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ON SOME OPTIMAL INCLUSION
APPROXIMATIONS BY DISKS*

Ljiljana D. Petkovi¢ and Miroslav Trajkovic¢

In this paper we construct the best possible circular including approx-
imations for the complex-valued sets obtained under the transformations
2z = 21/™m and z — Inz. The diameters of these disks are equal to the
diameters of the mapped regions.

O HEKOTOPBLIX OIITUMAJIBLHBIX BKIITFOUYAIOIIINX
AIITIPOKCMAIINSIX C IIOMOIIBIO KPYT'OB

JI.IleTtrkoBuu, M.TpaitkoBuu

B pa6ore Mbl CTPOMM HauJyUullle BO3MO:KHble KPYTOBble BKJIIOUA-
IOIYe alnpoKCUMalMW JJs KOMIJIEKCHO3HaUHBIX MHOYKECTB, MOJIy-
UeHHBIX TTPU TpaHCcPOpPMaLMAX Z — 21/™ y z — Inz. JnameTpsl 2TUX
KpPYroB paBHBI AMaMeTpaM oTobpaskeHHbIX obiacTeid.

1. Introduction

Let Z = {2z : |z — (| < r} be a disk in the complex plane with the
center ( = mid Z € C and the radius r = rad Z > 0, denoted shorter by
Z = {(;r}. The boundary of the disk Z will be denoted by I' and the set
of all disks by K(C). Furthermore, let f be a complex function, defined
on the union of all disks from H C K(C), such that the complex-valued

*This work was supported by the Science Fund of Serbia under Grant No. 0401.
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set f(Z) ={f(2) : z € Z} is closed for each Z € H; C H. In general,
the range f(Z) is not a disk, which makes difficulties in calculations. For
this Teason it is convenient to introduce a circular covering approxima-
tion, denoted by I(f(Z)), which completely includes the range f(Z) for
each Z € Hy, that is, I(f(Z)) 2 f(Z). The disk I(f(Z)) is called a cir-
cular including approximation, or shorter, I-approximation. The
practical point is to find an I-approximation for given f and Z as good
as possible.

Evidently, the best I-approximation to the closed range f(Z) would
pe a disk with the diameter equal to the diameter

d=diam{f(2)} = max |f(z1)~ f(z)| (1)

of the range f(Z) under the condition that this disk contains completely
f(Z). As it was proved in [8] if such disk exists than it is unique and its
center w (say) is the mean of the diametrical segment lines. This disk is
called the diametrical including approximation or D-form for f(Z),
denoted by I4(f(Z)) = {w;d/2}. The enclosing condition is given by the
inequality

0o

f(z)—w| <5 (z€2Z). (2)

Complex circular functions in D-form can be of great importance as it
was illustrated in [5] and [10]. Although the use of non-optimal disks for
the range of values can give better results for some classes of problems
because of some convenient properties (inclusion isotony, intersection),
we stress some good features of optimal disks, especially in various cal-
culations with complex variables. For example, the so-called inclusion
calculus of residues, presented in Chapter X (written by M.S. Petkovié)
of the book [4], just requires as small as possible disks. Furthermore,
we note an outstanding problem in optimization theory which consists of
finding max,cz |f(2)|, Z € K(C). Namely, since the absolute value of a
disk Z is defined as

|Z| := |mid Z| + rad Z,

then obviously

F(ecr < max |7()| < [mid I(£(2)| +rad I(£(2)).  (3)
3*
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Therefore, the upper bound will be determined more precisely if the ra- where t.l
dius rad I(f(Z)) of the covering disk I(f(Z)) is as small as possible (in toT'p in
the best case, equal to $diam {f(2)}). pasEesit
curve I’
The study of D-form of elementary (library) functions has special im-
portance. Some diametrical circular approximations for elementary func-
tions were given by Borsken [2]. The further investigations were pre-
sented for the range ZU/* = {z'/* : z € Z} in [9] and for the range
eZ = {e* : z € Z} in [8]. The subject of this paper is to construct
I,—approximation for the range Ing(Z),0¢ g(Z)={9(z): 2 € Z} in an
important special case when g definés a linear-fractional transformation,
that is, g(z) = (az +b)/(cz + d), a,b,c,d € C,ad —bc £ 0. We also con-.
struct the best possibleincluding approximation for Zlm (¢ Z, which
completes the investigation started in [9]. ‘
We presume that the readers are familiar with the basic properties of
circular complex arithmetic. For the details see the book [1] by Alefeld
and Herzberger.
2. Some general results Accor
Solving the mentioned problem we will first prove the following mor¢ 1,
general result. ' themm?
) € smo
Outside ]

Lemma 1. Let D be an arbitrary disk having the boundary I'p av
the diameter d, and let G be a closed complex-valued range bounded b Takin
the smooth curve I'g. If P and Q are two adjacent points of intersectio’ !
or points of tangency of the ngndaries I'p and T, then there exist
at least one point on the arc PQ C I'c (excluding the points P and @ Lemymy

whose the normal passes through the center of the disk D. Smooth |
Gw

Proof. Let p = p(6) = d/2+.g(0) define the distance from the pole ol hos
to a point on the boundary I'c. Here 6 € (0, 7) is the angle in refereﬂc_E In cq
to the positive part of the real axis. Since p(8g) = p(0 p) = d/2, # the Casen~
have g(8p) = g(fq) = 0. Considering the derivative g’ (9) along the & Xistg ..
@T’ c T between the points Q and P we conclude that this derivatl’ Cb. To
must change its sign on this arc (not necessarily for 8 € (0g,0pP); ", Which ing
instance, if g(f) is a multiple-valued function on this interval). Hen(fy{

follows that there must exist at least one point, say T, on the arc ¥

) -
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where the tangent is parallel to the tangent on the circular arc belonging
to [p in the corresponding point Tp. But the normal CpTp evidently
passes trough the point T which means that CpTg is the normal of the
curve I'g in the point T(z. This proves the lemma. O

Fig. 1

According to Lemma 1 we can easily state the following assertion:

Lemma 2. If the disk D does not completely include the range G with
the smooth boundary I'c then there exists at least one point on I'g
outside D such that its normal passes trough the center of the disk D,

Taking a complementary assertion from Lemma 2 we obtain

Lemma 3. The disk D will completely contain the region G with the
smooth boundary I'¢ if and only if all points belonging to the contour
I'¢ whose normals pass trough the center of D lie in the interior of ['.

In connection with the assertion of Lemma 3 it should be noted, in
the case when the boundary I'¢ completely lies inside the disk D, there
exists at least one point on I'¢ whose normal passes through the center
Cp. To prove this it is sufficient to construct a circle centered at Cp
which intersects the boundary I'¢ and then directly apply Lemma 1.
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3. Diametrical disks for the m-th root

In this section we continue our study on diametrical including approx-
imations presented in [9]. We are concerned with the problem of finding
the diametrical disks for the range Z'/™ = {z:2™ € Z, 0 ¢ Z, m € N}
which has been partly considered in [9]. Our aim is to give an answer to
the open problem proposed by L. Petkovi¢ in 1986 [7]. This result com-
pletes the study from the paper [9] concerning the diametrical disk for
the range Z'/™, 0 ¢ Z. We note that the solution presented uses a dif-
ferent approach than McCoy’s [3] and is somewhat simpler than McCoy’s
answer [3].

In the determination of the diametrical including approximation for
the range Z'/™ we need the following lemmas (the proof of the first one
is omitted because of simplicity).

Lemma 4. The functjon h(yp) = sinmep/ sin ¢ is morotonically decreas-
ing on the interval (0, = arcsinp), where 0 < p < 1 and m > 1.

Lemma 5. Let m > 2 and p € [0,1). Then
(L+p)" + (1= p)!/™ <2 (4)

and

p)llm Z ZSin(arC81np>. (5)

(1+p)t/™ -1 - —

Proof. The proof of (4) was given in [6]. To prove (5) we first use the
general binomial formula and find

(1+p)t™ = (1-p)t/m = p+2zaxp, (6)

where

k
1
ask = 0, aspyq = Ok )izer H[(2s—1)m—1][25m—1] (k=1,2,..).
'm poy

Let 1
satisfies

with th
flp) =

known
initial c

ba =
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where t]
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Let us introduce the function f(p) = sin(2222) and note that it
satisfies the following differential equation

(1= )" () - pf (p) + - F(B) = 0 ®)

with the initial conditions f(0) = 0, f(0) = &, f”(0) =-0. Setting
flp) = 332 0 bap?, we solve the differential equation (8) by the well-
known method using the series. In this way, taking into account the
initial conditions, we obtain

1
bor =0, by = —, bapy1 =
m

k
(2k + 1;!m2k+1 H[(Zs "'1)2""2 -1 . (k = L2,..). (9)

Thus

m .

. sarcsin 1 o ' '
flp) = Sm( p) =—pt > b, (10)
A=2

where the coefficients by are given by (9).

Using the expansions (6) and (10) we get

m m . sarcsin s |
(1 +p)1/ = (1 —p)l/ —'2 Sm( - p) — 2;(02k+1 — b2k+1)p2k+1.

To prove (5) it suffices to show that azk+1 — boks1 > 0 for all m > 2 and
k=1,2,...But it is trivial since from (7) and (9) there follows ‘

k
|
a2k41— Doyl = TR D [[(m-2)(2s~1)m-1] > 0. o
) s=1

From (4) and (5) we immediately obtain

Corollary. Let m > 2 and p € [0,1). Then

arcsin p

(149)1™ = (L= p)™ > (14 )™ + (1= p) /"] sin(Z2F). (1)
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We note that the‘.inequality (11) has also appeared in McCoy’s papers
[3] but was obtained by a quite different approach.

Let us return to our problem of finding the diametrical including ap-
proximation I4(Z/™). Let Z be a circular complex interval given by a
disk with the center ¢ = mid Z € C and the radius r = rad Z > 0, that
is, Z = {2z : |z — ¢| < r}, denoted shorter by Z = {c;r}. Let us assume
that the disk Z does not contain the origin, that is, p :=r/|c| < 1. As it
was shown in [9], the construction of the diametrical disk for the range
Z'/™ reduces to the following problem (see Fig. 2):

Let D = {uo;d/2} be the disk with the center

o = (14 p)t/m _;_ (1-p)t/m i ~ 12

and the radius

1/m _ —_ m\1/m
SO B ESLLEY (R 13)

J
and let G be the image (one of m) of the disk {1;p}, p € (0,1) under
w = 21/™ with arg z1/™ € [— %\arcsinp, #arcsinp]. The question arises
whether G is completely contained inside the disk D.

Av

Ve

Fig. 2

The boundary I'p = {z : |z — 1| = p, p < 1} of the disk Z, = {1;p}
shown in Fig. 2a can be represented in the polar coordinate system (p, 0)
as

p? —2pcosf+1—p*=0. (14)
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Under the transformation w = 21/™ the disk Z, maps to the m closed
regions Go,G1, ..., Gm—1 of the same form with the axes passing through
the origin and rotated through the angle 27/m. For our purpose it is
gufficient to consider only one of these regions since all diametrical disks
enclosuring the images are of the same form (and rotated through the
angle 27 /m). For simplicity we choose the region G whose axis coincides
with the real axis and |arg z}/™| < - arcsinp, z € Zo (see Fig. 2b). This
region will be called the principal-value range, or shorter, p.v. range.
Under w = 2!/™ = Rexp(ip) = u + iv the contour (11) maps to m
contours I'g,,T'qy, ..., T'G,,_,- The contour vy := g, of the considered
. region Gy, called p.v. branch, intersects the real axis u in the points
A and B. The equation of the contour 7 in the polar coordinate system

(R, ) is given by

. - 1
R*™ _2R™cosmp+1—-p*=0, |¢|< — arcsinp. . (15)

Using the rectangular coordinate system (u, v) in the w-complex plane,
from (15) we find

gii)___Rmcosgo—cos(m—l)go (16)
du  Rm™sinp+ sin(m — 1)¢

in an arbitrary point on the boundary ~. Besides, solving the biquadratic
equation (15) we obtain

R™ = cosmp £ \/p2 — sin® mep. (17)

It is easy to see that the intersecting points A and B of the contour
v and the real axis u have the coordinates A((1 — p)}/™,0) and B((1 +
p)'/™,0). Let us consider the disk D with the center up = (ua+up)/2=
(1-p)/™+(1 + p)/™)/2 and the diameter d = 2ry = up — ua =
(1 + p)/™ — (1 — p)/™. The boundary I'p = {w : |w — up| = ro} of
this disk passes through the points A and B. Since the boundary v of
the region Gy also traverses the points A and B, we conclude that the
diameter of the region Gy is equal to the diameter d = AB of the disk
D if Gy C D. Therefore, if we prove that the disk D completely includes
the closed region Gy then the disk D is the diametrical disk for the
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p.v. range Gy, that is, D = I3(Gy). The answer is given in the following
theorem.

A

1"'-'

Fig. 3

Theorem 1. The disk D = {ug;ro}, where uy and r¢ are given by

(12) and (13), completely contains the p.v. region Gy if and only if the
inequality (11) holds.

Proof. Let H(u,v) be an arbitrary point on the contour v whose normal
passes through the center ugy of the disk D. Since

dv o1
du lw=wy tan 3’

from (16) and Fig. 3 we obtain

_ C dv . RM™cosyp —cos(m— 1)y
SO tanf3 ut Ydu T Reosy = RSln('ORm sing + sin(m — 1)’
wherefrom e

" sin mp (18)

~ Rm sin + sin(m — 1)p’

Substituting R™ (given by (17)) in (18) and solving the linear equation
we find the modulus R of the radius vectors OH’ and OI-j ,

— \/p2 — sin® mep.
sin me

Ry nr = ugcosp £ ug (19)

Using the polar coordinate system (R, ¢) the contour T'p of the disk

D can be written as

R? — 2Rug cosp + (1 — p?)V/™ = 0. (20)
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Let S1 and Sy be the points of intersection of the circle I'p and the
straight line OH. Then from (20) we find the distances Rs, and Rs, of
the intersection points S, and S, from the origin,

Rs, s, =ugcosp £ 1/udcos? ¢ — (1 - p2)i/m, (21)

To prove that the disk D contains the region Gy, according to Lemma
3 it is necessary and sufficient that the point H belong to the interior of
', denoted by int'p. From Fig. 3 we see that H € int I'p if and only
if the inequalities Rg, < Ry and Ry < Rg, hold. Taking into account
(19) and (21), the two last inequalities reduce to the inequality

Sig \/p — sin? mp < \/uocos2 (1 —p2)t/m.
smm<,0

After a short rearrangement this inequality becomes . S

arcsin p

ro sinmep > ugp sin p, 0<p<

or

sin mep 5, UoP
sing ~ rg

Since the function h(y) = sin me/ sin ¢ is monotonically nonincreasing
on the interval (0, - L arcsmp) (Lemma 4), it is sufficient to prove the

inequality ;
sin(m - — arcsinp) _ wu,p

b

sin(+ arcsinp) 7o

that is

(1 +p)1/m _ (1 _p)l/m 2 [(1 +p)1/’ln + (1 _p)l/m] Sill(a‘rcrs’inp) )
This is the inequality (11) proved above and, therefore, the proof of The-
orem 1 is completed. O

According to Theorem 1 it follows that the disk D = {ug;ro} is the
diametrical disk for the region Gy.
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we establish the diametrical including approximations for the region Z!/™
as the union of m diametrical disks, that is

127 = [ {uole/mexp (128 2’”) olef/m}.
k=0

4. Diametrical disks for the logarithmic function

In this section we are concerned with the construction of the dia-
metrical disk for the range of the function f(2) = Inz. Since Inz is
infinitely-many-valued function we will consider in the sequel only the
principal-value of In z assuming that In z = In |2|+¢ arg z, arg z € [0, 27).
Therefore, speaking about the diametrical disk for In Z we assume only
oneset InZ = {In|z|+iargz:2 € Z. () < argz < 27} called principal-
value range, or shorter, p.v. range.

The diametrical disk Iz(InZ) has been established by Borsken [2].
Here we give a new derivation which uses partly Borsken’s results but
with a new simple approach in the estimation procedure based on the
use of circular arithmetic and Theorem 1. First, according to (1), we
will find the diameter of the range InZ, 0 ¢ Z = {z; p}. We introduce
P = p/|z|(< 1) and obtain

lIn 21 — In 2., ez = [In(1+ pe™®) — In(1 + pe™®)| o seqo.2m)
P i P i P iox iB
—/_._e_dt— e.dtg/ e-—e'j
o 1+ tei@ o 1+tet o |[1+ter 1+ te

Using circular arithmetic operations and (3) we find

g - ® | 1] 1 1

14+t  14tef| ¢t |1+tef 14 teic

1 1 1 1 2t 1 1
< = - =40, —— | = :
~t|1+t{0;1} 1+¢t{0;1} tl{,’l—tz} T7¢ 1=¢

According to this we estimate
/P 10y ei,@
0

1+ tetP

e
1+ teie

P }
<[ (t5+0 )dt=1n1+p,
“Jo \1+t 1-t 1—-»p

that 1s

for all z,:
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that 18 |
- |lnz1—1nz2|§1n1+p

= (22)

for all 21,22 € Z. Therefore, the diameter of the range In Z is given by

|z| 4+ p

1+p
2| -

1-p

In

d=diam{lnZ} = maécz|lnzl —Inz|=In

I~

It is easy to show that the boundary of the range In Z is centrally
Symmetrica,l in reference to the two mutually perpendicular axes which
are parallel to the real and imaginary axes (see Borsken [2]). According to
this we can conclude that the equality in (22) appears for 27 = z+pet 2TEZ
and z5 = z— pet @87 which means that these points lie on the diametrical
segment line. As mentioned previously, if a diametrical disk exists (that
is, if the enclosing condition (2) is valid), then its center is the mean
of diametrical segment lines. For this reason the possible center of the
diametrical disk for In Z must be the point determined by

* 1 *
A= In 2 ; it =In+/|z|? — p? + 1 arg 2.

Thus, the disk {4;d/2} will be the diametrical disk for the range In Z if
the enclosing condition

1+p
=1
9 1=

d 1
- 2
: (23)

|In¢ — A| < (p = p/|2])

is fulfilled for all ¢ € Z. The check of this inequality can be avoided if we

use Lemma 3.

Remark. Obviously, to prove that th_é disk {A;d/2} is the diametrical
disk for the p.v. range In Z, it is sufficient to prove that the disk {uo;To}

is the diametrical disk for the p.v. range {In|z| + iargz : z € {1;p}},
where ) i 1. 14
= Zln (1 - p? LY s’ 24

As in the previous section, in order to establish the diametrical disks
for the range In Z it suffices to consider the mapping of the disk {1; P},
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0 < p < 1 under the transformation z — In 2 = u+ 1 v. Before stating the
main result we give

Lemma 6. Let y € [0, arcsinp], where p = |z|/p < 1. Then
pltr, ¥

: 25
2p l1—-p = siny (25)

The proof of Lemma 6 is based on the 1nequahty In —13 > arcsin p and

the fact that the maximum of the function y y/ smy on the interval
[0, arcsin p] is equal to arcsinp/p. Now we are in the possibility to state

Theorem 2. The disk D = {ug;ro}, where ug and ro are given by (24),
completely includes the p.v. range Go := {In|z|+iargz : 2z € {1;p}} if
and only if the inequality (25) holds.

Proof. Regarding the boundary of the disk {1;p} in the form (14) we

obtain p = cosf + /p? — sin26, |#| < arcsinp. Hence the equation of
the principal branch v of the mapped region whose center ug lies on the
positive part of the real u—axis in the uOv coordinate system is given by

u = ln(cosv + \/p? — sin? v), |v] = 16| < arcsinp. (26)

The boundary (‘circumference) of the possible diametrical disk {ug;ro} is

u=ugt4/r2 — 02 (27)

where ug and ry are given by (24).

In what follows we use a geometrical construction as in the proof of
Theorem 1 omitting details. Let H(u,v) beian arbitrary point on the
bonndary v whose normal passes through the center wug of the disk D.
For the normal segment line at this point we have

dv
Uy = U+ V—
du H(u, v)

Since

from the

Regar
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ince ,
5 du sin v

5 =j: . y
dv \/pz—-sinzv

from the last two relations we obtain

V/p? — sin® v . (28)

¢+ sinwv

U =1ugtv

Regarding v fixed, from (27) and (28) we conclude that the point
H(u,v) will belong to the interior of the disk {uop;7o} if and only if the

inequality .
-2
’ Vp? —sin“v 5
< — 2 29
v sin v =VYTo—? (29)
holds. Because of the symmetry it is sufficient to take v > 0 and (29)
reduces to the inequality (25) which is proved above. O

Therefore, the disk

(A;d/2} = [,(In Z) = {ln\/|z|2—p +zargz |z|+p} (30)

is the diametrical disk for the range In{z; p}, |2| > p. We note that the
condition (31) provides the validity of the inequality |z| > p because the
inversion of a disk not containing 0 produces a disk which also does not
include 0.

Now, we will consider a more general case which involves a logarithmic
function.

Let 6 = (CL Z = ad — bc # 0 be the determinant of the linear-
fractional transformation g(z) = (az + b)/(cz + d) and let ¢ # 0. Then
this transformation maps a disk, which does not contain the point —d/c,

into a disk. Let Z = {(;r} be a disk such that

d
C+=]>r (31)
(i.e. —% ¢ Z). Since
az+b _a  —6/c
cz+d ¢ z+d/c’
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using the circular arithmetic operations we find that the linear-fractional
transformation z — g(z) maps the disk Z = {(;r} onto the disk W =
{w; p}, where

el
[+ dfc> =12
(32)
Since the inverse of a disk is an exact operation the image W (in the form
of a disk) coincides with the exact range g(Z), that is

5 (Fadle
w=midWw = %4 —=+d/0

= rad W =
e PTr

az+b
cz+d

W=g(Z)={ :ZGZ={<;T‘}}.

This fact is convenient in all cases when we consider circular complex
functions of the form f(g(z)) because g(Z) is an exact range — a disk.
Thus, it remains to find as good as possible I-approximation of f(W).
In this section we are concerned with the function f(z) = Inz and the
" construction of the diametrical disk for the range

az+b
cz+d

InW = {ln cc#0,6=ad—bc#0,z€ Z={¢r}, |(+d/c| > r}.

In the following we will construct diametrical disks for some inverse
trigonometric and hyperbolic functions. We recall the relations which
connect the mentioned inverse functions and the natural logarithm:

1. 11—z 1 z+1
arctan z = — In - , arccotz = —In -
2t 1+ =2 21 z—1
1 1
artanh z = = In 2+1L , arcothz=—lnz+1.
2 —z+41 2 z-1

As above, we assume the principal-value of In(-). Since all functions under
the logarithm define linear-fractional transformations, according to the
previous argumentation it is possible to construct diametrical disks for
all four inverse functions. As an illustration we will consider the inverse
functions z + arctan z and z — artanh z.

Special
In thi
i)/(z +

inequali

where

Then we

where I,

Special

The i
the inequ

Where

F ollowing

In the ¢
two funct;



r-fractiona]

: dlsk W =

in the form

lar complex
re — a disk.

m of f(W).

n z and the

+d/c| > r}.

ome inverse
tions which
arithm:

ctions under
rding to the
cal disks for
c the 1nverse

r

ON SOME OPTIMAL INCLUSION ... 49

special case (i): arctanz.

In this case we have the linear-fractional transformation ¢, (2) = (—z+
0)/(z + i). The requirement (31) for the disk Z = {(;r} reduces to the
inequality |¢ 4 ¢| > r. By virtue of (32) we have

L {_zz++ii

12 €7 = {C;hr}} = {w1; p1},

where

2i(C —1) 2r
+ - , 1= 5 o
C+il>—r2" T O -

wp = -1
Then we have

- 1 1
Iy(tan™! Z) = {Zmzdld(ln Wy); Eradld(ln Wl)},

where I;— approximation of In W) is given by (30). .

Special case (ii): artanhz.

The linear-fractional transformation is go(2) = (2 +1)/(—2 + 1) and
the inequality (4) reduces to |z — 1| > r. In view of (32) we get

z+1

o+ 1 12€Z={C;T}}={wz;/’2},

e

where

-2(¢ - 1) B 2r
B R [ )

w2=—1

Following (30) we find

Ii(artanh Z) = {%mid Iy(In Wy); %radld(ln Wz)}

In the similar way we can construct diametrical disks for the remaining
two functions.
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