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OPTIMAL SOLUTION OF INTERVAL
LINEAR SYSTEMS IS INTRACTABLE (NP-HARD)

Vladik Kreinovich, Anatoly V. Lakeyev and Sergey I. Noskov

All known methods for finding optimal solutions to interval linear sys-
tems demand (in the worst case) exponential time. In this paper, we show

that this problem is NP-hard, and thus (unless NP=P) faster algorithms
are impossible.

OIITUMAJILHOE PEHIEHPIE-CPICTEM .
MNHTEPBAJIBHBIX JIMHENHBIX YPABHEHUUN —
NP-TPYOHASI 3AITAYA .

B.Kpeitrosuu, A.B.Jlakees, C.M1.Hocxkos

Bce usBecTHBIE MeTOABI MOMCKa ONTUMAJBLHBIX pelleHU MHTep-
BaJIbHBIX JIMHEHAHBIX cucCTeM TpebGyloT (B XyAlleM ciydae) 9KCMo-
HeHUMaJbLHOTO BpemeHN. B pabore mokasaHo, uTto »Ta 3amaua NP-—

TpyJAHas, U, TakuMm obpaszom (ecnu Tosbko NP#P), 6osnee GuicTphrit
aJITOPUTM HEBO3MOYKEH.

1. Introduction

In many real-life problems, it is necessary to solve linear Sys-
tems. In many real-life problems, the desired values xy,...,L, must be
determined from their known linear combinations Ajxi+...+ A1, In
other words, we must solve the system of linear equations A;1x; + ... +
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Aiptn = b;,1 <0 < N with known b; and A;;.

Interval systems. In the ideal case, when we know b; and A;; pre-
cisely, it is sufficient to know N = n (independent) linear combinations.
In many real-life problems, however, we know only the intervals for the
values b; and A;;. In this case, we will not be able to find precise values
of all z;, only intervals of their possible values. In this case, additional
linear combinations may increase the precision (i.e., diminish the inter-
val). In view of that, in some real-life cases, IV is taken to be greater
than n.

Let’s give precise definitions (see, e.g., [12]):

Definition 1. Assume that p > 1 is an integer. By an interval p—vector
b, we mean a sequence of p intervals by, bs, ...,b,. We say that a p—vector
b= (b1,...,bp) belongs to b (b € b) if b; € b; for all 7. Similarly, for any
integers p > 1 and ¢ > 1, by an interval p X g—matriz A, we mean a
p X ¢ matrix whose elements are intervals A;;, 1 <i<p, 1 <j<q We
say that a p x ¢ matrix A with components A4;; belongs to A (A € A) 1f
A;; € A;j for all ¢ and j.

Definition 2. Assume that integers n > 0 and N > n are given. By
an interval linear system we mean a pair (A,b), where b is an interval
N —vector, and A is an interval NV x n—matrix. This pair is also denoted
as Ar = b. We say that an n—vector z = (x1, ..., z,) is a possible solution
of a system Az = b if Ax = b for some matrix A € A and some vector
b € b. The set of all possible solutions of an interval linear system will
be denoted by ¥33(A,b). In other words,
Y33(A,b)={z € R" |(3A € A)(Fb e b)(Az =D)}.

Comment. This denotation was introduced by S. P. Shary (private com-
munication) to distinguish this notion from other notions of a solutions

set (see, e.g., [4]).

Definition 3. We say that an interval linear system is consistent if it
has a possible solution, and that it is non-singular if its set of possible
solutions is bounded.

Comment. For example, a system is non-singular if N = n, and all
matrices A € A are non-singular [12]. Another case is when we have a
non-singular system, and add additional equations to it.
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Definition 4. An optimal (ezact) solution of an interval linear system
Az = b is a set of n intervals [z}, 3:;'], where 1 < j < n,
z; = min{z;| r € £33(A,b)} and xj' = max{z;| z € £33(A,b)}.

There exist several algorithms that find an optimal solution to a con-
sistent non-singular interval linear system (see [8], [1], [7], [10], [6], [11],
[12], and references therein). These algorithms handle the case of the
square matrix, when N = n. The main problem with these algorithms
is as follows: If we know A and b precisely, then one can compute the
components zi, ..., Z, in polynomial time, namely, in time that grows as
< Cn?®. Even for large n, this is feasible. However, for all known interval
algorithms, the running time increases exponentially with n (i.e., as a™)
even for N = n, and is, therefore, infeasible for large n.

In this paper, we prove that the problem of finding an optimal solution
to a consistent non-singular interval linear system is in the general case
intractable (or, using the precise mathematical notion from complexity

theory [3], NP-hard).

Therefore, we cannot expect polynomial-time algorithms for interval
linear systems (unless, of course, someone finds a way to solve all in-
tractable problems).

2. Main result -

Problem. Given a consistent non-singular interval linear system, find
its optimal solution.

What is NP-hard: a brief informal explanation. We want to prove that
this problem is NP-hard. This notion (see, e.g., [3]) means that if there ex-
ists an algorithm solving interval systems in polynomial time (i.e., whose
running time does not exceed some polynomial of the input length), then
the polynomial-time algorithm would exist for practically all discrete
problems such as propositional satisfiability problem, discrete optimiza-
tion problems, etc, — and it is a common belief that for at least some
6f these discrete problems no polynomial-time algorithm is possible (thlg
belief is formally described as P#NP). So, the fact that the problem is
NP-hard means that no matter what algorithmn we use, there will always
be some cases for which the running time grows faster than any polyno-
mial, and therefore, for these cases the problem is intractable. In other
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words: no practical algorithm is possible that finds the optimal solution
to any non-singular interval linear system.

Theorem. The problem of computing an optimal solution to a consistent
non-singular interval linear system is NP-hard.

Comment. A similar results was announced in [5]. It has also been
recently proved [9] that checking whether a square matrix is non-singular

is NP-hard.

Another case when computing an optimal interval estimate is NP-
hard is given in [2]: namely, it is proved there that computing the

range P(X,...,X,) of a given polynomial P(z1,...,Zn) of several vari-
ables 2, ..., z, from given intervals of values X, ..., X, is NP-hard.
3. Proof

To prove that our problem is NP-hard, we will prove that 1if it were
possible to solve it in polynomial time, then it would be possible to solve
in polynomial time a problem that is already known to be NP-hard: the
so-called satisfiability problem for 3-CNF (see, e.g.,[3]). This problem
consists of the following: suppose that an integer v is fixed, and a formula
F of the type Fi&Fy&...&F} is given, where each of the expressions F;
has the form a Vb or aVbVec, and a, b, c are either the variables 21, ..., 2,
or their negations %1, ..., Z, (these a, b, c, ... are called literals). If we assign
arbitrary logical values (“true” or false”) to v variables 21, ..., 2, then,
applying the standard logical rules, we get the truth value of F. We say

‘that a formula F'is satisfiable if there exist truth values z1, ..., z, for which

the truth value of the expression F is “true”. The problem is, given F,
to check whether it is satisfiable.

The reduction will be as follows. Let us start with a 3-CNF propo-
sitional formula F' of the type Fi&Fy&...&F} with v Boolean variables
21, ..., Zy (i.e., variables that can take only two values: “true” and “false”).
Let us build an interval linear system as follows. This system will have
n = 2v + 2 variables i, ..., %y, Typ1, -, L2905 L2941, Tn, and the following
equations:

1) v+ 1 equations [-2,2]z; =[1,2],1 <i¢ < v+ 1;

2) v+ 1 equations [—1, —1]z; + [1, 1]2yi41 = [0.5,0.5], 1 <i < v+ 1,

3) v+ 1 equations [1,1]zy4i41 =[0,1],1 <i < v+ 1;

4) k equations that correspond to Fi, ..., Fy: namely, if F; =aV bV,
then the equation t(a) + t(b) + t(c) + [0, 1]z, = [1, 3], where t(z;) =
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ZTyt14i and ¢(2;) = 1 — 44144, and if FF = a V b, then the equation
t(a) 1 1(b) + [0, o = [1,7].

As a result, we get an interval linear system with n = 2v + 2 variables
and N = 3(v + 1) + k equations. The time that it took us to design this
system is evidently bounded by a polynomial of v.

- Example. Let us take F' = (21 V 22)&(2z1 V Z2). Here, k = v = 2, so
we have the following linear system:
[—2,2]z, = [1, 2]
[-2,2]z, = [1,2)
[—2, 2]333 = []., 2]
[-1, 1]z, + [1;1]azs = [0.5,0.5]
[—1,—1]zz + [1, 1]as = [0.5,0.5]
[—1, —1]111'3 + [].,].].’Eﬁ = [05, 05]
[1,1]z4 = [0, 1]
[1,1]zs = [0, 1]
[1,1]ze = [0, 1]
[1 1]x4 + [1 1]x5 + [0, 1]x6 = [1 2]
End of example

We will now prove the following three statements:

i) for every formula F this system is consistent and non-singular;
i) if a formula F is satisfiable, then [z, z]] = [0, 1];
iit) if a formula F is not satlsﬁable then [z, zt] =[1,1].

If 'we prove that, then we will be able to prove our theorem. Indeed,
suppose that there exists an algorithm that finds an optimal solution of
any consistent non-singular interval linear system in polynomial time (i.e.,
in time that does not exceed some polynomial of n). Let us show that
this algorithm will enable us to check satisfiability in polynomial time:
Indeed, for any 3-CNF formula F, we form an interval linear system (as
above; it takes a polynomial time) and apply the hypothetic algorithm
to compute its optimal solution. If x; = 0, then F is satisfiable; if
x, =1, then F is not satisfiable. The running time of this algorithm is
polynomial in N = 3(v + 1) + k and thus polynomial in v.

So, to complete the proof of our theorem, it is sufficient to prove the
above three statements ¢) — #14).
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1. The above-described system is consistent.

To prove that, let us show that the following z is a possible solution:
T; = —05, 1 S 1 S U, Ty+1 = 05, Ty+14i = 0,1 S 1 S v, and Ty, = 1.
Indeed,

1) The equations [-2,2]z; = [1,2],1 <i < v+1, are satisfied because
(=2)z; =1 for i < v (where ~2 € [-2,2] and 1 € [1,2]), and 2z,41 = 1.

2) The equations [~1, —1]z; + [1,1]@y4i41 = [0.5,0.5] are satisfied for
alll1 <i:<v+1.

3) The equations [1,1]zy4i41 = [0,1], 1 < ¢ < v + 1, are evidently
satisfied;

4) Each equation t(a) +t(b) +t(c) + [0, 1]z, = [1,3] is satisfied for the
following reason: each of the values t(a), t(b), and t(c), is equal either to
0, or to 1. Therefore, t(a) + t(b) + t(c) is equal to either 0, or 1, or 2, or
3. If this sum is equal to 1, 2, or 3, then t(a) + t(b) + t(c) +0-z, € [1,3].
If t(a) + t(b).+ t(c) = 0, then t(a) + t(b) + t(c) + 1 -z, = L€ [L,3].

Similarly, the equations t(a) + t(b) + [0, 1]z, = [1,2] are satisfied. So,
the system is consistent.

2. Let us now prove that this system is non-singular.

Indeed, according to equations 3), ,+1+: € [0, 1], and from this and
equations 2), we conclude that z; = Ty414; — 0.5 € [—0.5,0.5] for i <
v + 1. Therefore, for each of the variables xz;, its area of possible values
is bounded: So, the system is non-singular. '

~

3. Before we start proving two other properties, let us first prove that
for any possible solution of this system, T,4+14; € {0,1} for i <v + 1.

Indeed, according to equations 1), [-2,2]z; = [1,2]. Therefore, if z;
is a possible solution, there exists values r and s such that rz; = s,
r e [-2,2], and s € [1,2].

Since s = ra; € [1,2], we have rx; # 0, hence z; # 0. If 2; > 0, then
from rx; > 0, we conclude that » > 0, s0 0 < r < 2. From s > 1 and
0 < r < 2, we conclude that = s/r > 1/2. Likewise, if x; < 0, we can
conclude that z; < —0.5.
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Therefore, z; € (—00,—0.5] U[0.5,00) for ¢ < v + 1.

According to equations 2), Typ14i = 2; + 0.5. Therefore, z,,,4; €
(—00,0] U [1,00), i.e., either Tyq14i <0, oF Tyy1q4q > 1.

According to equations 3), z,4+1+i € [0,1]. So, values < 0 and > 1 are
not possible. Therefore, either z,414; =0, or T,414; = 1.

4. In particular, 3. means that for possible solution z, z,, can take
only the values 0 and 1. We have already proved (in 1.) that 1 is a
possible value of x,,. Let us now prove that 0 is a possible value of z,, if
and only if F is satisfiable. This will prove i7) and #4¢), and thus complete
the proof of the theorem.

4.1. First, assume that F' is satisfiable, and z; are corresponding truth
values. Let us show that in this case the following vector z is a possible
solution: x, =0, £y4; = —0.5; for 1 < < v, Typ14; = 1 iff 2; =“true”,
and T; = Ty4141 — 0.5.

1) [-2,2]x; = [1,2] is satisfied, because either z; = —0.5 (then
(—2)x; = 1), or z; = 0.5, then 2z; = 1.

2)[-1, =1]z; + [1, 1]xyqi41 = [0.5,0.5] is satisfied.
3) Equations [1,1])zy4i41 = [0,1] are trivially true.

4) Each of the values #(a), t(b), ¢(c) equals 0 or 1. Therefore, the sum
t(a) + t(b) 4 t(c) + [0,1]z, = t(a) + t(b)+ t(c) is equal to one of the
4 numbers 0, 1, 2, and 3. Since the values z1, 29, ..., 2, satisfy F', the
truth value of F' is “true”. Therefore, each of the subformulas Fj is true,
which means that for each j, at least one of the expressions a, b, or ¢, is
true. If a is true, then, according to our assignment, ¢(a) = 1. Therefore,
[0, 1]z, +t(a) +t(b)+1t(c) is at least 1. Hence, t{a)+t(b)+1(c)+[0,1]z, €
[1,3]. So, these equations are also satisfied.

4.2. Now, assume that z; is a possible solution, and z, = 0. Let us
show that the formula F is satisfiable. We will show, that the following
set of Boolean value makes it true: z; =“true” iff Tyt14i = L.

“Indeed, according to 3., for every ¢ < v, z,414; is equal either to 0,
or to 1. Hence, for every a, either ¢(a) = 0 or ¢{(a) = 1, and t(a) = 1 iff
a is true. Since x, = 0, for every F}, the corresponding sum is equal to

O
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t(a) + t(b) + t(c) + [0, 1]z, = t(a) + (b) + t(c). Because of the equation
4), this sum is > 1. This means that at least one of its terms t(a) is
equal to 1. This, in its turn, means that at least one of the literals a is
true. Therefore, the formula F; = a VbV c is true for all j. Therefore,
F = F1&.. .&F;&.. .&F} is true. Q.E.D.

. Acknowledgments. This work was sponsored by NSF grant No.
CDA-9015006, NASA Research Grant No. 9-482, and a Grant No. PF90-
018 from the General Services Administration (GSA), administered by
the Materials Research Institute. The authors are thankful to S. P. Shary,
Jiri Rohn for interesting reprints and stimulating discussions, and also to
the anonymous referee for valuable comments.

References

1. Beeck, H. Uber die Struktur und Abschdtzungen der Lésungsmenge von linearen
Gliechungssystem mit Intervallkoeffizienten. Computing 10 (1972), pp. 231-244.

2. Gaganov, A.A. Computational complezity of the range of the polynomial in several
variables. Kibernetika (1985), pp. 418-421 (in Russian).

3. Garey, M. and Johnson, D. Computers and intractability: a guide to the theory
of NP-completeness. Freeman, San Fransisco, 1979.

4, Lakeyev, A.V. and Noskov, S.I. On controlled solution set to interval algebraic
systems (to appear).

5. Lakeyev, A.V. and Noskov, S.I. A description of the set of solutions of a lincar
equation with intervally defined operator and right-hand side. Doklady RAN,
Matematika 330 (4) (1993), pp. 430-433 (in Russian).

6. Neumaier, A. Interval methods for systems of equations. Cambridge University
Press, Cambridge, 1990.

7. Nickel, K. Die Uberschatzung des Wertebereichs einer Funktion in der
Intervall-rechnung mit Anwendungen auf lineare Gleichungssysteme. Computing
18 (1977), pp. 15-36.

8. Oettli, W. On the solution set of a linear system with tnaccurate coefficients.
SIAM J. Numer. Anal. 2 (1965), pp. 115-118.

9. Poljak, S. and Rohn, J. Checking robust nmL-sinéul(LTﬂy 18 NP-hard. Mathematics
of Control. Signals, and Systems 6 (1993), pp. 1-9.

10. Rohn, J. Systems of linear interval equations. Linear Algebra and its Applications
126 (1989), pp. 39-78.



14 V.KREINOVICH, A.V.LAKEYEV, S.LNOSKOV

11. Shary, S.P. Optimal solution of interval linear algebraic systems. I. Interval
Computations 2 (1991), pp. 7-30.

12. Shary, S.P. A new class of algorithms for optimal solution of interval linear
systems. Interval Computations 2(4) (1992) pp. 18-29.

Received: May, 5, 1993

Revised version: June 15, 1993

V.Kreinovich
Department of
Computer Science,
University of Texas
at El Paso, El Paso,
TX 79968

USA

A.V.Lakeyev, S.I.Noskov
Irkutsk Computing
Center, Russian
Academy of Sciences,
Siberian Division
Lermontov Str. 134,
Irkutsk 664033,

Russia

Interval Con
No 1, 1993

AP
FOR EEF
OF Al

We
tions by
the eva
free cox
the larg

An
earized
In this
hybrid
0CCasio

9BPUCTI
DPPEF

- Al
HEJI

Pau
HbIX YF
CTBUU (
STOM
Pemeyy

_-‘—-__—_'_'—'——«
*ThiS wWao
© R.B.K




