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ERROR AUTO-CORRECTION
IN RATIONAL APPROXIMATION

Grigory L.Litvinov

An effect of error auto-correction for rational approximations to real

functions is considered. This effect occurs in efficient methods of ratio-
nal approximation (e.g., best approximations, Padé approximations, multi-

point Padé approximations, linear and nonlinear Padé-Chebyshev approx- »

imations) where very significant errors in the coefficients do not affect the
accuracy of the approximation. The thing is that the errors in the coeffi-
cients of a rational approximant are not distributed in an arbitrary way but
form the coefficients of a new approximant to the approximated function.
Concrete examples are presented. Standard methods of interval arithmetic
do not allow to take into account the error auto-correction effect and, as a
result, to estimate the error of the rational approximant accurately.
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Paccmarpusaerca a¢pdeKT aBTOKOpPpEKLUM NMOrpeliHoOCTU NPpN MNo-
CTPOEHMY pallMOHaJIbHBIX NPUBIUsKEHM K BellleCTBEHHO3HaUHbIM QYHK-
uwnaM. Sddexkt cocTour B TOM, YUTO ANt peryjisApHbIX METOJ0B pa-
lMOoHaJILHOM annpokcumaumu (BKIoyas HauJyulive annpoxkcumalmm,
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An effect of error auto-correction for rational approximations to real
functions is considered. This effect occurs in efficient methods of ra-
tional approximation (e.g., best approximations, Padé approximations,
multipoint Padé approximations, linear and nonlinear Padé—Chebyshev
approximations) where very significant errors in the coefficients do not af-
fect the accuracy of the approximation. The thing is that the errors in the
coeflicients of a rational approximant are not distributed in an arbitrary
way but form the coefficients of a new approximant to the approximated
function. Understanding of the error auto-correction mechanism allows
to decrease this error by varying the approximation procedure depending
on the form of the approximant, see [1].

The author came across the phenomenon of error auto-correction at
the end of the seventies while developing nonstandard algorithms for com-
puting elementary functions on small computers, see [2]. It was required
to construct rational approximants of the form

R(x) = Zo+alzf+ag,f1;2+---+an£1: 1)

o+ bz b2+ 4 by

to certain functions of one variable 2 defined on finite segments of the
real line. For this purpose a simple version of the well-known linear
Padé--Chebyshev method was used: the method allows to determine the
family of coefficients a;, b; of the approximant (1) as the solution of a
certain systern of linear algebraic equations. These systems turned out to
be ill-conditioned, i.e., the problem of determining the coefficients of the
approximant is, generally speaking, ill-posed and small perturbations of
the approximated function f(z) or calculation errors lead to considerable
crrors in the values of coefficients. Nevertheless, the method ensures a
paradoxically high quality of the obtained approximants [2].

For example, for the function cosz the approximant of the form (1)
on the segment [-7/4,7/4] obtained by the method mentioned above
for m = 4, n = G has the relative error equal to 0.35 - 1073, and the
hest possible relative error is 0.46 - 1073, The corresponding system of
lincar algebraic equations has the condition number of order 10°. Thus
we risk losing 9 accurate decimal digits in the solution because of cal-
culation errors. Cowputer experiments show that this is a serious risk.
The method mentioned above was implemnented as a Fortran program.
The caleulations were carried out with double precision (16 decimal posi-
fions) by means of ICL 4 50 and ES-1045 computers. These computers
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are very similar in their architecture, but when passing from one com-
puter to another the system of linear equations and the computational
process are perturbed because of calculation errors, including round-off
errors. As a result, the coefficients of the approximant mentioned above
to the function cos z experience a perturbation already at the sixth-ninth
decimal digits. But the error of the rational approximant itself remains
invariant and is 0.4 - 10~!2 for the absolute error and 0.55 - 10~!3 for the
relative error. The same thing happens for approximants of the form (1)
to the function arctanz on the segment [-1,1] obtained by the method
mentioned above for m = 8, n = 9 the relative error is 0.5-10~!! and does
not change while passing from ICL-4-50 to ES-1045 although the cor-
responding system of linear equations has the condition number of order
10'!, and the coefficients of the approximant experience a perturbation
with relative error of order 10~*.

Note that the application of standard procedures known in the the-
ory of ill-posed problems results in this case in losses in accuracy. For
example, if one applies the regularization method, two thirds of the ac-
curate figures are lost; in addition, the amount of calculations increases
rapidly. The thing is that the exact solution of the system of equations
in the present case is not the ultimate goal; the aim is to construct ar
approximant which is precise enough.

Professor Yudell L. Luke kindly drew the author’s attention to his
papers [3] where the effect of error auto-correction for the classical Pade
approximants was revealed and was explained at a heuristic level.

In [1], using theoretical arguments and the results of computer ex
periments, the error auto-correction mechanism is considered for quite
a general situation. Let {yo,91,...,¢n} and {39, %1,...,¥m} be col
lections consisting of linearly independent functions of the argument z
belonging some (possibly multidimensional) set X. Consider the prob
lem of constructing an approximant of the form

(2

agwo + a1 + -+ anp,
R —
(@) = Sovo T b10n £ F bty

to a given function f(z) defined on X. If X coincides with a real lin
segment [A, B], o, = z* and 1, = z* for all k, then the expression (2
turns out to be a rational function of the form (1). It is clear tha
expression (2) also gives a rational function in the case when we tak
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Chebyshev polynomials T}, or, for example, Legendre, Laguerre, Hermite,
etc. polynomials as ¢y and 1.

Fix an abstract construction method (problem) for an approximant
of the form (2) to the function f(x). Quite often this problem is ill-
posed. Let the coeflicients a;, b; give an exact or an approximate solution
of this problem, and let the a;, b; give another approximate solution
obtained in the same way. Denote by Aa;, Ab; the absolute errors of
the coefficients, i.e., Aa; = a; — a;, Ab; = l;j — bj;; these errors arise due
to perturbations of the approximated function f(x) or due to calculation
errors. Set P(z) = Z?:o a;p;, Qz) = Z?:o bjv;, AP(z) = E?:o Aa;ip;,
AQ(z) = Yoo Abjy;, P(z) = P+ AP, Q(z) = Q + AQ.

It is easy to verify that the following exact equality is valid:

P+AP P _AQ(AP P G)
Q+AQ @ ¢ '

As mentioned above, the fact that the problem of calculating coeffi-
cients is ill-posed can nevertheless be accompanied by high accuracy of
the approximants obtained. This means that the approximants P/Q and
ﬁ/é are close to the approximated function and, therefore, are close to
each other, although the coefficients of these approximants differ greatly.
In this case the relative error AQ/Q = AQ/(Q+AQ) of the denominator
considerably exceeds in absolute value the left-hand side of equality (3).
This is possible only in the case when the difference AP/AQ — P/Q
is small, i.e., the function AP/AQ is close to P/Q, and, hence, to the
approximated function. For “efficient” methods the function AP/AQ
provides indeed a good approximation for the approximated function,
and, thus, P/@ and P/Q differ from each other by a product of small
quantities in the right-hand side of (3). The thing is that the errors Aa;,
Ab; are not arbitrary, but are connected by certain relations.

Let an abstract construction method for the approximant of the form (2)
be linear in the sense that the coefficients of the approximant can be de-
termined from a homogeneous systein of linear algebraic equations. The
homogeneity condition is connected with the fact that, when multiplying
the numerator and the denominator of fraction (2) by the same nonzero
number, the approximant (2) does not change. Denote by y the vector
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whose components are the coefficients @0, Q1,...,08y, by,by,.. ., b,,. As-
sume that the coefficients can be obtained from the homogeneous system
of equations

Hy =0, (4)

where H is a matrix of dimension (m+n+2)x(m+n+1). The
vector ¢ is an approximate solution of system (4) if the quantity ||Hj||
is small. If y and § are approximate solutions of system (4), then the
vector Ay = g — y is also an approximate solution of this system since
|HAy|| = |Hj— Hy|| < ||Hi|| + |Hy||. Thus it is natural to assume that
the function AP/AQ corresponding to the solution Ay is an approximant

to f(z).

It is clear that the above reasoning is not rigorous; for each specific
construction method for approximations it is necessary to carry out some
additional analysis. The presence of the error auto-correction mechanism
described above is also verified by a numerical experiment. The effect
of error auto-correction reveals itself for certain nonlinear construction
methods for rational approximations as well [1].

It can be easily understood that the standard methods of interval
arithmetic (see, for example [4]) do not allow to take into account the
error auto-correction effect and, as a result, to estimate the error of the
rational approximant accurately.
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