Interval Computations
No 1, 1993

NO PATHOLOGIES FOR INTERVAL
NEWTON’S METHOD

Yilmaz Akyildiz* and Mohammad L. Al-Suwaiyel

Interval methods for enclosing zeros of nonlinear functions are compared
with alternate techniques on concrete examples and their inherent differ-

ences are discussed.

UHTEPBAJILHBLIM METOI HI:»]EOE‘OHA
CBOBOJIEH OT IIATOJIOT'A

M. Axungus, M.M.Ans-CyBaitens

NuTepBanbHble MeTOAbl /A JIOKaJIM3alUA HyJileii HeJMHeHHbIX
$yHKUMIA CPaBHMBAIOTCA Ha KOHKPETHBIX NpUMEpax ¢ a/lbTeEPHATUB-
HBIMHM MOAXO0JaMH; 06CysKAAIOTCA pa3/nyumd, npucylure sTUM MeTo-

AaM.

1. Introduction

In their recent article, “Pathological Functions for Newton’s Method”,
‘0 The American Mathematical Monthly [1], the authors explicitly show
that the following claim in a widely used numerical analysis text [2] 18

true:

* Supported by a sabbatical grant from King Fahd University of Petroleum &

Minerals, Dhahran, Saudi Arabia.
© Y.Akyildiz, M.I.Al-Suwaiyel, 1993

In the
stopp.

where
and €

They ¢
i) The fu

has no re
Sequence

ii) The fu

appears 't
to which]
Point), F
that stop;
Mmethods

In this
Cur if int
Mosgt, 1mp1
methods)
ther drast
N two m
Ual funct;
methods i
ects of 1

®Signed
Sense thay

a An int
K

i, Small
J]piemen

npared
differ-

eHMHBbIX
1aTUB-
MeTo-

i Method”,
citly show
text [2] is

etroleum &

NO PATHOLOGIES FOR INTERVAL NEWTON’S METHOD 61

In the solution of equations by numerical methods, a commonly used
stopping criterion

Imn-i-l - -'L'nl <€, ' (1)
where T, is the nth term of the sequence generated by the method,

and € > 0 is the tolerance, can fail.

They show that
i) The function

c exp(—35(a? + xva? + 1))
Vz+va2+1

has no real roots, but nevertheless its Newton'’s iteration generates a
sequence for which (1) is satisfied for any e.
ii) The function

flz) =

h(z) = \/[3]:176_‘"2

appears to converge where there are no roots, but it has a real root, zero,
to which Newton’s method will never converge, (unless zero is the starting
point). Functions f and h are useful as concrete examples demonstrating
that stopping criterion (1) for the solution of equations by usual iterative
methods can fail.

In this note, we will try to explain why such pathologies cannot oc-
cur if interval arithmetic is employed. We shall first review some of the
most, important concepts in interval mathematics, and then apply interval
methods to the functions f and h above. We shall also demonstrate fur-
ther drastic differences between ordinary and interval Newton’s methods
on two more simpler functions. Such interval computations on individ-
ual functions will be more than just numerical checks, as applied interval
methods can give results that have mathematical certainty since the ef-
fects of round-off error are fully taken into account. That is, properly
designed and implemented interval methods are totally reliable in the
sense that they give results with mathematical certainty.

An interval algorithm will produce a list of solutions whose elements
are small mtervals of uncertainty. If the proper algorithm is correctly
Implemented with directed rounding (as it can be done, for example, in

62 Y.AKYILDIZ, M.I.LAL-SUWAIYEL

Mathematica Version:2.2 and Maple V Release 2), completion of this al-
gorithm constitutes a computational but mathematically rigorous proof
that all solutions are within the intervals given in the list. For a list of
other uses of interval arithmetic in mathematical analysis and theoretical
physics see [3], which also has some interesting philosophical remarks on
“computer proof” in its conclusion.

2. Elementary facts about interval arithmetic

First, let us review the rudiments of how computers perform arith-
metic. Standard computing environments provide two ways of working
with numbers: ezact arithmetic with integer and rational numbers and
inezact arithmetic with floating point numbers. There is little that needs
to be said about exact arithmetic. Once a canonical form for the num-
bers is chosen, there is only one right answer. Symbolic computations,
such as word processing, are done with integers and this is why they are
completely dependable, error-free operations. Since the computations in
mathematics deal in general with real numbers and not just with integers

and rationals, exact arithmetic is not directly applicable to them, and we

will accordingly concentrate on floating point arithmnetic.

Floating point numbers are manipulated and stored in a sign-exponent-

fraction representation with a fixed number of digits available for expo-

nent and fraction. The details of the representation vary, but any given

format is capable of representing only finitely many numbers; we shall |
refer to these as the representable numbers in that format. The most |
common way to do inexact arithmetic is to use fixed precision floating |
point arithmetic. In this system a number is stored as a mantissa and ab |

exponent. The mantissa always contains the same number of bits and,
since there is no way to tell how precise a number is, all numbers aré
treated as exact. The problem with this is that the arithmetic is ne¢
essarily wrong. For example, if we are working within a system where
all numbers have five significant digits, then 1.2345 + 0.012345 canno?
be correctly represented. In order to represent the answer, it must he
rounded to five significant digits; the effect of this rounding is to make the

arithmetic wrong. Elementary arithmetic operations with 1'0p1'esent.abl" ‘
operands often produce results with too many digits to be representabl® |
When this happens, what is normally done is to “round off” the resulbs

ie.. to return a representable number approximating the exact result. Iy
) g

clean conr
exact res
1s nearest
universall
small to 1
(Some cos
with thei

The pr
1s by tryir
system. [
floating p.
fixed prec
hardware
1s well un

Each ir
duce somxe
apply eler
on the err
However,
simple cor
theoretica

Interva
trOlling th
T by a mac

Y. an inte
he intery
Used ag 4 1
therefore L
€nce the -

For exa,
Sures, A,
USe the jne
¢ are yge
Om(:el'tél.int}
. the exac
;1 3’0_11t. the
y Its natu

n of this al-
'0TOUS PTOOf
Yor a list of
. theoretica]
remarks on

ic

form arith-

of working
ambers and
> that needs
or the num-
nputations,
hy they are
>utations in
rith integers
lem, and we

n-exponent-
le for expo-
It any given
rs; we shall

The most
ion floating
tissa and an
of bits and,
wnbers are
1etic is nec-
stem where
2345 cannot
it must be
to make the
spresentable
presentable.
" the result,
ct result. In

r

NO PATHOLOGIES FOR INTERVAL NEWTON’S METHOD 63

cJean computing environments, the returned result may indeed always be
pxact result “correctly rounded”, i.e., that representable number which
s nearest to the exact result, but this is unfortunately far from being
qniversally the case. It is also possible for a result to be too big or too
gmall to be representable with the limited range of exponents available.
gome computer algebra systems can satisfactorily handle such situations
with their arbitrary-precision arithmetic).

The primary way that errors get introduced in the inexact arithmetic
is by trying to represent numbers that have no finite representation in the

system. For example the number L cannot be represented exactly as a

3
floating point number in the binary or decimal systems. The advantage of
fixed precision floating point arithmetic is that it is easy to implement in
hardware (making it very fast) and behavior of the errors thus introduced

is well understood.

Each individual arithmetic operation, then can-and usually will-intro-
duce some amount of round-off error. It is thus possible, in principle, to
apply elementary methods of error propagation to derive strict bounds
on the error in the result of any given sequence of arithmetic operations.
However, every numerical analyst knows that, in practice, except for
simple computations or ones with particular transparent structure, these
theoretical error estimates are usually too complicated to be feasible.

Interval analysis, by contrast, provides a tool for estimating and con-
trolling these errors automatically. Instead of approximating a real value
z by a machine number, the usually unknown real value z is approximated
by. an interval X having machine number upper and lower boundaries.
The interval X contains the value . The width of this interval may be
used as a measure for the quality of the approximation. The calculations
therefore have to be executed using intervals instead of real numbers and
hence the real arithmetic has to be replaced by interval arithmetic.

For example, consider the representation of % using four significant
figures. As an alternative to the nearest rounded result 0.3333 we can
use the interval [0.3333,0.3334]. This may seem less precise than the form
we are used to, but in fact it is more truthful since it reveals the level of
uncertainty that is present. It also shows that 0.3333 is an underestimate
of the exact value. Hence an interval representation provides information
about the accuracy of a computed result which a single model number,
by its nature, cannot do.

64 Y.AKYILDIZ, M..AL-SUWAIYEL

In short, an interval number is just a closed real interval [a,b], i.e., it
consists of the set {z : a < x < b} of real numbers between and including

the end points a and b. A real number z is equivalent to a (degenerate) |

interval [z,2]. The end points a and b of a given interval [a,b] may not
be representable on a given computer. In such a case, a is rounded to the
largest machine number which is less than or equal to a, and b is rounded
to the smallest machine number which is greater than or equal to b. This
process is called outward rounding.

So, the idea is to carry through the computation strict upper and lower
bounds for all quantities encountered, i.e., intervals guaranteed to contain
the corresponding exact quantities. The end points of these interval are
representable numbers. To propagate the error bounds a step at a time,
it is only necessary to have available procedures for “doing elementary
operations, op € {4, —,*,/}, on intervals”. Let A = [aq,b;] and B =
[az, b2] be two intervals. We define AopB={zopy:z € Aandy € B}.
To see what this means, let us consider the case of multiplication. A
procedure for multiplying intervals means one which, given two intervals
[a1, b1] and [ag, by] with representable end points, produces a third interval
[as, b3], again with representable end points, such that

z € [ay,bi] and y € [az,bs] = x x y € [as, bs].

Here is one way in which a procedure for-multiplying intervals can be con- |

structed. First form the four exact products a;*az, ai*bs, by *ag, by xby. To |

construct (the best possible) ag, find the smallest of these exact products
and round down to the next smaller representable number. Similarly,
to construct bz, find the largest and round up. This is called directed
rounding. In fact, all operations can be defined in terms of addition, sub-
traction, multiplication, and division of the end points of the intervals,
although multiplication and division may require comparison of several
results, (thus making interval computations expensive). The result of
these operations is a finite interval except when we compute A/B and
0 € B. In that case, we need extended interval arithmetic, which 18
supported by, e.g., Mathematica Version: 2.2, to get two semi-infinite
intervals or else the whole real line. For example, Mathematica will give

| 1
Interval[{1,2}]/Interval[{—3,4}] = Interval[{—co, — 3 }, {Z’ oo}];

where Interval[{a,b}] stands for the closed interval [a, b] on the real line

N

Interva
R.E. Moo:
one of the
is the sing
advent of

Around
ing (IEEE
provides, :
interval ar
sults withi
Floating p
more wide
and efficie
Meanwhile
include mi
forthcomir
interval alg
metic. Usi
ligorously
in the ordi

The pro
ably the ce
Purpose alg
18 essential

The fund:
of x is repl
N standar
Fof f; adc

Essentia.
®nsion F o
irn ®tic. Whe
Y used thr
es”]t conte
Porg,

3

. 3aKa3 75

a,bl, i.e., it
d including
legenerate)
b] may not
nded to the
'is rounded
1 to b. This

r and lower
l to contain
interval are
» at a time,
elementary
] and B =
ndy € B},
ication. A
vo intervals
ird interval

can be con-
2y bl *bg. To
¢t products

Similarly,
ed directed
lition, sub-
e intervals,
1 of several
e result of
> A/B and
¢, which is
ami-infinite
-a will give

(oM

1e real line.

r

NO PATHOLOGIES FOR INTERVAL NEWTON’S METHOD 65

Interval mathematics can be said to have begun with the appearance of
E. Moore’s book Interval Analysisin 1966, [4]. According to Hansen [5],
one of the pioneers of the subject, “the introduction of interval analysis
/s the single most important advance in numerical analysis other than the
ydvent of the modern computer and high-level programming language.”

Around mid 80’s the Institute of Electrical and Electronics Engineer-
ing (IEEE) has introduced a standard for floating point arithmetic which
rovides, among many other things, facilities making it easy to construct
interval arithmetic procedures which always produce the best possible re-
sults within the limitations imposed by the set of representable numbers.
Floating point environments conforming to this standard are becoming
more widely available. This development promises to make good-quality
and efficient interval arithmetic much more accessible than in the past.
Meanwhile, hardware companies, such as Sun and Cyrix, may well soon
include micro-programmed interval arithmetic as a new data type in their
forthcoming products. This would provide very fast execution times for
interval algorithms, say much less than twice those of floating-point arith-
metic. Using such an approach to computing, we can provide answers of
rigorously guaranteed accuracy in a comparable time it takes to compute
in the ordinary way. '

The problem of bounding the range of a real-valued function is prob-
ably the central problem of interval analysis. Many general and special
purpose algorithms are known in this context [6]. The following property
is essential for interval evaluation of an arithmetic function f(z), [5]:

The fundamental theorem of interval analysis: Provided the value
of z Is replaced by the corresponding interval operations and operations
on standard functions, then one gets the so-called interval extension
F of f; additionally, the following important inclusion is valid:

R(f,X) = {f(z) 1z € X} C F(X).

Essentially, this means that it is possible to compute an interval ex-
tension F' of f by the same operations as evaluating f(x) using real arith-
metic. What we make sure is that outwardly rounded interval arithmetic
Is used throughout the computations. This assures that the computed
result contains the range, R(f, X), despite the difference of rounding er-
rors.

5 3akaz 75

66 Y.AKYILDIZ, M.LAL-SUWAIYEL

We would like to emphasize that the value of an interval extension
of a function is not precisely the range of the function over its inter- |
val operand, but only contains this range. A minor rearrangement in a
formula can make a major difference in the sharpness of the estimates
obtained by applying interval arithmetic to that formula. A general prin-
ciple is that it is advantages to write expressions with as few occurrences

of individual variables as possible.

As a numerical example, let f(z) = 2% — 2z + 2 and Y = [0, 1]. Here
are three interval extensions for this function:

F(X)=X*-2X+ 2; F(X)=X(X-2)+2, F(X)=(X-1)*+1

Clearly,
F(Y) = [1’2]; Fy(Y)=10,2] Cc Fi(Y) =[0,3].

We note that F3 gives the exact range.

It is still an unsolved problem how to construct interval extensions
whose values differ from the range as little as possible. For discussion
of efficient ways of formulating interval extension see [6,7]. Concepts of
directed rounding and machine interval arithmetic are carefully presented
in [8]. Also, not all programs doing floating point computations can
be translated in a straightforward way into useful interval arithmetic
programs producing strict bounds on the results. Thus, we are faced
with the challenge of writing efficient interval arithmetic programs, [9].

3. Interval methods for inclusion of zeros !

We consider the problem of finding all the roots of a continuously |
differentiable scalar function f(x) in a given finite, closed interval X C R |
It is required only that there exists an interval evaluation for the functio?
f in the interval X. Interval methods allow us to find a set of intervalf
of smallest possible width such that each interval includes one (or more)
zeros of f. As it is explicitly shown in [1], adequate stopping criteria for |

" non-interval methods can be unreliable or difficult to devise. On the othe! |
hand, natural stopping criteria exists for interval iterations. One ca’|
simply iterate until either the bounds are sufficiently sharp or no furthe
reduction of interval bounds possible. There are various interval methodﬁ '

for the
interval
iterval

Inter
cepts,
with di
f, and
gardless
[a, b].

As a
We can
cannot
V=11,
which c
we woul
in the in
method
f has nc

Exan
the intrc
strictly i
matics w
ary poin
(boundec

N0 zeros

In]
Out[] =

The ir
follows: 7

5%

| extensioy
r its intep.
ement In ,
> estimateg
neral prin.
yccurrenceg |

[O, 1] . Here

-7 41

extensions
- discussion
Concepts of
y presented
tations can |
. arithmetic
e are faced
grams, [9].

ontinuously
rval X C R.
the function
of intervals
1e (or more)
v criteria for
Jn the other
s. One can |
ir no further
val methods |

NO PATHOLOGIES FOR INTERVAL NEWTON’S METHOD 67

for the root finding problem. (For a Mathematica implementation of
interval bisection method see [10]). In this article we shall consider the
interval Newton’s method which has so many remarkable properties.

Interval arithmetic with directed rounding does not involve deep con-
cepts, but it can be quite powerful. For example, if interval arithmetic
with directed rounding is used to compute an interval extension F of
f, and F([a,b]) does not contain zero, then this is a rigorous prool (re-
gardless of the machine word length, etc.) that there is no root of f in
[a,b]. |

As a numerical example, let f(r) = 62(2 —) — 10 and Y = [0, 1].
We can take F(X) = 6X(2 — X) —10. Since 0 € f(Y) = [-10,2] we
cannot conclude anything. But, bisection of Y into U = [0,1/2] and
V = [1/2,1] yields F(U) = [-10,—4] and F(V) = [-7,—1], neither of
which containing zero, thus proving that f has no zero in Y. In passing,
we would like to mention that since f(0) * f(1) > 0, the number of roots
in the interval [0, 1] is either zero or even. On the other hand, the interval
method above gives a definitive answer and (computationally) proves that
f has no zeroin Y.

Example 1: Let us apply the above argument to the function f in
the introduction. We need to consider only its numerator, exp(— (2% +
zvx? + 1)). Since the exponentiation and the term in the exponent are
strictly increasing functions, a proper implementation of interval mathe-
matics will bound the i image by the values of the function at the bound-
ary points, which are both positive numbers. Thus, the image of :any
(bounded) interval under this expression will not conta,in zero, 1.e.,.f has
no zeros on the real line. For example, Mathematica gives

In[] 2= Eﬂfp[_(:l:Z + ISQT‘t[:L‘Z +]_])/2]//:1;_ > Interval[{—10.4, 104}]
Out[] = Interval[{5.024596 1012129449 '1 50858686 1021714724}]

3.1. Interval Newton’s methods

The interval Newton’s method was first derived by Moore in [4] as
follows: The mean value theorem says
(=) = f(&7) = (2 — ") f(¢),

5*

68 Y.AKYILDIZ, M.I.AL-SUWAIYEL

where £ is some point between and z*. If * is a zero of f, then
' f(x)
=1z — :
f'(€)
Letting £ = z gives the or,dinaryﬂ Newton’s method. Let X be an interval
containing both z and z*. Clearly { € X. Let F'(X) be an interval
extension of f/(z). Thus, we have f'(£) € F'(X). Hence, z* € N(z,X),
‘where f()
T
Nz, X)=x— :
(CU,) X F,(X)
By taking @ = middle(X), the midpoint of X, we consider the algorithm

Xn+1 =X, N N(Xn)a

where '
N(X) = middle(X) - / (ml’?‘f‘(i%X).

This is called the interval Newton’s algorithm. It can also be gener-
alized to higher dimensions. (It is not necessary to choose = to be the
midpoint of X, any other value in X will also do). Since division is used,
extended interval arithmetic should be employed in case F'X) contains
zero. (Actually, there is a way of getting around this because In practice
such an unbounded interval is intersected with a finite interval).

The interval Newton’s algorithm has the following remarkable reliabil-

ity and efficiency properties:

1. If an interval X, contains a zero z* of f(z), then so does X, for
all n =0,1,2,.... Furthermore, the intervals X, form a nested
sequence converging to z*. That is, every zero of f in the initial
interval X, will always be found and correctly bounded.

9. If 0 ¢ F'(X,), at least half of Xy, is eliminated in the next step.
That is, convergence can be rapid even when width of X, is large.

3. If X, N N(X,) is empty, then there is no zero of f in X,. That
is, if there is no zero of f in Xo, the algorithm will automatically
prove this fact in a finite number of iterations.

4. If N(X) C X, then there is a zero of fin X. That is, the
existence of a zero of f in a given interval can also be proved
automatically without extra computing. Furthermore, it 1s guar-
anteed that the interval Newton’s iteration will converge to it.

The
in prac
compu
be app
more t;
the alg

Sinc
and sin
bolic ir
ples on
with th

Exa

When

Intervc

Thus tt
interval;
ating th
empty

Interva
ing Zero

Ten Imo1
lteration
be the ¢;

Theﬁ
differenc

Exan
~3+4312

hen

n interval
n interval

N(z,X),

algorithm

be gener-
to be the
on is used,
') contains
in practice

‘ul.) .

sle reliabil-

oes X, for
1 a nested
_the initial
ed.

next step.
X, is large.
1 X,,. That

somatically

hat is, the
be proved
, 1t 18 guar-

rge to if.

NO PATHOLOGIES FOR INTERVAL NEWTON’S METHOD 69

The proofs of above can be found in [4]. We would like to add that,
in practice, when rounding occurs, an interval containing N (Xp) will be
computed. Hence, even with roundmg, all the properties above will still
be applicable. This is why our computations by the computer will be
more than just numerical checks but actual proofs, (provided, of course,
the algorithms are correctly implemented).

Since interval computations cannot, in general, bé performed by hand
and since the present day computer algebra systems do not provide sym-
bolic interval computations, we will have to work with numerical exam-
ples on specific problems. Let us now apply the interval Newton’s method,
with the help of Mathematica, to the function h in the Introduction.

V[8lze~ ~=" and

1 224/
(1‘) = 3€$2.'E2/3 o 6“’”2)

Example 2: h(z) =

When we start the interval Newton’s method, for example, with
Interval[{1.,5.}] we get

{Interval[{1.,3.}], Interval[{3.00003,5.}]}.

Thus the initial interval is mapped here into the union of two disjoint
intervals, (because the derivative h’ contains a zero in the interval). Iter-
ating these two intervals and their descendants further ends up with an
empty set after 4 steps, thus proving that h has no roots in
Interval[{1.,5.}]. The sarhe would be the case on any interval not contain-
ing zero. On the other hand, starting with Interval[{—3.,2.}] produces

{Interval[{-3.,—0.57278}], Interval[{-0.5,2.}]}.

Ten more iterations give Interval[{—0.00195313,0.000488281}]. Further
iterations will get closer and closer to the origin. A similar thing would
be the case when any other interval containing zero is used to start with.

Thefollowing two simpler examples will further illustrate more drastic
differences between the ordinary and interval Newton's methods, [11] .

Example 3: Consider f(x) = 2.001 — 3z + 2. We have f'(z) =
=3+3x%. We can use the interval extension F'(X) = —3+3X7. If we take

70 Y.AKYILDIZ, M.ILAL-SUWAIYEL

Xo = Interval[{-3,3}] and apply the interval Newton’s iteration we ob-
tain two disjoint intervals, {Interval[{-3,—-0.083375}],
Interval[{0.667,3}]}, (because F'[Interval[{—3, 3}]]=Interval{{—3,24}]
contains a zero). From this point on we can continue to produce more
sequences of intervals using the interval Newton’s algorithm beginning
with either of the intervals in the set above. If we apply the interval
Newton’s iteration to the second interval, the sequence of intervals gen-
erated terminates after 7 steps with the empty interval because there is
no zero of f(x) on the positive x-axis. If we start with the first interval,
Interval[{—3,—0.083375}], then, we find a nested sequence of intervals
terminating with . |
Interval[{—2.00011, —2.00011}] after 5 steps.

In contrast, the ordinary Newton’s method, Zn41 = zn—f(xn)/f'(zn),
generates a very erratic sequence of values unless the initial point ¢ is
less than —1. For example, o = 0 produce the sequence {0.667,0.845187,
0.925925,0.965774, 0.987941,1.00789, 0.9829,1.0013,0.873019, 0.939346,
0.972823,0.992691,1.01924,...}. What has happened here is that the

ordinary Newton’s method got hung up, oscillating near a place where-

a local extremmum with a very small nonzero value. On the other hand,
the interval Newton’s method will reject such a i‘e‘gion as not containing
a zero by producing an empty intersection after a finite number of steps.

Example 4: An even more drastic difference between the interval

. .. . 1

and ordinary Newton’s methods is illustrated by the function g(z) = 5.
This is a simple enough expression for which symbolic interval compu-

_2
tations can be carried out by hand. We have ¢'(X) = =, For X =
Interval[{a,b}] we let |X| = Mazimum{|al|, |b|} and width(X) =b - a.

We now have

X% = Interval[{a™%/3,072/3}], 0<a<h,
= Interval[{| X |2/, —c0}], a<0<b,
= Interval[{|a|72/3, b|7%/*}], a<b<O.

Again, in case of division with intervals containing 0 we can use extended
interval arithmetic. In case ¢ < 0 < b we find that

B middle(X)'/3

X2 /3
3

N(X) = middle(X)

and this

In the

. X.In ap

converge
27 Mwidt
the origi
to it by
strong c
the folloy

Thus the
the solut

A Ma
method ¢

1. Donowv:
ton’s n

2. Burdex

3. Lanfor
Intern:

4. Moore,

5. Hanser
1992,

m we ob-
)83375}],
uce more
eginning
» interval
vals gen-
3 there is
interval,
intervals

)/ (@n),
nnt xg 1s
).845187,
939346,

that the

ce where.

1er hand,
>ntaining
of steps.

: interval
/ il
T)=2x73.
1 compu-
For X =
=b—a.

extended

NO PATHOLOGIES FOR INTERVAL NEWTON’S METHOD 71
and this gives
X, = Xo N (middle(X) — 3middle(X)'/* Interval[{0, | X /*}}]).

We can distinguish three cases:

1. if middle(X) > 0, then X; C Interval[{a, middle(X)}],
2. if middle(X) < 0, then X; C Interval[{middle(X),b}],
3. if middle(X) = 0, then X; = 0.
In the first two cases, the width of X; is no more than half that of
X. In any case, if X contains 0, then the sequence X, will contain and

converge to the solution # = 0. The width of X, will be no more than

9~ "width(X). This proves that g has a root in any interval containing
the origin and we are sure that interval Newton’s iteration will converge
to it by the 4th property of the interval Newton’s algorithm.This is in
strong contrast with the behavior of the ordinary Newton’s method as
the following computation shows:

Tp41 = Xy, — g(xn)
n C— n .
g'(zn)
=I, — 3T,
= —=2x,.

Thus the ordinary Newton’s method for g diverges from any zo, except
the solution itself. :

A Mathematica Version: 2.2 implementation of the interval Newton’s
method can electronically be obtained from the authors.

References

1. Donovan, G.C.,‘Miller, A.R. and Moreland, T.J. Pathological functions for New-
ton’s method. The American Mathematical Monthly 100 (1) (1993), pp. 53-58.

2. Burden, R.L. and Faires, J.D. Numerical analysis. PWS-Kent, Boston, 1989.

3. Lanford, O.E. III. Computer-assisted proofs in analysis. In: “Proceedings of the
International Congress of Mathematicians”, Berkeley, 1986.

4. Moore, R.E. Interval analysis. Prentice-Hall, Englewood Cliffs, 1966.

5. Hansen, E. Global optimization using interval analysis. Marcel Dekker, New York,
1992. -

72

10.

11.

Y.AKYILDIZ, M. AL-SUWAIYEL

. Ratschek, H. and Rokne, J.G. Computer methods for the range of functions.

Horwood, Chichester, 1984.

. Alefeld, G. and Herzberger, J. Introduction to interval computations. Academic

Press, New York, 1983.

. Kulisch, U.W. and Miranker, W.L. The arithmetic of the digital computer. SIAM

Rev. 28 (1) (1986), pp. 1-40.

. Kearfott, R.B. Interval arithmetic techniques in the computational solution of

nonlinear systems of equations: introduction, examples, and comparisons. In:
“Computational Solution of Nonlinear Systems of Equations (Lectures in Apphed
Mathematics, Volume 26)”, American Mathematical Society, Providence, 1990,
pp. 337-358.

Akyildiz, Y. and Bartholomew-Biggs, M.C. Roots of a function over an interval.
Mathematica Journal 3 (1) (1993), p. 21.

Moore, R.E. Methods and application of interval analysis. SIAM, Philadelphia,
1979.

Received: February 28, 1993

Revised version: May 16, 1993

Y. Akyildiz

Computer Science Department
King Fahd University of Petroleum
and Minerals, Box 1971
Dhahran 31261

Saudi Arabia

M.I. Al-Suwaiyel

KACST

PO Box: 6086

Riyadh 11442

Saudi Arabia

SEC!

INTE

Nume
present |
Historic:
dently.
increasir
NuIeric:
formatio
processii
ical anal
process «
and App
under co

An in
in the ar
proach (s
tions, or
points w:
as a who

The IT
conferend
velopme
tions in :
of pames
Moscow,
pants fro
ference e:
Statistics
STOCH/

