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INTERVAL DISCRETE MODELS
AND MULTIOBJECTIVITY.
COMPLEXITY ESTIMATES

Vitaly A. Perepelitsa and Galina L. Kozina

We consider known extremal problems on graphs (travelling salesman
problem, spanning trees problem, chains problem between a pair of vertices,
matching problem) with interval weights. The objective function being an
interval weights sum generates the Pareto Set of solutions. The investi-
gation of maximal cardinality of Pareto Set by methods of multiobjective
optimization shows that the problems under consideration are intractable
when they have criteria only of weight form. However, this problems be-
sides the travelling salesman problem have the polynomial computation
complexity in case of maximin criteria.

MHTEPBAJIBHBIE NVICKPETHBIE MO IEJIN
N MHOI'OKPUTEPMNAJIbBHOCTD.
OLEHEKU CJOKHOCTH

B.A.llepeneaumna, I'.JI.Ko3una

PaccmaTpuBaloTca M3BecTHBIe KCTpeMaJslbHble 3alaud Ha rpadax
(o KoMMUBOsKepe, 0 KpaTuaiilieil cBasyoLleidl ceTu, o KpaTdaiilieit
el MeXIy Mapoif BepIIMH, O COBepPLIEHHBIX MapoCOoYeTaHUAX), pe-
6pa KOTOpPBIX B3BellleHbl MHTepBaJbHbIMU BecaMn. lleneBasa ¢pyHkuns,
NnpencTaBA0nad cobol cyMMy MHTePBAJIbHBIX BECOB, ITOPOKIAET Ma-
pPeTOBCKOe MHOXKeCTBO pellenniti. VlccnenoBanue (c momMoubio anmnapa-
Ta MHOTOKPUTEPHUAJIBHOCTU) MAKCUMAaJIbHON MOUIHOCTU aPETOBCKOr0O
MHOYK€eCTBa MMOKA3aJio, UTO paccMaTpuUBaeMble MHTEpPBaJbHbBIE 3a0a4N
ABJIAIOTCA TPyIHOpeHIaeMbIMU B CJydae BeCOBBIX KpuTepueB. O nHa-
KO IIPU BBeJE€HMM KPUTEPHEB MAKCUMMHHOI'O BUA BbBIUMCJIUTETbHAS
CJIO>KHOCTB YKa3aHHBIX 3a/Jiad, KpoMe 3aJ4avdd 0 KOMMMBOsXKepe, OKa-
3bIBaeTCA MOJIMHOMUAJILHOM.
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In the field of mathematical simulation under conditions of uncertainty
to obtain an adequate model of an object investigated, we construct an
interval model ([1],{2}).

We consider the case where all initial data that are the ob jective func-
tion parameters are specified as estimates, that is approximately. By
now, this case is studied as applied to the linear programming problems

[3]-

The problem under investigation is concerned with extremal interval
problems on graphs. These settings arise, for example, in the simulation
land tenure problems [4] where harvest forecasting can’t be specified in
the form of uniquely defined parameters. There is a similar situation in
the electronic devices design, and transport networks [6] and al.

Generally, the problems in question can be described in the following
way. ‘

There is a n-vertex graph G = (V,E) in which an interval weight
w(e) = [w1(e), wa(e)] is assigned to every edge e € E.

A feasible solution of the problem examined is defined in the form of a

subgraph z = (Vo, Es), Vo CV, Bz C E. We denote the set of all feasible

solutions by X = {z}. On X, the objective function (OF) is defined

F(z) = Z w(e). (1) |

ecE,

We must find an element o € X on which the values of OF (1) attain
an extremum required, for example, the maximum. \

The case of non-interval weights w(e), e € E, is well studied in ex
tremal problems on graphs such that the problems of travelling salesma?,
(z is a Hamiltonian cycle), of shortest chain between a pair of vertices
(z is a path between a pair vertices), of minimal spanning tree (z is @
spanning tree), of matching (z is matching). For these problems, the
problem of optimum determining does not arise, algorithms of finding a?
optimum being known for each of them.

In the case where parameters of OF (1) are specified intervally, a fulir'
damental question arises of defining the concept of an optimum zy € »

All the more, the question of algorithms for finding. the best solutio?
|

remains open. i
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In the present paper, a constructive solution for above problems is
I)roposed by means of reducing an interval mathematical programming
problem to a discrete multiobjective (vector) problem.

First of all, using well-known definitions of binary relations on intervals
(1], [7], we refer to the meaning of the best or ideal solution concept.

Definition. A solution z9 € X is said to be ideal if on zo, values of
magnitudes of the lower boundary

wi(z) = ) wile), (2)

ecekE,

and of the upper boundary

wa(x) = ) wa(e) (3)

e€EE,

attain the minimum on the interval w(z) = [wy(z), w2(z)] obtained as
the result of interval summing of weights w(e) over all e € E,,, as well
as the maximum width

d(e) = wy(e) — wi(e) (4)

of intervals of weights for edges e € E,,.

A widespread desire of problem-setters to minimize a variance value
over the set of possible outcomes stipulated taking account of index (4).
As a particular example where taking account of the minimizing index of
the form (4) is necessary, one can designate the land tenure problem [4].

From (2)—(4), we obtain the following criteria of feasible solution z € X
quality estimates '

eel,

Fy(z) = Z wo(e) — min, (6)
eclk,

F3(z) = maxd(e) — min. (7)



54 V.A.PEREPELITSA, G.L.KOZINA

In the multiobjective situation, it is customaty to assume that the
solution quality is estimated by means of the vector objective function

(VOF)
.» Fn(2)), (8)

whose criteria we suppose to be minimizable

F(z) = (Fi(),.

F,(z) — min, v=1,N. (9)

Moreover, if N-criterial problem is specified on a graph G = (V, E)
we suppose that to each edge e € E the weights wy(e), v = 1,N, are
assigned. In this case, we are dealing with N-weighting of graph*.

VOF (8), (9) determines a Pareto set (PS) X [8] consisting of all Pareto
optima. Element Z € X is called a Pareto optimum if there isno = € X
such that F,(z) < F,(%), v = 1, N, here even one of inequalities being
strict.

To find the best solution it is suffice to examine not all PS X , but a
subset of its representatives known as complete set of alternatives (CSA)

X.

. A subset of minimal cardinality X C X is called a complete set of
alternatives if F' (X' )=F (5(C ).
Therefore, determining the best solution of a given interval problem
is reduced to the following stages. First, we structure VOF criteria (8),
(9), after that a CSA X is obtained. At the final stage, using the choice
and decision theory procedures [9], from X, the desired “compromise”
optimum 2 is chosen.

The above transition from an interval problem to a multiobjective one
provides certain algorithmic problems and we are coming now to their
analysis.

*Without imposing in the general case any constrains on the number of criteria N
we suppose that the diversity of criteria does not restrict to expressions (5)-(7). For
example, in the land tenure problems, decision-making persons apply a criterion 0
the following maximim form

w1 (e) + ’w2(€) (10)
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Computation complexity estimates

As is known [9], [10], in the case of classical (non-interval) setting
of shortest spanning tree, of chain between a pair of vertices, and of
matching problems, there are efficient algorithms of finding an optimum
zo. The algorithms mentioned are called efficient since their computation
complexity is bounded from above by a polynomial of low power O(n*),
where ¢ < 3 ([10], [12]).

The question arises whether the above problems remain of polynomial
computation complexity in the multiobjective (or interval) setting. If
not, it is worth to find conditions under which these problems become
intractable.

To state the result obtained let us agree to call the criteria of the form
(5), (6) the criteria of weight form, and the criteria of the form (7)-(10)
minimax criteria.

According to [12], we call a multiobjective problem intractable one
if there is ho algorithm that would guarantee the finding a CSA with
polynomial complexity. One can consider the cardinality of the CSA |X |
as a lower estimate of computation complexity of its finding. This implies
that a multiobjective problem is intractable in the case if the maximal
cardinality of the CSA p(n) increases exponentially with the increase of
the dimension of a problem n (u(n) = max | X|, where the maximum is
taken over all n-vertex N-weighted graph).

In the sequel, using some results of [13]-[16] we state sufficient condi-

tion for the considered vector problems on graphs be intractable.

Theorem 1. If the VOF of travelling salesman problem contains at least
two criteria of weight form the maximal cardinality of the CSA 1s

- p(n) = %(n - 1)!

The scheme of the proof of Theorem 1 is the following.

Consider a complete n-vertex graph whose edges are indexed by s =
1,2,...,m, m= (3). To the edge e, two weights w;(es) = 2, wa(es) =
2™ — wy(es) + 1 are assigned.

Using the binary representation of weights w,(e), v = 1,2, it is easy
to see that under above way of weighting each pair of feasible solution
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for a travelling salesman problem is a-vector incongruent with respect to
the value of VOF (8). Thus, for above way of weighting, the equalities
X = X = X hold. Taking into account that the cardinality of the set of
Hamiltonian cycles in a complete n-vertex graph is equal to %(n —1)!, we
complete the proof of the theorem.

The proofs of Theorems 2,3,4 are based on the scheme used in proving
Theorem 1. The main difference for Theorem 2 consists in constructing a
graph such that the cardinality of the set of feasible solutions on it would

be maximal.

Theorem 2. If a VOF of a chain between a pair of vertices problem
contains at least two criteria of weight form, the maximal cardinality of
CSA is bounded from below by the exponential function

un) 22", m=|n/2),

where |a] is equal to the greatest integer not exceeding a.

Theorem 3. For ever n, if VOF of a matching problem contains at least
two criteria in the weight form, the maximal cardinality of CSA is equal

_(em)

p(n) = —pm’ n = 2m.

By the spanning tree problem we call a mathematical setting such
that the set of feasible solutions X consists of all spanning trees of a
given connected N-weighted graph.

Theorem 4. If a VOF of a spanning tree problem contains at least two
criteria of the weigh form the maximal cardinality of CSA is equal to

p(n) =n

From the standpoint of épplic-ations, of particular interest is the justi-
fication of conditions determining polynomial resolvable classes of vector
problems. Using the results of the paper [17] we succeeded to establish
such classes for two-criterial settings.

We denote by N; the number of criteria of weight form contained in

VOF (8)—(9), remaining N — N; criteria are of minimax form (7) or (10)- |
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Theorem 5. If N = 2, N; < 1 the computation complexity of finding
(SA of a chain between a pair of vertices problem and of a spanning tree
problem does not exceed O(n*).

The proof of the theorem is based on constructing an algorithm o of
complexity 7(a) = O(n*). The computation plan of the algorithm consists
of the following steps: «; is a ranking (classification) of edges e € E of’
a given 2-weighted graph G = (V, E) in order of decrease of the second
weight wo(e); The result of the procedure v is the set of values of the
above second weights p = {p1,..., s, -, P}, Ps > Pst1, § = 1,...,1-1;
we denote by G5 = (V, E;) an spanning subgraph of a graph G consisting
of edges with second weight wq(e) < ps, € € Es; '

oy — is the procedure in which
1) for edges e € E, the convolution of weights is computed:
w’\(e) = )\1101(6) + /\2’11)2(6), }\1, /\2 > 0,
2) on a graph G weighted by the Weights w*(e), an optimal solution
is obtained (a shortest chain between a pair of vertices, the Dijkstra
algorithm [10], for a shortest chain between a pair of vertices problem,
the Prim and Kruskal algorithms [9}-[11], for a spanning tree problem)
using algorithms with complexity equal to O(n?).

As the result of applying the procedure oy ! times we obtain the set X,
of feasible solutions that contains the CSA desired. The proof of the latter
statement can be found in [17]. The complexity of selecting the desired
CSA from X, does not exceed O(n?). By the inequality [ < |E| < O(n?)
this implies the final statement of Theorem 5.

Theorem 6. If N = 2, N; < 1 the computation complexity of finding
CSA of a matching problem does not exceed O(n°).

The scheme of the proof of Theorem 6 differs from corresponding ver-
ification in the proof of Theorem 5 only by that essentially, that at step
g, one uses the Lawler algorithm [10] instead the above ones of finding
optimal matching; the complexity of the Lawler algorithm O(n?).

Returning to interval setting, one can refer them as hard problems if
the quality estimate for solutions obtained is computed accounting indices

of the (5) and (6).
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On the other hand, we obtain effectively resolvable settings in the case 14. Emeli
where for any of several reasons, it proves to be sufficient to estimate maultic
the solution quality by means of a pair of criteria satisfying conditions of Russi:
Theorems 5 and 6. We observe that these conditions are satisfied in the 15. Emeli
case where VOF consists of criteria (7) and (10). discre
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