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ON CONTROLLED SOLUTION SET
OF INTERVAL ALGEBRAIC SYSTEMS

Sergey P.Shary

For interval system of algebraic equations the concept of controlled so-
lution set is introduced and its practical interpretation is given. The main
result of the work is a simple sufficient criterion for the controlled solution
set of interval linear system to be nonempty.

OB YIIPABJIAEMOM MHOKECTBE PEIHIEHUHN
NHTEPBAJIbBHBIX AJITEBPANYECKUX CUCTEM

C.II.Ilaprait

Ilyia uHTEepBaNBLHEIX CUCTeM anrebSpanmueckux ypasHenauii B pa6o-
T€ BBOIMTCA NOHATHE YLPLBATEMO20 MHONCECTNEA DPeulenuil U YKa3bi-
BaeTCcA ero coneprkaresibHad uMHTepnperanma. OcHOBHOI pe3yJbTaT
PaboThl — MpoCTOif AoCTAaTOUHBI MpU3HaK HEMYCTOTHI yIPaBJIAeMOro
MHOYKeCTBa peuleHUit /1A vHTepBanbHol NMHeliHOM cUucTeMbl.

Let interval system of linear algebraic equations be given
Az=Db (1)

~ith an interval mxn-matrix A and interval right hand side m-vector b.
It is common knowledge that (1) is only formal symbol, which in itself can
mean, for instance, a collection of all point linear algebraic systems with
elements from A and b, respectively. To pose a problem correctly we
should at least define what is taken to mean the solution or the solution
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get to (1). Back in the early 80-th A.A. Vatolin [15], taking the linear

rogramiming problem as an example, had demonstrated the variety of
COncepts of the solution set to the problems with interval data. Up till
pow, bowever, in interval analysis the subjects of investigation were the
following three solution sets:

o united solution set, formed by solutions of all point systems Ax =
b with A € A and be b, i.e., the set

L33(A,b) = {z € R" | (34 € A)(3b € b)(Az = b)},

historically first and undoubtedly the most popular of the so-
lution sets; it is called by Western authors simply as solution
set and usually is denoted by L(A, b) (see [1,5,6,8,13] and the
extensive references there);

e tolerable solution set, formed by all point vectors = such that the
product Az falls into b for any A € A, i.e., the set

Zva(A,b) = {z € R" | (VA € A)(3b € b)(Az = b)}

(see [7,8,9,10,14] et al); A. Neumaier in [7] followed by some other
authors call it restricted solution set, denoting Zo(A,b);

o interval algebraic solution [12], i.e., such an interval vector x,
that substituting it into (1) and executing all interval arithmetic
operations results in the valid equality Ax, = b.

But in this work we would like to draw the attention of the researchers
to the new solution set to interval linear algebraic system, namely the set

Tav(A,b) = {z € R" | (Vb€ b)(3A € A)(4z = b)}, (2)

formed by all point vectors z € R”, such that for any desirable b € b
we can find the corresponding 4 € A satisfying Az = b. Its contentive
interpretation is as follows. Let “the black box” be given with the input
subjection vector 2z € R™ and the output reply vector y € R™, the input—
output relationship being linear, i.e., y = Az with a real m x n-matrix
A. Suppose also that the elements of A may be varied by our will within
some prescribed intervals a;;, so that A can be made any one from the
corresponding interval matrix A = (a;;). In other words, we have the
possibility in some way to control the parameters of the black box in the
designated bounds (a;;).
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Fig. 1

If some interval vector y represents the set of output vectors, then
the question naturally arises of whether exists input signal x which can
be transferred to any desired output state y € y by appropriate choice
of the black box parameters (a;;). The set of all such z (if nonempty)
just constitutes £3y(A,y). Hence, it makes sence to refer to Yav(A;b)
as controlled solution set of interval linear algebraic system Az = b,
since it distinguishes the set of input subjections z with respect to their
controllability properties.

By the evident means all the above developed ideas are transferred to
the general case of interval nonlinear system

F(z,a)=b, (3)

with F(z,a) = (fi(z,a), fo(z,a),..., fm(z,a)) and x, a being interval
vectors of the same dimension as x, a, respectively. Let us call

Yav(F;a,b) = {2z € R" | (Vb€ b)(Ja € a)(F(x,a) =b)}

the controlled solution set to the interval system (3). If for the above
considered “black box” the input-output relationship has the form y =
F(z,a), then the points of Yav(F;a,y) (and no one else) can be trans-
formed to any requested output state y € y through some control sub-
jection a € a. o

. In implicit form the controlled solution set seems to appear even in
the work of N.A. Khlebalin and Yu.I. Shokin [3]. But, presumably, for
the first time the definition (2) was written out explicitly by A.V. Lakeev
and S.1I. Noskov [4], who gave no name to this set, but exainined some of
its properties. Their main result concerning the set (2) is the following

Proposition. (
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proposition. (A.V. Lakeev and S.I. Noskov [4])

4 Yav(A,b)
- { :L_/ _.1:” I m’, x” E R'n, :L", xll Z 0, (a:l, x” — 0,
Az’ —Az" <b, Ad' - Az"2>b },
where (-, -) is the standard scalar product in R" (that is, the sum of

roducts of components), and a, @ stand for lower and upper bounds of
an interval (interval vector or matrix), respectively.

It is fairly simple to realize that

Sav(A,b) ={z € R" | (Vb€ b)(34 € A)(Az =b)}
C{zeR"|(Fbeb)(FA € A)(Az =b)} = Z33(A,b),
i.e., the controlled solution set is always a subset of the united solution

set. Hence, if A contains only nonsingular point matrices, then £3y(A, b)
is bounded coincidentally with £33(A, b).

To make our considerations more vivid and pictorial, turn to the Figure
92, where the controlled solution set to the interval system

()

is depicted. It is the whole plane with the star around the origin of
coordinates removed.

-2;1
-1;2
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The configuration of this picture is the typical one in some sence, in so
far as the zero vector may belong to 3y(A,b) only when b C A -0 = 0,
Le., b = 0. Just for this reason the controlled solution set to (4) avoids
the origin of coordinates on the Figure 2. Besides, the above Proposition
implies that the intersection of Yav(A,b) with each orthant of R” is a
polyhedral set, i.e., the intersection of finite number of half-spaces.

We now give the other simple proof that the intersection of the con-
trolled solution set with each orthant is a convex set. If x, y are points
from some one orthant of R", so that Az;j(1-=Ny; > 0 for all j =
1,2,...,n and X € (0;1), then the distributivity relationship holds

A(Az + (1-A)y) = Az + (1-2)Ay

(see, e.g., [1,5,6,8]). In case z, y € 23v(A,b) we have in addition Az D
b and Ay D b. Therefore

AAz+ (1-X)y) D Ab+ (I-A)b = b,
as required.

If the dimensionality of interval system is considerable, then the direct
description of its controlled solution set became laborious and practically
useless (its complexity is proportional to m-2"). For this reason it is expe-
dient to confine ourselves to finding some simple subsets II C Yav(A,b),
since for any z € II the condition

(Vb € b)(34 € A)(Azx = b)

remains valid. To put this another way, we change Y3y(A,b) for its inner
approximation. Most likely interval vectors, i.e., the direct products of
segments of the real axis, have the simplest structure and so we formulate
the forthcoming interval problem in the following form:

find an interval vector which is contained in the controlled
solution set of the given interval linear algebraic system.

In common with the tolerable solution set, the controlled solution set
may turn out to be empty even for “good” interval data, as, for instance;
it does in the one-dimensional case A = [2; 3], b =[1;2]. The popular

model system
(5 )= (E23)
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from the work of W. Barth and E. Nuding [2] affords more complex
oxample of the empty controlled solution set.

The main result of this work is a simple sufficient criterion for the
controlled solution set of interval linear algebraic system to be nonempty:.
But before proceeding, we have to revise some auxiliary notions and facts
of interval analysis.

To begin with, note that if the i-th row of A contains only zero ele-
ments, the controlled solution set being nonempty requires b; = 0 as a
pecessary condition. But then the property of Tay(A,b) to be empty
or nonempty depends from the other, not the i-th, rows of A and com-
ponents of b. So, we may consider in general that A has not zero rows.

In what follows the central role will play in our considerations the
midpoint (median) of an interval, i.e., the quantity

med p = (P + p)/2.

In case p is an interval vector or matrix, this operation shall be under-
stood component-wise.

To characterize “the relative narrowness” of nonzero intervals H. Rats-
chek has introduced in [11] the functional

w= (PP 1A
XP p/p, otherwise .

Clearly, ~1 < x(p) < 1,and x(p)=1 ifand onlyif p€eR. Moteover,
it turns out that

x(P) = x(q) ifand only if p=tq, t€R, t #0, (5)
if p+q#0, then x(p+q) < max{x(p), x(q) }. (6)

The siraightforward proofs of these facts can be found in [11,12]. Also,
sometimes the following obvious property can prove helpful:

if p2q and x(q) >0, then x(p) < x(q).

Further we will need, however, a kind of the converse statement:
Lemma. If med p =med q and -1 < x(P) < x(q) , then p D q.

Proof. Denote p =medp =medq. If -1 < X(P) £ x(q), then u#0,
ie., g <0 or p> 0. Without loss in generality we may allow the second
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opportunity, since the case ui negative y is treated in a similar manner.
Under these conditions |p| < [p] and |g| < [q|, and so x(p) < x(q)
implies

p/P < 4/T,
or
p —rad p p—radq
p+radp ~ p+radq’

where radp = (p — p)/2 is the radius of an interval. We obtain from it
after simple transformations:

p-radp > p-radq,

which is equivalent (in view of > 0) to radp >radq,ie,p24q.

Now we are able to formulate and to prove the

Theorem. Let interval mxn-matrix A and interval m-vector b be such
that for each i € {1,2,...,m} the conditions

(ii) =1 < max{ x(a;;) |1 <j<n, a; #0} < x(b;)

are valid, If “the middle system” med A -z = med b is compatible,
then its solution belongs to the controlled solution set Tay(A,b) (which

is accordingly nonempty). -
Proof. ' & is a solution to the “middle” point system, then 8]

. med(AZ) = (med A) & =medb.

Fﬁi‘thermore,;siﬁéé “1 < x(b,) ,i=1,2,...,m, wehave med(Az); # 0

So, the following caleculations are legitimate for each i € {1,2,...,m}:
bty 0w ng e | :
n

E a,-j’xj

A VO ) R

x((éf)i) =X
by (5)

< max{ x(a;j2;) |1 < <, 2335 #0 )
by (6)

= max{ x(a;;) |1 <j<n, a;;i; #0}
tes i< max{ x(al) | 1< <n, ai #0 }
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Thus, —1 < x((Az);) < x(b;) holds true for i € {1,2,... ,m} and by
Lemima
(AZ); 2b;, i€{1,2,...,m},

which proves the Theorem.

For example, both conditions 6f the Theorem are satisfied for the above
considered interval system (4). Solution of “the middle system” is the
vector (1,1)T and it is seen (on Fig. 2) to belong to the controlled
solution set of (4). On the other hand, the condition (ii) of the Theorem
does not hold for the interval linear system

[2:4]  [-2:2]\ _ ([1;9]
(&5 o)== (). i
while its “midpoint” system is compatible and has the solution (1, )7
obviously contained in the nonempty controlled solution set of (7).

It may appear from the statement of the Theorem that the solution of
the “middle system” is the most probable representative of the controlled
solution set to interval linear algebraic system. However, the following
counterexample shows that this is not so in general. For the system

3 ALy _ [5;7])
(Uﬂ] 3 )“*(WﬂL

we have E3y = {(1,2)7}, but the “middle system” solution is
(8/9, 20/9)T.

In spite of the apparent unwieldiness of this criterion, its implemen-
tation requires as low as O(mn) of arithmetical and logical operations.
The question of compatibility of “the middle system” is resolved trivially,
if A is nonsingular interval matrix (i.e., contains only nonsingular point
matrices). In its turn there are developed numerical algorithms for test-
ing whether interval matrix is nonsingular {13}, though on the whole this
problem is not quite trivial.

To summarize, one may assert that the above stated criterion is quite
practical, but not sufficiently sensitive. It is intended for the preliminary
rough examination of a given problem.

When solving practical problems apart from the solution on its own
one not infrequently needs some characteristics of its stability that char-
acterizes the solvability wargin or the measure of the compatible state
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stability. In our opinion, the magnitude

o= min {x(b) - max{x(as) |17 <, 25 20}
1<i<m
can be applied for this purpose as a crude quantitive measure of compat-
ibility factor in the case ¢ > 0.
In conclusion it is useful to correlate the main result of this work with

that of the article [14]. Recall that there sufficient criterion is obtained
for the tolerable solution set to be empty. It is formulated as fo'lows:

Let interval m xn-matriz A and interval m-vector b be such that for
some k € {1,2,...,m} the conditions hold
(i) 0 ¢ by,
(11) max{ x(akj) I 1< 7 < n, ag; # O} < X(bk) .
Then the tolerable solution set Ly3(A,b) is empty.

As is seen, this statement is in remarkable duality to the Theorem,
and the sets Xv3(A,b) and Eav(A b) are in a certain antagonism to
each other.
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