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The computation of an enclosure for the solution of a sparse set of linear
equations Ax = b with a thin matrix A and an interval right hand side b is
considered. Gaussian elimination works well when the matrix is an M-matrix,
but fails when the matrix is a general matrix. This paper illustrates how, for
sparse matrices, an ordering intended to reduce the height of the elimination
tree (and thus enhance parallelism of computations) can reduce the growth in
the interval solution for general non-M-matrices. For banded matrices, it is
shown that the growth in intervals is bounded by n, where n is the dimension of
the matrix, rather than 2n. This result appears to hold for other types of sparse
matrices. A second method based on singleton right hand side representations
of b is shown to yield the hull of the solution. Best results are obtained by a
combination of the singleton solver with path length shortening permutations.

Прямые вычисления интервальной
оболочки для тонкой разреженной

не-M-матрицы

Ф. Л. Альварадо, Ж. Ванг

Рассмотрен метод вычисления оболочки решения разреженной системы
линейных уравнений вида Ax = b, где A — тонкая матрица, а b — интер-
вальная правая часть. Метод исключения Гаусса хорошо работает лишь
для M-матриц и не справляется с задачей в общем случае. Описан и
проиллюстрирован способ, позволяющий для разреженных матриц путем
упорядочивания элементов уменьшить глубину дерева исключений (уве-
личивая, таким образом, возможность производить вычисления парал-
лельно). При этом уменьшается сложность интервального решения для
общего случая не-M-матриц. Для ленточных матриц показано, что рост
интервалов ограничен n — размерностью матрицы, а не 2n. Данный ре-
зультат применим и к другим типам разреженных матриц. Второй метод,
основывающийся на представлении b в правой части в виде одноэлемен-
тного множества, позволяет решить задачу нахождения оболочки реше-
ния. Комбинация вышеуказанных методов позволяет достичь наилучших
результатов.
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1 Introduction

The computation of an interval enclosure for the solutions x to a sparse set of
interval linear equations Ax = b has seen much activity lately. For the case of
inverse-positive matrices (M-matrices), it is known that 2n solutions suffice.
The case of an interval matrix whose mid-point is the identity matrix has led
to results that require just one solution [1, 2]. However, these methods may
fail when the matrix is a general non-M-matrix: considerable overestimation
of the hull is possible. This paper considers a more narrow problem: the
solution of Ax = b with a thin matrix A and an interval right hand side b
but where the matrix A can be a general matrix.

Two of the reasons for the overestimation that often occurs in interval
mathematics are:

• The repeated use of the same interval at more than one place in a
calculation sequence. Perhaps the most trivial example of this is the
evaluation of x2 when x ∈ IR and 0 ∈ x. Consider, for example:

[−2, 3]2 = [0, 9]

[−2, 3] · [−2, 3] = [−6, 9] .

• The failure of the distributive law. In general, x · (y+z) 6= x ·y+x ·z.
Consider, for example:

[−2, 3] ·
(

[−2, 1] + [3, 4]
)

= [−10, 15]
[−2, 3] · [−2, 1] + [−2, 3] · [3, 4] = [−14, 16] .

Overestimation is particularly troublesome during forward and back sub-
stitution solutions of factored linear equations. The algorithm for forward
substitution using an already factored matrix A = LDU , where L is unit
lower triangular with entries ℓij, D is diagonal and U is unit upper triangu-
lar, can be stated as:

Forward substitution algorithm

For i = 1, 2, . . . , n
for all j for which ℓij 6= 0

bi ← bi − ℓijbj
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Thus, the solution to Ly = b by forward substitution (denoted hereinafter
as L\b) is constructed as a sequence of modifications to the vector b itself.
In this algorithm, y1 depends only on b1, y2 depends on b2 and y1 but only
indirectly on b1, and so on.

For a sparse matrix, not all dependencies exist. Consider a sparse matrix
with the following topology (nonzero pattern):

5

10

15

20

◦ ◦ ◦◦◦ ◦◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦

Factorization of this matrix results in the following unit lower triangular
matrix structure:
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◦◦◦◦◦ ◦◦◦◦ ◦◦ ◦ • ◦◦ ◦ • ◦◦ •◦◦ • ◦◦ ◦ •• ◦◦ ◦ • • ◦◦ ◦••••••◦◦ •◦••••••◦◦ • •◦••••••◦◦ ◦ •••••••••◦◦ ◦ • ••••◦◦ ◦ ••••••◦

Solid symbols • denote fills, elements that start as zero entries and
become nonzero during the factorization. The dependencies that take place
during the factorization are best illustrated by means of an elimination
tree [3]. Figure 1 illustrates the structure of the elimination tree for this
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matrix. The last entry, y20, depends indirectly on all previous entries. How-
ever, an element such as y14 depends only on certain other entries, y1, y3,
y5, y7, y9, and y12 in this case.

1 2

3 4

5

67

8

9 10

1112

1314
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19

20

Figure 1: Elimination tree for matrix in original order.

The paper deals with two distinct lines of thinking, each with indepen-
dent merit. The first is the notion that reordering of the rows and columns
of a matrix can reduce the growth in the intervals by reducing the length
of computational sequences (the height of the elimination tree), but this
requires a counter-intuitive ordering procedure for certain kinds of matrices
such as banded matrices. The second key notion in this paper is that, by
processing the entries of the right hand side vector one at the time, one can
obtain the tightest possible interval enclosure (the hull) of the solution for
arbitrary thin matrices.

2 Reducing interval growth by reordering

In exact arithmetic, the solution of Ax = b is unaffected by a renumbering
of the rows and columns of A, provided b and x are renumbered accordingly.
Limited precision numeric computation, however, often results in substantial
differences in solutions that depend on the ordering of the matrix. As a con-
sequence, various kinds of numerical pivoting schemes have been developed
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in an effort to reduce error growth. Two such examples are complete and
partial pivoting.

For sparse matrices, ordering of rows and columns of a matrix also has
significant impact on the total computation required, as a result of “fill in”
that occurs during factorization. Thus, when the matrix A belongs to a
class of sparse matrices (a class of matrices where the number of nonzero
entries grows less then quadratically with matrix dimension), it is usually
advantageous to renumber the rows and columns of A to maximize sparsity
of L and U [4, 5]. Consider, as an example, the 20×20 sparse matrix above
and its “unordered” factor L. If the matrix is reordered according to the
Multiple Minimum Degree (MMD) algorithm [6] (a variant of the minimum
degree algorithm), the topology of the resulting L̃ factor of the permuted
matrix is:
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◦◦◦◦◦◦◦◦◦ ◦◦ ◦◦ ◦◦ ◦◦◦ ◦◦ ◦ • ◦◦ ◦ • • ◦◦ ◦ • ◦◦ ◦•◦ • ◦◦ •◦ ◦•◦◦ ◦ ◦ ••••◦◦ ◦ ◦•••••••◦

This factor contains fewer fills than the unordered factor. Another pop-
ular reordering method, which reduces the bandwidth (technically, the pro-
file) of the matrix, is the Gibbs-Poole-Stockmeyer (GPS) algorithm [7]. If
both rows and columns of the matrix are renumbered according to GPS, the
resulting L̃ factor (with fills) is:
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There is another important consequence of renumbering a sparse matrix.
This has to do with the precedence of the operations required to perform
the forward and back substitution steps that follow the factorization. The
elimination trees for the two renumbered matrices are illustrated in Figure 2.
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Figure 2: Elimination tree for matrix ordered according to GPS algorithm
(left) and multiple minimum degree algorithm (right).

Assume we want to solve y = L̃\b. These trees illustrate direct data
dependencies among the entries of b while computing y. A similar inter-
pretation exists for the back substitution step using the same tree. The
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observation from these figures is that the computation of the forward sub-
stitution using the GPS algorithm results in a significantly longer sequence
of data dependencies, while that from the MMD method results in a shorter
sequence of dependencies.

When the matrix A is a (possibly dense) matrix, it is a well known result
that renumbering of matrix rows and columns to help reduce error accumu-
lation is essential for large scale computation. The renumbering process is
called pivoting. Two different types of pivoting are generally considered:
partial pivoting and complete pivoting. Partial pivoting guarantees a bound
on the growth of the solution error of 2n, while complete pivoting guaran-
tees a better bound. This bound is conservative. For diagonal dominant
and other well-behaved matrices, one can sometimes dispense with numer-
ical pivoting altogether. Or rather, one is free to perform any (generally
diagonal) renumbering required for the preservation of sparsity during fac-
torization. In the case of unsymmetric, indefinite or non-M-matrices, one
must often use numerical pivoting in conjunction with sparsity preserving
matrix renumbering. Since the two objectives are often in conflict, a good
compromise is often “threshold pivoting”, the idea of performing pivoting for
sparsity preservation reasons, unless the pivot so chosen is worse than the
numerically chosen pivot by more than some specified factor [4].

Definition 1. A thin matrix, vector or scalar is defined as a matrix, a
vector or a scalar whose entries belong to the set of real numbers R.

Definition 2. An interval matrix, vector or scalar is defined as a matrix,
vector or scalar whose entries belong to the set of interval real numbers
IR. A real interval number is representable as an ordered pair of two real
numbers, [α, ᾱ], where α ∈ R and ᾱ ∈ R, α ≤ ᾱ.

A thin matrix, vector or scalar can be viewed as a special case of an
interval.

Definition 3. The radius rad(α) of an interval number is defined as a real
number r ∈ R, where r = (ᾱ− α)/2.

Definition 4. An M-matrix A is a matrix where A−1 > 0, that is, every
entry of its inverse is positive.
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Definition 5. A matrix A is said to be banded with bandwidth β if aij = 0
if |i− j| > β.

Definition 6. A vector bi of dimension n is defined as a singleton interval

vector if bii is an interval scalar and all other entries of bi are zero. The vector
ei is a unit singleton interval vector if it is an interval vector and in addition
eii = [−1, 1]. The vector ēi is a unit singleton vector (thin) if ēii = 1.

This paper concerns itself with thin non-M-matrices and interval vec-
tors. Ordering of the rows and columns of a matrix is often important. We
motivate the importance of matrix ordering by means of a well known ex-
ample [8]. Consider the following banded matrix:

















































1 1 1
1 2 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2
1 2 3
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Its L factor is:
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Forward substitution using forward elimination results in extremely large
interval growth. Consider the following two right hand side interval vectors:

e1 =





























































[−1, 1]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]





























































b =





























































[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
[−1, 1]
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The respective y interval vectors from the forward substitution are:

L\e1 =



































































[−1, 1]
[−1, 1]
[−2, 2]
[−3, 3]
[−5, 5]
[−8, 8]
[−13, 13]
[−21, 21]
[−34, 34]
[−55, 55]
[−89, 89]
[−144, 144]
[−233, 233]
[−377, 377]
[−610, 610]
[−987, 987]
[−1597, 1597]
[−2584, 2584]
[−4181, 4181]
[−6765, 6765]



































































and L\b =



































































[−1, 1]
[−2, 2]
[−4, 4]
[−7, 7]
[−12, 12]
[−20, 20]
[−33, 33]
[−54, 54]
[−88, 88]
[−143, 143]
[−232, 232]
[−376, 376]
[−609, 609]
[−986, 986]
[−1596, 1596]
[−2583, 2583]
[−4180, 4180]
[−6764, 6764]
[−10945, 10945]
[−17710, 17710]



































































For the singleton interval vector, the interval radius grows as the Fi-
bonacci numbers. Thus, ordinary forward and back substitution result in
considerable overestimation of the solution. The elimination tree for this ma-
trix consists of a single unbranched structure with 20 levels. Thus, the com-
putation of y20 depends directly or indirectly on all previous 19 entries of y.

Consider, now, a permutation of the original matrix A. The permutation
vector is generated as follows. First, group all entries of the original banded
matrix of bandwidth 2 as 2 × 2 blocks. (In general, the block dimension is
β × β.) The structure of the blocked matrix becomes:
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1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦ ◦◦◦◦

We now apply an odd-even permutation recursively to the blocks of this
matrix. We illustrate the process by first considering the non-recursive odd-
even permutation of this matrix:

1 3 5 7 9 2 4 6 8 10

1

3

5

7

9

2

4

6

8

10

◦◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦◦

That is, number odd blocks ahead of even blocks and add fills. The
remaining even blocks form a new tridiagonal matrix of half the original
size. Order once again according to the odd-even permutation, add fills,
and so on. The permutation vector generated according to this recursive
procedure is:

(1 3 5 7 9) (2 6 10) (4 8)
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This permutation is applied to the blocked matrix. The structure of the
resulting matrix factor L̃ after application of this permutation to the blocked
matrix, followed by a subsequent “unblocking” and addition of fills is:

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦• ◦◦◦◦ ◦◦◦◦◦• ◦◦◦◦ ◦◦◦◦ ◦◦ ◦◦◦◦◦• •••• ◦◦◦◦ •••• ◦◦◦◦◦• ••••••◦◦◦◦ ••••••◦◦

Performing a forward substitution for this matrix results in a significant
reduction in the growth of the intervals for both cases under consideration:
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L̃\e1 =







































































[−1.0, 1.0]
[−1.0, 1.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[−2.0, 2.0]
[−2.0, 2.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[0.0, 0.0]
[−3.0, 3.0]
[−3.8, 3.8]
[−5.6, 5.6]
[−7.8, 7.8]







































































and L̃\b =







































































[−1.0000, 1.0000]
[−2.0000, 2.0000]
[−1.0000, 1.0000]
[−1.6667, 1.6667]
[−1.0000, 1.0000]
[−1.6667, 1.6667]
[−1.0000, 1.0000]
[−1.6667, 1.6667]
[−1.0000, 1.0000]
[−1.6667, 1.6667]
[−5.0000, 5.0000]
[−6.5000, 6.5000]
[−3.6667, 3.6667]
[−4.4667, 4.4667]
[−2.6667, 2.6667]
[−4.0000, 4.0000]
[−15.1016, 15.1016]
[−20.4419, 20.4419]
[−37.4552, 37.4552]
[−51.8895, 51.8895]







































































The key observation that leads to this result is that the height of the
elimination tree (and thus the length of the data dependencies) has been
reduced from 20 levels to 8. The elimination tree for the reordered (blocked)
matrix is illustrated in Figure 3. Entries from even levels can be paired with
entries from odd levels, and a shorter tree of height 4 based on “blocked
entries” can be built.

The overall observation from this section can be stated succinctly: re-
ordering of the matrix rows and columns with a view to reducing the height
of the elimination tree can significantly reduce the overestimation of so-
lutions when the matrix in question is not an M-matrix. Orderings that
reduce the length of the elimination tree have been considered in connection
with a variety of other applications: increase of parallelism [9, 10, 11], im-
provements in sparse vector methods [12], and improvements to partitioned
inverse methods [13, 14].
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Figure 3: The elimination tree for the matrix after recursive blocked binary
permutation. All entries appear in pairs.

3 Obtaining bounds on interval growth

The experiments from the last section can be studied more rigorously. The
following theorems establish some of the properties of unordered and re-
ordered forward substitution steps. Important : In all these theorems, it is
assumed that |ℓi,j| ≤ 1 ∀ i 6= j. An extension to the case where this as-
sumption is relaxed is possible by blocking entries, but this is not pursued
in this paper. Before proceeding with the theorems, it is useful to establish
a preliminary result:

Lemma 1. The roots of polynomials of the form λn−λn−1−λn−2−· · ·−λ−1
are bounded by 2.

Proof: This result can be proven by looking at the Gershgorin disks of the
companion matrix. The form of the companion matrix is:

















1 1 1 1 1 1
1 0 0 · · · 0 0 0
0 1 0 0 0 0

... . . . ...
0 0 0 . . . 1 0 0
0 0 0 0 1 0

















Gershgorin disks for this matrix establish the result immediately [15]. ✷
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Theorem 2. For a banded thin matrix A of bandwidth β and a singleton
unit interval right hand side vector ei, the growth in the radius of the interval
in a forward elimination in otherwise exact arithmetic is bounded by 2n.

Proof: The worst case is when i = 1, so we only prove this case. Let
e1 = [−ǫ, ǫ]. Without loss of generality, the computation of elements of y
proceeds as follows:

y1 = e1
y2 = −ℓ21y1
y3 = −ℓ31y1 − ℓ32y2

...

yk = −
k−1
∑

j=k−β
ℓkjyj

...

Because the elements of L are bounded by one, the worst case is when
ℓij = 1. Let ǫk denote a bound for rad(yk). The growth in the radii of
the intervals yk (taking into consideration that all operations are interval
operations) is bounded by:

ǫ1 = ǫ

ǫ2 = ǫ1
ǫ3 = ǫ1 + ǫ2

...

ǫk =

k−1
∑

j=k−β
ǫj

...

The generic recursion defines a difference equation. A closed-form solution
to this difference equation can be obtained by finding the eigenvalues of
the companion matrix for the difference equation. Of interest is the largest
eigenvalue λ, since the solution is dominated by λk. This recursion has the
same form as the polynomial in Lemma 1. Therefore, its companion matrix
has the same form, and its largest eigenvalue is bounded by 2. This means
that the dominant term in the solution is bounded by 2n. For the special
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case of β = 2, the largest eigenvalue is only (1 +
√
5)/2 ≈ 1.618, which is

one of the known closed form solutions for the Fibonacci series. ✷

Theorem 2 is consistent with the knowledge that when partial pivoting
is performed, the error growth is bounded by 2n.

The case of a full interval vector b can also be considered as a general-
ization. Consider the following more general theorem:

Theorem 3. For a banded thin matrix A of bandwidth β and a dense
interval right hand side vector b, the growth of the interval in a forward
elimination process is bounded by max

[

rad(bi)
]

2n.

Proof: The proof proceeds by first recognizing that if all values of bi are
replaced by ǫ, where ǫ is defined as the largest radius for any bi, maximum
growth in the radius will take place. Thus, the same interval radius ǫ can be
used for all entries of b. The remainder of the proof is similar to the proof
of the previous theorem, except that the recursion equation changes to:

ǫk = ǫ+
k−1
∑

j=k−β
ǫj.

✷

Another generalization that may be considered is the removal of the
requirement of the subsequent exact computation of all multiplications and
additions. If it is assumed that every floating point multiplication may itself
introduce a relative error also equal to ǫ (a gross overestimation of the error,
which in most cases will be in reality about 2−t, where t is the machine
precision), then simple expressions for this case can be derived. The form
of the recursion equation under these assumptions becomes:

ǫk = β ǫ+
k−1
∑

j=k−β
ǫj .

Since the results are qualitatively the same as the previous cases, these
generalizations are not considered in detail here. Instead, we now seek to
place bounds on permuted repeat solutions. To this effect, we first establish
a result about general banded matrices:
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Lemma 4. For a banded matrix of bandwidth β, there exists an ordering
that results in an elimination tree of height

[

log2(n/β) + 1
]

β.

Proof: If the matrix is “blocked” in blocks of dimension β×β, the result is a
tridiagonal blocked matrix of dimension bounded by n/β. It can be readily
shown that a recursive odd-even permutation will reduce the height of the
elimination tree in terms of these blocks to log2(n/β)+ 1. Since each block
itself has height β, the total height for the tree is

[

log2(n/β) + 1
]

β. ✷

Corollary 5. For a tridiagonal matrix, the height of the elimination tree is
bounded by log2 n+ 1.

Corollary 5 is actually a well known result [16, 17].

Corollary 6. For a matrix of bandwidth 2, the height of the elimination
tree is bounded by 2 log2(n/2) + 1.

During the factorization that follows the odd-even permutation, fill-in
occurs in the renumbered matrix. This fill-in increases the density (the
number of nonzeros) of subsequent rows in the matrix. The following lemma
establishes a bound on the number of nonzero entries in the rows of the
reordered matrix L̃.

Lemma 7. The number of nonzero entries in each row after the factoriza-
tion of a tridiagonal matrix of dimension n after a recursive binary odd-even
permutation is bounded by 2 (log2 n+ 1).

Proof: A simple odd-even permutation (before any fills are added) increases
the lower triangular entry count in the last n/2 rows from 1 to 2. The
factorization process adds one more fill. Thus, every step of the factorization
for everyone of the log2 n terms increases the lower tridiagonal count by 2.
For a matrix of dimension n, this produces a bound on the number of lower
triangular entries in its densest row equal to 2(log2 n+ 1). ✷

A corollary of this lemma for the arbitrary bandwidth case is that the
number of entries grows as 2

[

log2(n/β) + 1
]

β.
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Theorem 8. For a banded matrix of bandwidth β and a singleton interval
right hand side vector ei, the interval radius growth under the assumption of
no error growth during the multiplications or additions and diagonal domi-
nance by L̃ is bounded by 2n.

Proof: The proof follows directly from the assumption of diagonal domi-
nance, a recursion on the number of terms in the summations according to
Lemma 7, and the number of recursions needed to compute any of the terms
of interest. In our case, the number of recursions m is log2 n, which dom-
inates the computational order. The earlier bounds on recursion still hold:
the growth in intervals is bounded by 2m, where m is the number of recur-
sion steps (the height of the tree minus one), rather than the dimension of
the matrix. Thus, the expected growth in intervals is 2log2 n, or simply n. ✷

Corollary 9. The growth of the radii of the inverse of A, when computed
in this manner, remains of computational order n.

The next section presents results applicable to dense right hand side
vectors.

4 Singleton solvers

We start now on a new line of thought. The reason behind the overestimation
during forward elimination is only partly due to the length of the path. A
more fundamental reason is the direct and indirect repeated use of each entry
of b at various places during the computation without recognizing that we
are dealing with the effects from the same number. One way to eliminate this
problem is to find the (exact) explicit inverse of the thin matrix A first, then
simply perform the product A−1b. However, even if the exact inverse of A
could be found reliably, the method would not work well for sparse matrices
because the inverse of A is full. This section considers an alternative based
on the factors of A instead.

Consider first the case of a singleton interval vector bi. This vector
can be expressed as the product of a scalar interval αi times the thin unit
vector ēi. Consider now the forward substitution involving bi. The forward
substitution can be obtained either from:

yi = L\bi
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or alternatively as a two-step process from:

ȳi = L\ēi
yi = αi ȳ

i .

The intermediate result ȳi is a thin vector. If the right hand side vector is
not a singleton interval, it is possible to express it as a sum of singleton unit
vectors ēi and scalar intervals αi:

b = α1ē
1 + α2ē

2 + · · ·+ αnē
n.

We then solve the problem first for each singleton unit vector ēi (thin), then
scale all solutions by their intervals αi, and finally aggregate the result using
a single vector interval sum. That is, we solve:

ȳi = L\ēi

for the thin vector ȳi, and then construct the result of the forward substitu-
tion from:

ȳ = α1ȳ
1 + α2ȳ

2 + · · ·+ αnȳ
n .

Definition 7. The process of applying the singleton method for forward
substitution to an interval vector b is designated as LGb.
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Application of this method to the solution of our test problem in its
original banded order results in the following:

LGe1 =







































































[−1, 1]
[−1, 1]
[0, 0]
[−1, 1]
[−1, 1]
[0, 0]
[−1, 1]
[−1, 1]
[0, 0]
[−1, 1]
[−1, 1]
[0, 0]
[−1, 1]
[−1, 1]
[0, 0]
[−1, 1]
[−1, 1]
[0, 0]
[−1, 1]
[−1, 1]







































































and LGb =







































































[−1, 1]
[−2, 2]
[−2, 2]
[−3, 3]
[−4, 4]
[−4, 4]
[−5, 5]
[−6, 6]
[−6, 6]
[−7, 7]
[−8, 8]
[−8, 8]
[−9, 9]
[−10, 10]
[−10, 10]
[−11, 11]
[−12, 12]
[−12, 12]
[−13, 13]
[−14, 14]







































































The back substitution step can be performed likewise.

Definition 8. The process of applying the singleton method for forward
substitution, performing a diagonal scaling, and applying the singleton back
substitution method is designated as AGb. Exact arithmetic is assumed for
all thin matrix operations.
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The result of back substitution is:

AGe1 =







































































[−14, 14]
[−7, 7]
[−6, 6]
[−12, 12]
[−6, 6]
[−5, 5]
[−10, 10]
[−5, 5]
[−4, 4]
[−8, 8]
[−4, 4]
[−3, 3]
[−6, 6]
[−3, 3]
[−2, 2]
[−4, 4]
[−2, 2]
[−1, 1]
[−2, 2]
[−1, 1]







































































and AGb =







































































[−105, 105]
[−98, 98]
[−90, 90]
[−102, 102]
[−94, 94]
[−85, 85]
[−95, 95]
[−86, 86]
[−76, 76]
[−84, 84]
[−74, 74]
[−63, 63]
[−69, 69]
[−58, 58]
[−46, 46]
[−50, 50]
[−38, 38]
[−25, 25]
[−27, 27]
[−14, 14]







































































These vectors are the hulls of the respective solutions. This result follows
directly from the observation that AGēi is simply the ith column of the
inverse of A.

5 Singleton solvers with path length

reduction

The reordering method of Section 2 produces interval hull solutions for gen-
eral thin matrices and singleton right hand sides and it is capable of op-
erating in finite-precision arithmetic. The singleton method of Section 4 is
capable of handling dense right hand side vectors but requires exact arith-
metic. For general non-M-matrices the precise computation of the solution
to the thin problem Ax̃i = ẽi is not always possible in sufficient precision.
For non-M-matrices, the error in this solution may itself grow as 2n as a
result of numerical errors in L and U .
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Consider now the case of a thin but general matrix A and an interval right
hand side. It is our contention that the use of the singleton solver method
in conjunction with the recursive permutation method holds the greatest
promise for extreme robustness. Furthermore, parallelism of computations
can be exploited in this case.

6 Conclusions

The case made in this paper has significant implications upon much of what
is cherished about numerical error control during the direct solution of linear
equations by Gauss-type methods. This paper says that for certain classes
of problems, pivoting intended to reduce the length of the path of the com-
putational sequences can be most effective, even at the expense of fill-in
or additional computation. These types of orderings are, incidentally, also
quite effective for parallel processing. Thus, a technique that is useful for
parallel computation proves also useful in reducing interval overestimation.
This has been the central theme of this paper.

Another key observation of this paper is the singleton solver method.
This method is capable of determining the hull of the solution for thin ma-
trices and interval right hand sides provided the underlying “thin” solution
is error-free. The advantage of this method is that sparsity is preserved, and
yet the hull is obtained. The combined use of the singleton solver method
along with the use of tree-shortening ordering is seen as the most robust
method for linear interval solvers.

The paper has illustrated some experiments graphically. The experi-
ments and graphic results illustrated in this paper are reproducible using
an interval version of the Sparse Matrix Manipulation System [18]. This
software package has been made available via netlib.
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