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INTERVAL CO-INTEGRATION OF DIFFERENTIAL
EQUATIONS CONNECTED
BY A SUBSTITUTION OF THE VARIABLE

Grigory G.Menshikov

On each step of interval integration a mutual correction is executed: the
interval extension of the solution of a given equation is intersected by the

transformed interval extension of a connected equation solution and vice
versa.
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Ha KaKIoM uiare HUHTEepBaJbHOIO UHTerpUpoOBaHUA BBIMOJHAETCH
B3auMHaHdA Koppekunsna: UHTEepBaJIbLHOe paciiMpeHve peuieHMA JdaHHO-

'O YPaBHEHMA IIepeceKaeTCs ¢ TPaHCPOPMUPOBAHHBIM MHTEPBAJILHBIM
PaClIMpEeHUeM CBA3aHHOIO YPaBHEHUs U HaoGopor.
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This property may be applied to the calculation of the initial value
problem for first order ordinary differential equations

y' = f(z,y) (1)
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under initial condition
y(x) = yo. (2)
Suppose the equation

is connected with (1) so that for some function ¢, and for each solution
y(z) of (1), the function

u(z) = p(y(z)). (4)

satisfies (3). Further suppose that ¢ is a continuous and strictly moeno-
tonic function that transforms R =] — oo, +o00o[ into R, so that

lp(2)] = +00 (& — *o0).

The interval calculation of y(x) and u(z) gives the intervals Y (z;) 3
y(zi) and U(zk) 3 u(xy) at points z;,2,.... Relation (4) provides the
opportunity of using the corresponding intervals for mutual correction.
Suppose the integration process comes to the point zj. (We do not
specify an integration method because our idea can be applied to any
method.) Let us integrate equation (1) with initial point z4; as a result
we compute the interval Y°(241) 3 y(2441). The same process for (3)
gives the interval U%(z441) 3 w(xsy1). We then correct the first one:

Y(2k41) = V(1) N7 (U (441)) (5)

and the second one:

U(zies1) = U (241) N BV (2p1)). - (6)

Here & and ®~! denote the interval extensions for @ and o~ respectively.
The intervals Y (z441) and U(zg41) are the results of this step of interval
co-integration.

This co-integration of equation (1) and (3) begins with the calculation
U = ¢(yo) or the interval Uy = ®(Yy). The algorithin also contains a
self-check: the empty intersection indicates the progran error.

Sometimes the interval Y%(zx4) and U%(z4y,) may be unbounded.
An example occurs when solutions y(xz) or uw(ax) have singular points.




34 G.G.MENSHIKOV

Additionally, unboundness may be caused by the nature of the integration
formula. in particular when Ax = rgyq — &y is too large. Suppose, for
example. that U%z41) = R. Then o~ (U%24q1)) = R and Y(apy) =
YO(rr41). In this case, we get no correction. In this situation it is
desirable to use interval arithmetic with unlimited intervals.

The preceeding assumption on ¢ is not the only one possible: another
very interesting case is p(z) = 1/z. Then equation (3) is of the form

W = u?f(x.1/u).

In this case the two-sided approximation of the mobile (latent) singular
point of (1) is available [1].

Now we consider the application of this mutual interval correction idea
to computing a set {(z.y)} which encloses the integral curve y = y(2) at
interval .X'y, = [x, Zx4+1]. We name this set the enclosing set (ES).

The simplest estimate for this set is a rectangle X x Y*. Here Y* D
Y (z) for all » € X. The case when Y () is unknown may be treated by
taking Y* = R.

In [2] a method is described of finding the ES based on fixing A and
estimating Y* by the interval iterative process

Y =Y (ae) + HF(X, Y7, A7)

where H = [0. Az]. The initial value of ¥}* is taken as Yy = Y (). If the
mapping F(x,y) is monotonic relative to Y, then, as was proven in [2],
process (7) gives an increasing sequence of intervals Yy CY* C Y,F C ...

If this sequence is bounded, then the computer realization of (7) is
terminated upon convergence. i.e., by the equality ¥*, ; = Y}*.

But if the sequence Y;* is unbounded (or “practically unbounded™)
then process (7) leads to arithmetic¢ overflow. If the computer realization
of interval arithmetic deals with unbounded intervals, then the overflow
is treated as Y7 = R. Thus process (7) will give Y)Y, = R on the
next iteration. Formally. we have the convergence again. Under certain
conditions convergence is rapid [2].

Now we can estimate the ES based on the inclusion

Y(r) CY(rp)+ (2 — 2e)F(Xp. Y7, (8)
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where £ € X;. From this inclusion we see that the narrower interval
Y($k+1) corresponds to narrower Y*.

Now we consider the problem of the application of our mutual correc-
tion algorithm to the ES.

We denote Y& = Y*N®~1(U*) for equation (1) and U¥ = U* ﬂ<I)(Yf)
for equation (3). We substitute these intervals in place of Y* and U™ in
the estimate of the remainder of the integration formula. By means of
this estimate, the interval extensions of the remainders for (1) and (3)
are evaluated.

For example, if the main integration process is based on formula (8).

i.e., .
Y(ﬂ»'k-}-l) = Y(lk) + Az F(‘Yk, Y™),

then the equalities

YO rpyr) = Y (k) + Az F(X,. YY),

U%aigr) = Ulz) + A G(X. UY)

are used. Obviously, this part of the integration process is carried out for
equations (1) and (3) separately.

Finally. the information obtained on ES gives the additional element of
mutual correction. Instead of (5) and (6) narrower intervals are obtained:

Ulepgr) = UCrig ) D@ (g )) N TS, (9)
Y(rpsr) =Y (rpp ) N T (g ) N Y'Y, (10)

In closing. note that the iterative process can also be applied to finding
Y4 and U4, In this case denote

vY, =vEne(UY). UL, =USnewY)

. & *
and put )0& =Y* Uy =U".
) -1 ... .o
It is interesting to explore this process when ® and @~ are optiwal

5 . —1 ey
interval extensions for p and ¢~ Writc

Yy =Y 0eT ). e U = 2T U0 (Y.




36 G.G.MENSHIKOV

Due to the continuity and strict. monotonity of function ¢,
U = ¢ U N PV ) = U Y = ¥y
e (U7) = " (p(Y7)) =9 =Y.

So, Y3¥ = Y¥ and this iterative process is not useful.

But generally, for a machine computation, ® and ®~! are not optimal
and this iterative process may lead to improvements in the accuracy of
co-integration.
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