems
of algebraic equations that describe the class of models under consideration.
To use it efficiently for practical purposes, we have developed the UniCalc
solver whose nucleus is the flow processor considered in Section 3.

UniCalc is an abbreviation for Universal Calculator, indicating the abil-
ity of the system to solve a very broad class of mathematical problems.

4.1 Purpose and capabilities

The UniCalc solver was designed to solve arbitrary systems of algebraic
and algebraic-differential relations. For this program, a relation is consid-
ered to be an equation, inequality or a logical expression. According to the
algorithm used, the system to be solved can be either overdetermined or
underdetermined, and the system’s parameters (coefficients, variables, ini-
tial conditions for the Cauchy problem) can be subdefinite and expressed
as intervals. Such a system may contain only integer and real variables or
combine both integer and real variables.

As a result of solving algebraic systems, we either find a parallelepiped
that contains all roots of the system, or a message about the system’s incom-
patibility is issued. If the system has a single root, then the parallelepiped
will in most cases be reduced to a point (with a given accuracy). If the
system has several roots, to locate each of them it is necessary to add the
appropriate relations, or use the built-in tool for automatic root locating.



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 39

4.2 Architecture of the UniCalc solver

The solver is an integrated environment supporting input of the system to
be solved, its modification, calculations, viewing results, specifying accu-
racy, etc. To input and modify the system UniCalc has the built-in text
editor. To write the problems, a source language close to commonly used
mathematical notation is provided. All problems are processed with the
above algorithm. To translate the source input into a network, the solver
includes a translator and pre-processors, in particular, for symbolic transfor-
mations and solution of systems of algebraic-differential relations. The first
pre-processor simplifies the system, differentiates symbolically and makes
transformations needed to solve linear systems. The second pre-processor
translates the system from the differential equation language into the basic
UniCalc source language that supports solving problems of this kind.

The UniCalc’s user interface offers a number of services to support prob-
lem solving, including various setup options. When solving problems requir-
ing large computation times, it is possible to suspend calculations to see the
intermediate results, and depending on convergence rate, either to continue
computation or to stop it. A feature for locating roots is used when exact
solutions are in large intervals. This process involves dichotomic division
of the obtained interval for the selected variable. This tool is useful to find
global function extreme values from the right to left or the left to right along
the function value interval.

5 Symbolic pre-processor

The main objective of this pre-processor is optimization of the network and
performing some types of symbolic manipulations. The system to be solved
by UniCalc is represented as a functional network whose size depends upon
the number of variables and expressions in the system. The pre-processor
translates the source expressions into its internal representation (which is
a dynamic modification of n-ary Kantorovich schemata), simplifying the
source expressions and storing only one copy of each subexpression. Note
that reducing similar terms optimizes networks and sometimes narrows down
intervals. For example, the following expressions x × x and x = (−4, 5),
if evaluated directly, yield (−20, 25), whereas the symbolic pre-processor
transforms these expressions to x2, resulting in the interval (0, 25). In addi-



40 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

tion, storing only one copy of each term reduces the number of intermediate
calculations and reduces subdefiniteness of results, as well as computation
time.

Symbolic calculations are performed with the internal representation.
Currently these calculations cover only differentiation. Expressions obtained
in this way make up the system used to create the network used for calcula-
tions. Such an approach not only offers symbolic transformations, but helps
to solve the problem of a symbolic-numerical interface. Prior to constructing
a network it is possible to view, print out, or store the expressions obtained
as a result of reductions and symbolic transformation.

Here, we notice the usefulness of symbolic differentiation to study be-
havior of functions and to simplify the statement of problems, as well as to
solve optimization problems. UniCalc does not support solving such prob-
lems explicitly, but for continuous real variable functions this problem can
be stated as follows. If the first derivative at an extremum is zero, the sec-
ond derivative sign at this point determines whether it is a maximum or a
minimum (see the example in Section 7). If the function has more than one
extremum of this type, then an interval containing all these points will be
returned. To separate individual extreme points, the automatic root locat-
ing procedure with an appropriate selection of the search direction may be
used.

In addition, the symbolic pre-processor incorporates some features elimi-
nating the drawbacks exposed in using UniCalc, one of which is low speed on
systems of linear algebraic equations. To eliminate this, symbolic variable
substitution is performed to obtain a triangular (trapezoid in general case)
system of equations where some variables are expressed via others. If the
system is subdefinite, an interval solution will be obtained.

6 Differential equations

UniCalc can solve systems of algebraic-differential equations supported by
the differential equation pre-processor [12]. The system of equations ap-
plied to the input of this pre-processor is a mathematical model containing
ordinary differential equations of the first order with initial data, algebraic
equations, inequalities (linear and nonlinear), and logical expressions. Differ-
ential equations must be solved for the derivative. Parameters of differential



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 41

and algebraic equations as well as initial data may be specified precisely or
as intervals.

Presently, UniCalc uses the conventional numerical approach to solving
systems of ODEs. In this approach, the derivatives are approximated by
finite differences, following which the procedure is iterated over the inte-
gration domain with a certain step. To approximate the derivatives, we
use explicit and implicit Euler schemes, as well as explicit Runge-Kutta
schemes of various orders. Thus, the system of algebraic-differential equa-
tions is reduced to a system of algebraic relations (possibly with inter-
val parameters), and the algebraic system thus obtained is solved with
the help of the basic method of the solver. The values obtained at some
step are used as the initial values for the same system at the following
step. Note that in the case of implicit methods we do not need the initial
approximation.

The user can choose the finite difference scheme from the options offered
by the system, the accuracy for automatic step selection or a constant in-
tegration step, and the result output points. The results are produced as
arrays of intervals for each unknown function of the system. We want to
point out that in the current version of the ODE-preprocessor, intervals for
each function contain solutions of the approximated differential equations
but not the original system of differential equations. The calculation pro-
cess can be accompanied by a plot in which each approximated function is
represented as a band-curve bounded by the upper and lower boundaries of
intervals.

7 Numerical experiments

To estimate the efficiency of the solver and determine the range of possible
applications, many problems have been tested, including linear and nonlin-
ear systems of equations and inequalities, mixed systems, various integer
problems, optimization problems, interval problems, systems of differential
equations, etc.

Nonlinear systems. Among the numerous nonlinear systems solved with
UniCalc (including almost all tests considered in papers [13, 14]), we want
to point out the problem offered in [15] as a test problem. This problem



42 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

concerns combustion of propane in air to form ten products. The system
includes eleven equations in eleven unknowns and is as follows:

f1 = n1 + n4 − 3 = 0

f2 = 2n1 + n2 + n4 + n7 + n8 + n9 + 2n10 −R = 0

f3 = 2n2 + 2n5 + n6 + n7 − 8 = 0

f4 = 2n3 + n9 − 4R = 0

f5 = K5n2n4 − n1n5 = 0

f6 = K6n
1/2
2 n

1/2
4 − n

1/2
1 n6

(
p

nT

) 1
2

= 0

f7 = K7n
1/2
1 n

1/2
2 − n

1/2
4 n7

(
p

nT

) 1
2

= 0

f8 = K8n1 − n4n8
(
p

nT

)
= 0

f9 = K9n1n
1/2
3 − n4n9

(
p

nT

) 1
2

= 0

f10 = K10n
2
1 − n24n10

(
p

nT

)
= 0

f11 = nT =
10∑
i=1

ni

where Ki, p, and R are constants. We need to find the physical solution of
this system, i.e. such that all the ni are positive.

It is noted in the paper that in the original formulation this is a hard
problem and it was reduced to another equivalent system which was solved.
In contrast to this, UniCalc easily solved the original problem.

Determining the initial intervals of the variables took 2.5 secs, and finding
the final solution, about 3mins on an IBM PC AT–286.

Optimization problems. Currently, UniCalc does not have any special
facility to solve optimization problems. However, its algorithm is general
enough to solve some problems of this type. Both problems of unconstrained
optimization and optimization under restrictions are considered. The first 15
problems offered in [16] as test problems were successfully solved. The first
test was to find a minimum of the Rosenbrock’s function of order fifteen.



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 43

One way of stating an optimization problem for UniCalc is its mathe-
matical statement. For example, to find a maximum of a polynomial in the
UniCalc language we write

(* Find a maximum of the function *)
f(x) := x^6 - 26 * x^3 + 45 * x^2 - 10 * x + 1;
fmax = f(x) ;

(* The first derivative is zero *)
dif(f(), x) = 0;

(* At the point of maximum, *)
(* the second derivative is negative *)

dif(f(), x:2) < 0;

The results are x = 1.2176, fmax = 11.86.

Integer problems. UniCalc can be used to solve various integer prob-
lems which are difficult for other solvers, for example, integer optimization,
Diophantine equations, integer factoring, etc.

Problems with subdefinite data. UniCalc is good to solve research
problems and problems with imprecise data. For example, suppose we have
the following problem.

A ball falling freely from height h = 2 meters collides elastically with
a stationary plane inclined at angle α to the horizon. It is known that
the inclination angle α is in the interval from 25 to 35 degrees, and the
restitution coefficient Rc is in the range from 0.75 to 0.85. Determine the
possible directions of the ball’s velocity vector at the end of the collision
such that the maximal height h1 after the collision is greater then or equal
to 0.5 meter. The system of equations is given below.

V = sqrt(2 * @g * h);
Vt = V * sin(alpha);
Un = -Rc * V * cos(alpha);
Ut = Vt;
ctg(beta) = abs(Un) / abs(Vt);
(Ut^2 + Un^2 ) * cos(alpha + beta)^2 = 2 * @g * h1;



44 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

h1 >= 0.5;
(* Initialization *)

alphadeg := [25, 35];
Rc := [0.75, 0.85];
h := 2;
betadeg := [0, 90];

(* radian to degree conversion *)
convert(angle) := angle * 180 / @pi;
alphadeg = convert(alpha);
betadeg = convert(beta);

The solutions are:

alphadeg := [25, 27.39], betadeg := [28.75, 32.14],
h1 = [0.5, 0.56], Rc := [0.78, 0.85],
Un = [-4.82, -4.44], Ut = [2.65, 2.88],
V = [6.26, 6.26], Vt = [2.65, 2.88].

Note that the values obtained for Rc and alphadeg differ from the initial
ones due to the fact that UniCalc does not distinguish between input and
output data. The initial values were updated according to the problem
statement.



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 45

8 Conclusions and future research

This paper describes the implementation of the method of subdefinite calcu-
lations in the UniCalc solver. The practical applicability and usefulness of
this mathematical apparatus have been proved by successfully solving both
test problems and real problems. We consider that the solver described can
be useful to a wide circle of users: students, engineers, designers, economists
and research workers.

The UniCalc solver runs under MS-DOS/PC-DOS operating systems,
version 3.0 and above on the computers IBM PC XT/AT or fully compat-
ible. It requires 512Kb of RAM and 600Kb of free disk space. Such a
configuration is suitable for up to 300 relations and variables. UniCalc does
not require a math-coprocessor, but will use one if it is available to speed
up the calculation.

Research on the apparatus of subdefinite models and UniCalc continues.
Our next goals include:

1. Improving the solver’s capabilities (for instance, introducing an object-
oriented representation of models, improving computational efficiency,
porting UniCalc to Unix and MS Windows).

2. Theoretic trends. These works include in particular:

• Other representations of subdefinite data (for example, by mul-
tiintervals) with an appropriate modification of the calculation
procedures;

• Studying methods for implementing the considered algorithm on
parallel computers and transputers;

• Extending the notion of subdefiniteness to other objects (for ex-
ample, subdefinite relations and subdefinite functions).



46 A. Babichev, O. Kadyrova, T. Kashevarova, A. Leshchenko, A. Semenovh

References

[1] Moore, R. E. Interval analysis. Englewood Cliffs, New Jersey, Prentice-
Hall, 1966.

[2] Alefeld, G. and Herzberger, J. Introduction to interval computations.
Academic Press, New York, 1983.

[3] Zahde, L. A. Fuzzy sets. Information and Control 8 (3) (1965), pp. 338–
353.

[4] Leler, W. Constraint programming languages. Their specification and
generation. Addison-Wesley, Reading, Massachussets, 1988.

[5] Hyvönen, E. Constraint reasoning based on interval arithmetic. In:
“Proceedings of IJCAI–91”, 1991, pp. 1193–1198.

[6] Narin’yani, A. S. Subdefinite models and operations with subdefinite val-
ues. Preprint 400, USSR Acad. of Sciences, Siberian Division, Computer
Center, Novosibirsk (1982) (in Russian).

[7] Narin’yani, A. S. Subdefiniteness in knowledge representation and pro-
cessing systems. Transactions of USSR Acad. of Sciences, Technical
Cybernetics 5 (1986), pp. 3–28 (in Russian).

[8] Narin’yani, A. S. Active data types for representing and processing of
subdefinite information. In: “Actual Problems of the Computer Archi-
tecture Development and Computer and Computer System Software”,
Novosibirsk, 1983, pp. 128–141 (in Russian).

[9] Telerman, V. V. Active data types. Preprint 792, USSR Acad. of Sci-
ences, Siberian Division, Computer Center, Novosibirsk (1988) (in Rus-
sian).

[10] Narin’yani, A. S., Telerman V. V., and Dmitriev, V. E. Virtual data-
flow machine as vehicle of inference/computations in knowledge bases.
In: Jorrand, Ph., Sgurev, V. (eds.) “Artificial Intelligence II. Method-
ology, Systems, Application”, North-Holland, 1987, pp. 149–155.

[11] Dmitriev, V. E. Technological complex for producing problem-oriented
S-processors. In: “Designing Software Tools for Intelligent Problems”,



UniCalc, a Novel Approach to Solving Systems of Algebraic Equations 47

USSR Acad. of Sciences, Siberian Division, Computer Center, Novosi-
birsk (1988), pp. 103–111 (in Russian).

[12] Kashevarova, T. P. and Semenov, A. L. Solving subdefinite problems for
systems of ordinary differential equations of the first order in the Uni-
Calc system. In: “All-Union Scientific-technical Conference ‘Intelligent
Systems in Machine Building’ ”, abstracts, Samara, 1991, pp. 21–24 (in
Russian).

[13] Kearfott, R. B. Some tests of generalized bisection. ACM Transactions
on Mathematical Software 3 (1987), pp. 197–220.

[14] Vrahatis, M. N. Solving systems of nonlinear equations using the
nonzero value of the topological degree. ACM Transactions on Math-
ematical Software 4 (1988), pp. 312–329.

[15] Meintjes, K. and Morgan, A. P. Chemical equilibrium systems as nu-
merical test problems. ACM Transactions on Mathematical Software 2
(1990), pp. 143–151.

[16] More, J. J., Garbow, B. S., and Hillstrom, K. E. Testing unconstrained
optimization software. ACM Transactions on Mathematical Software 1
(1981), pp. 17–41.

Novosibirsk Division of the Russian
Research Institute of Artificial Intelligence
pr. Lavrent’eva 6, Novosibirsk,
Russia, 630090
E-mail: semenov@isi.itfs.nsk.su


