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A PRECONDITIONER SELECTION HEURISTIC
FOR EFFICIENT ITERATION WITH DECOMPOSITION
OF ARITHMETIC EXPRESSIONS FOR NONLINEAR
ALGEBRAIC SYSTEMS

R. Baker Kearfott and Xiaofa Shi*

We have recently considered decomposing a system of nonlinear equa-
tions by defining new variables corresponding to the intermediate results in
the evaluation process. In that previous work, we applied both a derivative-
free component solution process and an interval Gauss—Seidel method to
the large, sparse system of equations so obtained.

An analysis of the component solution process indicates when a lin-
earized Gauss—Seidel step is necessary, and how to make it more effective.
In this paper, we will present preliminary results on an improved, efficient
hybrid algorithm combining the component solution process with only an
occasional Gauss—Seidel step on a single component.
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16 R.B. KEARFOTT, X.SHI

714 K 60Jb110M pa3spsKeHHOM cCUcTeMe ypaBHEHUM, MOJyUeHHOM TaK1uMm
o6pa3om. .

AHaJIM3 NMOKOMMIOHEHTHOr o Mpolecca pellleHuA MoKa3bIBaeT, KOorja
JIMHeapu3o0BaHHbIA war ["aycca-3aiiaensa aABJiserca HeoO6XOUAMMBIM U
Kak cenaThb ero 6osee a¢ppekTUBHEIM. B HacToAmel paGoTe Mbl Npet-
CTaBJiAeM MpeaBapUTeJbHbIE PE3YAbTATHl B BUE YCOBEPIIEHCTBOBAH-
HOro 3¢ ¢peKTMBHOro ruGpUAHOro ajJropuTMa, COBMEILAIOIEero MoKoM-
MOHEHTHBIN INpollecc pellleHuA C DNU30AuUecKuM wwaroMm aycca-3aii-
JeJsid Mo 0AHOM KOMIOHEHTE.

1. Introduction, background, and motivation

The general goal of this paper is to find, with certainty, approximations
to all solutions of the nonlinear system

jﬁ(ml,xg,.",mn)
fn($13$2a-":$n)

where bounds z; and Z; are known such that

2, <z;<7T; forl <i<n.

We write X = (z1,23,...,2,)7, and we denote by B the box given by the
above inequalities on the variables x;.

A general approach to such problems is to transform the nonlinear
system F(X) = 0 to the interval linear system

F'(Xp)(Xe — Xi) 3 —F(Xy), (2)

where F/(X},) is a suitable interval expansion of the Jacobi matrix over
the box X, (Xo = B) and X, € X, represents a predictor or initial
guess point. A preconditioned interval Gauss—Seidel method may then
be used to compute a new interval x;, for the k-th variable. The method in
[computing] uses this, in combination with a nonlinear solution process.

The method considered here is an improvement of the prototypical ap-
proach explained in [10]. The general approach makes use of both interval
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arithmetic and techniques of automatic differentiation. For ‘brevity, ‘we
assume familiarity with techniques of interval arithmetic; see [1], [13] or
[14] for introductions. We also assume that the reader has access to [10],
where examples of the prototypical approach are worked.

Our method uses the intermediate quantities obtained through evalu-
ation of arithmetic expressions. Our technology for obtaining and storing
such expressions is essentially the backward mode-of automatic differenti-
ation, as explained in the review [5] or the proceedings [4]. However, our
use of the intermediate quantities differs from that in straightforward (or
“straightbackward”) automatic differentiation: we store interval values
of the intermediate quantities. We then recompute those intermediate
quantities that depend on quantities that have changed due to relation-
ships defined in.the original equations, due to an interval Gauss—Seidel
step, or due to bisection; we intersect the recomputed values with the
original values, continuing the process until stationary. Thus, in contrast
to usual automatic differentiation, we must view the defining relation-
ships for the intermediate quantities as functional relationships, rather
than as linearly ordered arithmetic operations.

This approach is very similar to that underlying the software described
in [2], but our terminology differs. The main substantive difference is
that, in addition to re-solving for the intermediate quantities and us-
ing bisection, we occasionally apply preconditioned interval Gauss—Seidel
steps to the expanded system of equations obtained by treating each in-
termediate quantity as a variable. Such linear algebra (either on the
expanded system or on the original system 2) is necessary when the sys-
tem of equations is highly coupled!. Without such steps, even linear
systems such as that in Example 1 in §5 below require a large amount of
computation. This is obviated in the software of [2] with an extremely
friendly environment in which users can interactively change intervals
while exploring problems.

Our method is an improvement of that in [10], since far fewer expensive
preconditioned interval Gauss—Seidel steps are used. In particular, in the
algorithm of [10], an entire sweep of the interval Gauss-Seidel method
was applied, whereas here an interval Gauss—Seidel step is applied only
to a selected coordinate whose index is heuristically chosen. Additionally,

1 Essentially, when the Jacobi matrix is not a Tow and column permutation of a
diagonally dominant matrix.

2 3axkas 75



18 R.B.KEARFOTT, X.SHI

our algorithm here uses extended intervals in cases of division by zero-
containing intervals, etc., whereas the algorithm in [10], for programming
simplicity, did not. Also, our selection of coordinate to bisect (when
bisection is necessary) differs here from that in [10].

A brief introduction to the underlying ideas and terminology appears
in §2. We explain our heuristic for determining the variable for the inter-
val Gauss—Seidel step in §3. Our algorithm appears in §4, while numerical
results appear in §5. Conclusions and future directions then appear.

2. Outline of underlying ideas

We write X = (x1,X2,...,X5)7 for Xy, Ib(x) or x for the lower bound
of the interval x, ub(x) or X for the upper bound of the interval x, and f;;
for the interval in the i-th row and j-th column of F/ = F/(X). Similarly,
we write X = (21,22, ...,2,)T and F = F(X) = (f1, f2, iy fn)T, so that
(2) becomes -

F'-(X-X;)3-F (3)

Suppose'Y;c = (Yg1» Yro» - Yn) 15 the preconditioner for zj. The precon-
ditioned Gauss—Seidel method may then be stated as

Algorithm 2.1. (Preconditioned Gauss—Seidel method.)

1. Compute Yy - F/(X — X}) and =Y, F. Then compute

Xp =Tk — Zykifi + Z (Z ym‘ﬂj) (xj — ;) zyki ;k (4)
=1 Jj=1 =1 1=1
7k

2. If X Nx, = 0, then return, indicating that there is no root of F
in X.
3. Replace xj by x; N Xg.

As explained in [8] and [11], the preconditioner Y}, is used to minimize
the width of X; represented by (4). Y} can be computed by solving a
L-P problem, as indicated in [8] and [11].
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Operation 1:  z, = axq + bz
Operation 2: 0 = axq+ bz,
Operation 3: 0 =ax,+b
Operation 4: 1z, = T4T,

Operation 5: ), =

Table 1. Some operation codes for a code list.
The decomposition process and the code list.

In this paper, a code list is used to represent the system of equations.
The code list is essentially the list of elementary operations required to
evaluate the function. Such code lists are commonly used in automatic
differentiation; see [5] or [4]. We explain the main idea of the decompo-
sition process and the code list here.

Our code list is in the following format:

Operation number P @ R A B,

where P, @ and R are variable indices and A and B are possible constants
associated with the operation. Operation numbers are listed in Table 1.
For example, we could decompose the equation

22— 3224+ 22 =0

as follows.

Yy1 =2

y2=yf

Ys = Y1y2

Ys = Y3 — 3Y2
Ya +2y1 =0

Examining Table 1, where we list operation numbers, we see the corre-
sponding code list to be:

2*
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1 4

5 2 100 0.
4 31 2 0 0
1 4 3 2 1. -3
2 0 411 2.

The 1 and 4 in the first row are the numbers of equations in the original
system and the expanded system, respectively.

Forward substitution and “solving analytically”

In the above example, after decomposing the equation, we compute y1,
Yo, y3 and y4 from the expanded equations by forward substitution. For
example, suppose the interval value of z is x = [-1, 0]; then we compute
the remaining intervals as follows:

yi=X= [-1,0]

y2 =¥i =[(0,1]

Y3 =Y1¥2 = [—1,0] - [0, 1] = [—1,0]

ys =y3 —3y2 =[-1,0] - 3" [0,1] = [-4,0]

From the last equation in the expanded system, we have

Y4 = —2%
Solving for y4 in this way, we get ‘
ya=—2y; = -2-[-1,0]=1(0,2]
This is the meaning of solving analytically. Semenov, et al. use®

similar technique in their “subdefinite” computations. Their work is ev
bodied in the software package UniCalc, introduced in [2].

A FORTRAN-90 software system for automated generation and use’
the code list, as well as a complete description of the code list itself, W
be described in [12].
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3. A heuristic for variable selection

In our algorithm, we do not apply (4) to each variable k, but we choose
a particular k likely to lead to progress. Ideally, such an index k would
satisfy

w(X) w(X;)
o) 15 wix)’ (5)

where w(xy) is the width of the interval x.’

Here; we consider the relative decrease —((——%, rather than w(Xy) itself,

to take account of scaling: Otherwise, if w(xy) were already small, k
could possibly be chosen even though a preconditioned Gauss-Seidel step
would not decrease the width much. If w(xy) were large, w(Xy) may still
be large, and hence k could possibly not be chosen, even if a Gauss—Séic_lel
step would cause a large decrease in width.

From (4), we have

W) = v z(zyh ) _a) ©

j=1 1=1
J#l

pI'OVldEd lb(Zz—l ylzle) L. ThllS,

w(x;) < Z Zylif;'j w(X;)

‘221 =t
SZZ|f1]|w x] ”YVIHI (7)
7=
< ||Y||ZZ|f]|w X;),
3=
where |£};] = B Y = (VYL YT) T s the pre-

conditioner for the Whole system, and where we assume z; € X; for
cvery j.

Our heuristic involves replacing the relative decrease of (5) by the right
member in (7) divided by w(z,). Doing so, we do not need to obtain Y}
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to determine the estimates of the relationships among the w(x') . We may
thus choose k such that

Z?zl z 1 ,fjlw(xj) . ZJ 1 Zz 1 |f:_7|w(x.7
kel = min : (8)
w(xX) 1<i<n w(xy)

Another factor we should consider here is, if the intervals f’, all contain
0 for ¢ = 1,2,...,n, then the preconditioner Y} does not exist. Thus, if
we denote by J the set of all indices ! such that f :-l do not contain 0 for
at least one 7, then we choose k such that

n n /
g1 Ei:] |f;‘j w

i#Ek

X;) 2= X [l w(x;) .
w(Xg) - 52? w(x;) ) (9)

4. Our algorithms

In this section and the next, we present two algorithms that combine
the component solution process with an occasional Gauss-Séidel step on
a single component. We then use numerical examples to compare these
algorithms with the algorithm discussed in [10].

As mentioned in the introduction, our algorithm first computes ranges
exact to within roundout error on the inverses of elementary operations
and functions to solve for each variable in each equation containing it.
Then, when no variable can be changed by this process, we apply a pre-
conditioned Gauss—Seidel method to the linear system (2) for a selected
variable x; . If the width of x;, is decreased, we compute all z;’s in each
equation which contains x;,. If some additional z; are changed, we repeat
this process. A generalized bisection method will be used if none of the
variables can be changed by either the variable solution process or the
Gauss—Seidel step on the selected variable.

Algorithm 4.1.

0. (Input the initial data.)
a) Input M, the nunber of equations in the original system;

b) Input N, the number of equations in the expanded system;

A

3.
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¢) Input the code list and the initial box B.

As in the example in §2, we place the M equations cor-
responding to the original system at the end of the code

list.
d) Input €, a convergence tolerance.

e) Use forward substitution to compute xpr4; for 1 <1<
N — M, and thus get the initial box X for the expanded

system.
1. (Scan all the variables in the last M equations.)
Fori =1,2,...,n,if z; is contained in one of the last M equations

in the expanded system, store ¢ in V.
2. (Solve for some variables analytically from the equations

containing them.)
Do for I € V while V # 0.

For each equation index j such that z; occurs in the j-th
equation, do

a) Solve the j-th equation analytically for each variable z;
contained in the j-th equation?, obtaining new bounds X;.

{
b) If x; N x; = 0, return, indicating that there is no root of
F(X) within the box given by X= (x1,X2, ..., Xn)7.
c) If [w(x;) — w(Xx; Nx;)]/w(x;) is bigger than a tolerance, say
€, then
(i) Store 7 in the stack V.
(ii) Replace® x; by %x; N x;.

End do.
~ End do.
End if.
3. (Complete processing a sub-box, get a new sub-box.)

If the widths w(x;) are each less than € for 7 = 1,2, ..., M, then

2We do not solve for z; in the j-th equation if we had just solved for some other
variable in that equation, because no improvement in x; could then be made.

3Since %X; may be an extended interval, this step may produce two intervals, and
two corresponding boxes X . In this case, one of the boxes is pushed onto a stack S,
and will be considered later in step 3.
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a) Store X on a list £ of root-containing boxes.

b) If the stack S of sub-boxes yet to be considered (and pro-
duced from bisection or arithmetic operations) is empty,
return indicating convergence.

c) If § is nonempty, take a box from it, put the corresponding
components in the list V of changed variables, then return
to step 2.
4. (Continue derivative-free iteration if possible. )

If V is nonempty, repeat steps 2 and 3.
5. (Apply a preconditioned Gauss—Seidel step if necessary.)

If V is empty, then

a) Compute the Jacobi matrix F’ over Xy, and select index
k = ko as described in §3. '

b) Compute the preconditioner Yy, , apply the interval Gauss—
Seidel method to the preconditioned system, and get a
bound X, on Xg,.

c) If Xg, Nxk, = 0, return, indicating that there is no solution
of the system F(X) = 0 within the box X-

d) If [w(xk,) — w(Xg, ﬂxko)]/w(xko) > €p, put ko into V, and
then go to step 2.
End if.

6. (Do a bisection as a last resort.)
If V is empty, then
a) Bisect xp,.
b) Store one of the boxes, with corresponding changed coordi-

nate information on S.

¢) Put ky into V, make the other box the current box, and
then go to step 2.
End if.
7. Return.

Remark 1. In the algorithm discussed in [10], a preconditioner was
computed for all variables, after the substitution/iteration process. In
contrast, in Algorithm 4.1 above, we 0\11ly compute the preconditioner
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for a single variable. We thus save a factor of N in this method, where
N is proportional to the number of operations required to evaluate the
functions. Perhaps, however, a few more boxes may be produced.

Remark 2. The reason we only scan the last M equations in step 1
is because forward substitution is used to obtain initial intervals in the
other equations. Hence no additional information relating the interval
sizes could be obtained from them. For example, suppose we compute X3
by X3 = X1 + X2. Then

X1 gf(l = X3 — X9 and X9 giz = X3 —X.
Thus, we will get nothing new by setting

X1 =Xy ﬂil and X9 = X9 nig.

Remark 3. Sometimes the derivative-free process.€onverges slowly.
Thus, to make the overall iteration more efficient, we introduce a tol-
erance €g in part c) of step 2 and in part d) of step 5, and check the
approximate condition

[w(x;) — w(F; Nx;)]/w(x;) > _60’ (10)

instead of checking the exact condition x; # X; N X;.

Numerical tests show that, if an L-P preconditioner has previously
been computed for a particular variable, the same preconditioner usually
works well if we wish to solve for the same variable later in the com-
putation. Thus, in step 5, if Y;, has been computed when step 5 was
previously entered, we use the previous Y;,. We then only recompute Y;,
if its previous values do not work well. In other words, we replace step 5
by the following

Step 5. Apply the preconditioned Gauss—Seidel method with
the previous preconditioner Y;,.
a) Compute the Jacobi matrix F’ over X; and select index i¢ as
described in §3; '
b) Apply the interval Gauss—Seidel method to the preconditioned
linear system with the previous preconditioner Y; , if Y;, 1s avail-
able.
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(i) If Y;, has been computed before, use it to precondition the
linear system, and get a bound X;, on x;,;

(ii) If x;, Nx;, = 0, return, indicating that there is no root of
F(X) within Xj;

(i) If [w(x;,) —
2

(iv) If V is empty, compute Y;, and store it in the ig-th row of

matrix Y. Apply the preconditioned Gauss—Seidel method
to get a bound x;, on z;,.

We will refer to the algorithm so obtained as-Algorithm 4.2.

w(X;, )] /w(x;,) > €, store ig into V, go to step

Remark 4. Of course, the matrix Y could require too much storage if
the system took a large number of operations to evaluate. In such an
instance, we may wish to only store several preconditioner rows (say, the
last three distinct ones that have been computed). This should lead to a
reasonable algorithm, for our experiments indicate that often only several
variables are selected as step 5 a) is repeatedly executed.

5. Experimental results

Our preliminary results will be based on the following illustrative ex-
amples.

Example 1:

921 + 1025 + 1125 — 30
12z + 1325 4+ 1123 — 36
13z + 112y 4+ 1425 — 38

fi(zy, 29, 23)
fz(.’l}],.’lﬁg,fﬂg) =
fa(zy, 29, 23)

F(X) = =0

N s
with initial box B=( *! | = <[ 20, 20]). The system has one solution

X9 [ 20 20]

within the initial box B. This example is interesting because, though
linear, the matrix is not a permutation of a diagonally (10111111a,nt matrix,
or an interval H-matrix. Thus, iteration without preconditioning cannot
succeed, even with the decomposit»ion technique of §2. The situation is
analogous to that of the classical Gauss—Seidel method applied without,
preconditioner. This is why we include this seemingly trivial example:
our algorithm attempts to avoid preconditioner computation, but uses a
heuristic to determine when to apply a preconditioner.
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Example 2:
F(X) = [fl(xl,wz)] _ [w?+x%xz+x§+1 ] 0

fa(z1, z2) 23 — 322y +.23 + 1
o init _ (x1\ _ { [-200,200] '
with initial box B = (xz) = ([_200’ 200] )° The system has one so-

jution within the initial box B. This simple example’s interest lies in the
fact that there is substantial interval dependency in the individual equa-
tions in the system and between the equations, and was introduced in [10]
to illustrate the advantages of decomposition of arithmetic expressions.

Example 3:
F(X) — [fl(iltl,.’llg)] — |:4.’E:I’ —3371 —5172] -0

fa(x1,72) x% — T2
with initial box B = (:1 ) = ( %—g’ gD The system has three solutions
2 =T

in the initial box B. This is Example 2 in [10], and is thus useful for
comparison of the present algorithm with the process of [10].

Example 4:

fi(X) =2+ Tny1 ij—-n—l , 1<i<n-1, and

1<j<n /-

fa(X) = (1= 2ng)zn + 2o | ] 2i-1],
1<j<n

with n = 5 and initial box [-2,2]°. This is Brown'’s almost linear func-
tion, used in [8] to illustrate when the inverse-midpoint preconditioner
is inadequate, but a linear programming preconditioner will work, and
reported as problem 4 in [6]. It is also useful to test the behavior of
implementations as the dimension increases.

Example 5:

f1 =523 — 62503 + 125 + 2z123
fo = —2:13‘13:);2 ++ 21%3:3 + 2x913

fa = 22 + 235 — 0.265625
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with initial box [-0.6,0.6] x [~0.6,0.6] x [—5,5]. This is problem 12 in
[6]. Since it has 12 solutions in the box, it tests the ability of enclosure
algorithms to separate solutions.

Numerical results:

The goal of the coordinate selection heuristic of §3 is to reduce the total
number of expensive preconditioner row computations, without affecting
the number of steps required in the overall root isolation algorithm. In
fact, the primary difference between Algorithm 4.1 and the overall pro-
cedure in [10] is the use of this heuristic. The overall procedure in [10]
computed preconditioners for all rows for, roughly speaking, n times as
many preconditioner computations as in Algorithm 4.1 or Algorithm 4.2.
There are other differences. For example, to simplify implementation, we
did not use extended (Kahan) interval arithmetic in the forward substi-
tution process in [10], so that the only place two boxes were produced
was after bisection.

We have implemented Algorithm 4.1 and Algorithm 4.2 in Fortran—
SC (also known as ACRITH-XSC, [15]), to be run on an IBM 3090. For
Algorithm 4.2, we report

EDIM the dimension of the expanded system,
NBOX the total number of boxes X processed,

NBIS the total number of coordinate bisections (step 6 of Algorithm
4.1 or Algorithm 4.2),

NPRE the total number of preconditioner rows computed in step 5 of
Algorithm 4.1 or in step 5’ of Algorithm 4.2,

NJACROW the total number of evaluations of a row of the expanded
Jacobi matrix,

NRESID the total number of re-computations of a component of a
residual for an equation in the expanded system,

NCOMPONENT the total number of re-computations of a coordinate
in the substitution-iteration process in step 2, and

CPURAT the percentage of CPU time spent in computing precondi-
tioners.

Except for the CPU percentage, these performance measures are insensi-
tive to details of the implementation and the machine, and furthermore
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—  Prob. no. 1 2 3 4 5

— EDIM 9 9 5 17 20
— NBOX 1 15 13 10 314

— NBIS 0 0 2 5 101
—  NPRE 1 0 3 25 208

— NJACROW 9 0 15 425 4160
—  NRESID 9 0 15 1734 4220
—NCOMPONENT 817 - | 373 1218 5337 28492
— CPURAT 58% 53% 40% 79% 92%

Table 2. Results of Algorithm 4.2 for the five examples.

indicate the effectiveness of the heuristic proposed in §3. Our precon-
ditioner computations use an interior point method devised and pro-
grammed by our co-worker Milind Dawande, and similar to that in [3].
This code has been chosen to take advantage of the extreme sparsity in
the Jacobi matrix for the expanded system, but is still under develop-
ment. In our algorithms, beginning with that of [8], we have observed
Jarge differences in execution time depending on the linear programming
solver used in the preconditioner computations.

Comparisons with previous implementations are difficult. Our algo-
rithms here were implemented using ACRITH-XSC, but many of our
previous experiments used the portable arithmetic and framework of
INTBIS. In the experiments in [10], we. coded the arithmetic in the
function-specific routines by hand, using subroutine calls for each opera-
tion. Though we use a code list in the present experiments and generic
function routines to interpret this code list, we must create the code list
by hand. To compare our results with those of [8], we either need to use
polynomial systems in power form representation, as in INTBIS [9] or
hand-code the operations as function calls. For these reasons, we have
only compared the present computations to those of [10] on examples 2
and 4. We will soon remedy these shortcomings; see §6.

In all of the experiments, we took the preconditioner decision tolerance
to be ¢ = 0.2 and the domain tolerance (minimal box width) to be
e=1075.

Results for Algorithm 4.2 appear in Table 2. Several conclusions are
evident. First, solving for one component in terms of one or two others
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in an equation in the expanded system is very inexpensive compared to
preconditioner computations. Thus, the preconditioner heuristic appears
crucial to the algorithm’s efficiency. Second, the portion of time spent
in preconditioner computations is still excessive, and the preconditioner
computation can possibly be improved. For example, in the results in
[8], use of an optimized linear programming solver reduced total CPU
times by a factor of 10. Also, the LP problemis become singular as the
widths of components tend to zero; this may be bothersome for our par-
ticular interior point method. A solution would be to use an inverse mid-
point preconditioner, perhaps on a subsystem, when a number of variable
widths are small. Another factor is that the advantages of interior point

methods usually do not appear on small problems such as those from
these examples.

Prob. no.

BEL

NB

NI

NE
NJAC
NRI
NCOMLI

Prob. Algorithm 44.1 4 4.2 54.1 54.2
EDIM 17 17 20. 20
NBOX 10 10 315 314
NBIS 5 5 100 101
NPRE 70 25 214 208

NJACROW 1190 425 4280 4160
NRESID 1190 1734 '4280 4220
NCOMPONENT 2536 5337 20085 19900
CPURAT 95% 79% 93% 92%
4.2/4.1 40% 98%

Table 3. Algorithm 4.1 versus Algori;chm 4.2
for Example 4 and Example 5.

Table 3 gives results analogous to Table 2, but for Algorithm 4.1. We
only give results for problems 4 and 5, since the two algorithmns gave
identical results for the first three problems, and we repeat the results for
Algorithm 4.2, for comparison. The last row of the table, labelled 4.2 /4.1
gives the ratios of CPU times. In Example 4, using the old preconditioners
resulted in substantially less CPU time, despite double the number of
solutions for a component. In contrast, using the old preconditioners for
Example 5 had little effect, but did not hurt..

Table 4 compares Algorithm 4.2 to the overall scheme in §4 of [10],
for Example 2 and Example 3. In the previous implementation in [10],
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rProb. no. / Method [ 2 /Prev. [ 2/ This |3/ Prev. |3 /This

—  EDIM 7 9 3 5

—  NBOX 1 15 4 13
NBIS 0 0 3 2

—  NPRE 35 0 35 3

—  NJACROW 110 0 34 15

—  NRESID 220 0 68 15

— NCOMPONENT 64 373 470 1227

—  CPURAT 57.2% 53% 13% 41%

Table 4. Comparisons with the overall procedure in [10].

we used a dense linear program solver that was specially designed to
solve preconditioner computation problems; that solver is much faster
on these particular problems. Also note the difference in dimensions
between the results from [10] and the present results: we used slightly
different code lists, due to slight differences in our set of implemented
elementary operations. Also, note that no preconditioners were required
in Example 2 in the present method. This is due to the use of extended
arithmetic in the component solution process in the present method, but
not in the previous one. It is nonetheless evident from the table that the
preconditioner selection heuristic is effective at increasing the algorithmic
efficiency, despite increased numbers of solutions for components.

6. Conclusions and future work

Preconditioners are, in general, required for efficient interval solution
of nonlinear systems of equations, unless the system exhibits a diagonally
dominant or similar structure. We will discuss such conditions in a sepa-
rate paper. However, because of their computation expense, such precon--
ditioners should be computed only when necessary. We have proposed a:
heuristic in this paper to decide when to compute the preconditioners.

Our preliminary experiments presented above indicate that this heuris-
tic is effective, but the effectiveness of the entire algorithm has not been
conclusively demonstrated. Our present experiments are constrained by
the present software environment. We used a very restricted program-
ming environment in the experiments in [10]; essentially, we hand-coded
each function in terms of subroutine calls. Thus, rerunning that code
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on other problems is constrained by the time we can spend program-
ming. The present experiments, though in a somewhat more flexible en-
vironment, suffer from similar problems. We are presently developing a
portable Fortran 90 environment where code lists are automatically gen-
erated (through operator overloading), and where algorithmic building
blocks, such as preconditioner computation and solving for a component,
are modularized in a simple way. When this environment is completed
and tested, our experimentation and algorithmic research will proceed
more quickly. In particular, we will be able to do flexible experimenta-
tion, and will be able to flexibly try different algorithmic combinations,
such as preconditioning either the original system or the expanded sys-
tem. We will also be able to directly and carefully compare using the
expanded system to the basic algorithm in [9] and [8]. Finally, we hope
to compare different ways of parsing the original system into elementary
operations, and to explore possible user-defined operations for increased
efficiency.

We expect to find the expanded system to be of use. We also expect
- to find the preconditioner heuristic to be of use in many problems, both
with the expanded system and the original system.
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