Interval Computations
No 3(5), 1992

PARALLEL ALGORITHMS
FOR GLOBAL OPTIMIZATION

Tom Henriksen and Kaj Madsen

Two versions of the classical interval method for global optimization are
paralleled. Experiments with examples in up to 10 variables and using up
to 32 parallel processors indicate that the methods parallel quite efficiently.

ITAPAJIJIEJIBHBIE AJITOPUTMDBbI
TJIOBAJILHOM OIITUMU3AINN

T. Xeupuxrcen, K. Maacen

IIpennoskeHsl pacnapaJijieJieHHble BADUAHTHI IBYX BEPCUiA Kiaccu-
UeCKHMX MHTEPBAJLHBIX MeTON0B TJ06aJibHO onTuMnusanmu. Pesynb-
TaThl KCIEPUMEHTOR Ha NpUMepax, coleprrammx 4o 10 nepeMeHHbIX
M VICHOJIB3YIOWMX A0 32 napaJjijiensbHblX NPOUECCOPOB, MOKa3BIBaIOT

AOCTAaTOUHY IO Sq)Cl)GKTMBHOCTb pacnapa/esimBaHus.

1. Introduction

Many technical and economic problems can be formulated as mathe-
matical programming problems, i.e. as the minimization of a continuous
non-linear function f : D — R where D C R™. Very often the function
f has several local minima only one of those being interesting however,

namely the smallest one:

f* = t{f(a)lz € D}

© T.Henriksen, K.Madsen, 1992

f*ist]
where it :
We ust
[4-6]. Tt i
dure we h

with the
subsets D,

A subse
{Si} 1s cal
reduce the
inclusion o;

We pres:
difference b
the candids
that candic
Some sortin,

b"‘(iddih—ﬁrsz

In the sec
If treatmen
treated imn
Is met), and
assume an e
by a t/raditio
be noted tha
Legligible co;
firgt Strategy
the 1ocal sol
Winimum.

Both strat
Ustriuction]

ization are
1 using up
efficiently,

KJaccu-
Pesyip-
MEeHHRIX
3BIBAIOT

| as mathe-
continuous
1e function
g however,

(1)

PARALLEL ALGORITHMS ... 89

[s the global minimum, and the problem of finding f* and the points
where it is attained is called global optimization.

We use the classical interval method for global optimization see e.g.
[4—6]. It is a branch and bound type method. At any stage of the proce-
dure we have a finite number of

subsets S; of D
lower bounds, LB(S;), on min{f(z)|z € S;}
upper bounds, UB(S;), on max{f(z)|z € S;}

with the property any global minimizer is contained in the union of all
subsets D, i.e.

D2 UiL,S: 2 {x € DIf(z) = f*}. (2)

A subset S; is an interval and is also called a boz. The set of boxes
{Si} is called the candidate set and denoted by S. Now the aim is to
reduce the candidate set in an attempt to obtain equality in the second
inclusion of (2).

We present two parallel versions of the classical interval method. The
difference between the strategies lies in the order in which members from
the candidate set are considered. Iy the first method we always consider
that candidate which has the smallest lower bound. This will require
some sorting of the candidate set, for efficiency reasons. It is denoted the
breadth-first method.

In the second method the candidates are treated in a depth-first order:
If treatment of a candidate leads to two subsets then one of there is
treated immediately (unless it can be deleted or the stopping criterion
is met), and the other is added to the candidate set. In this method we
assume an estimate of the minimun, to be given. This could be found
by a traditional optimization method for finding local minima. It should
be noted that the time used to do a traditional optimization normally is
negligible compared to the time nsed by the interval method. The depth-
first strategy may be considered as a method for proving globalness of
the local solution found, or to disprove it and then finding the global
minirum.

Both strategies are parallised using a central method on a Multiple
Instruction Multiple Data (MIMD) machine. A central processor has

90 T HENRIKSEN, K.MADSEN

the overall control and the other processors (the slaves) are doing the

treatment of candidates.

2. The sequential interval methods

We first sketch the classical interval method for global optimization.
Let fbound be an upper bound on f*, i.e. we always have the inequal-
ities

m, = min{LB(S;)|S; € S} < f* < fbound. (3)

Furthermore, we keep a set of final results R, i.e. intervals which fulfill
the stopping criterion. Such intervals are not inserted into S.

Then the model algorithm, is the following

initialize— S, fbound

while (S is non-empty) do
remove-smallest (S) — 5;
reduce-or-subdivide (S;) —result, fbound

(4)

insert result into S or R

for S; € S do if LB(S;) >fbound then S = 9' N SF

end

Of course the for-statement needs not always search the whole of S.

In (3) any known function value can be used as fbound since f* < fx)
for any z € D. Thus fbound can be reduced every time a better functio?
value is found.

Now let F be an interval extension of f. Then the details in (4) ar

the following:

I

rec

After a
F' = (F]
result of tl

The sta

can be use
The result

Subdivic
of largest v

The diff
in the imp)

The bi
method.
remove-,

The value «

or

where z €
mformation

_The de)
one bhox be:
Strategy is -

\re doing the

>timization

the inequal.

(3)

~

)

hich fulfi]]

(4)
: S\ S;
le of S.
e f* < fla)

ser function

5 in (4) are

PARALLEL ALGORITHMS ... 91

initialize: S = {D}, fbound=max{F (D)}
reduce-or-subdivide(X):
if monotone then result=mon(X)
else if stationary then result=Newton(X) (5)
else
subdivide (X) — X1,X2
result = {X1,X2}

After a successful monotonicity test an interval extension
F/ = (Fy...,F,)T of the gradient f’ is used to reduce X. mon(X) is the

result of this reduction.
The stationary test tells if a version of the interval Newton method [5]
can be used to search for a zero of the gradient f’ (a stationary point).

The result is Newton(X).
Subdivide: Here X is divided into two, for instance by halving the side

of largest width.
The difference between the two strategies presented in this paper lies
in the implementation of the remaining two details. .

The breadth-first algorithm. This is the traditional interva

method.
remove-smallest: The box S; with smallest value of min{ F(S;)}
is removed from S.

The value of fbound may be updated by

fhound := min{ fbound,min{UB(Z) | Z € result}} :
or fbound := min{ fbound, f(z)} (6)

where z € Z can be chosen appropriately using the (known) gradient
infermation.

The depth-first algorithm. Here the idea is to finish the work on
one box before starting to subdivide the others. The advantage of this
strategy is that the number of elements in S is kept much smaller, and,

92 T.HENRIKSEN, K.MADSEN

as we shall see, it may be better suited for paralleling. The disadvantage
is that the value of fbound may not be decreased so quickly because the
boxes that give the small values may not be examined until late in the
calculation. Therefore the total amount of computation needed here may
be larger. In order to compensate for this disadvantage we combine the
interval method with a traditional minimization method: We find a local
minimum using the traditional method and use the function value found
as the initial fbound.

To summarize, the remaining details of the depth-first alporithm are:
remove-smallest. The box S; which has last entered S is removed.
fbound is initialized as described above and possibly updated using (6).

If we fix the stopping criterion then we can compare the amount of
work in the two methods. Let the criterion be

if (w(S;) < e and LB(S;) <m,) then (insert S; in R) _
else (insert S; in S) (7)
Theorem. Assume (8). If the local minimizer used in the depth-first

algorithm finds the global minimum f* then the treated are the same in
the two methods.

Proof. Both methods give the same treatment to a specific box §;. It is
only the order of treating the candidates which differs. However, since we
may have fbound > f* during the execution of the breadth-first method,
a box X with LB(X) > f* may be inserted in the candidate set for
this method. But X would be eliminated by the other method since
here fbound = f*. However. X will never be treated bv the breadth-first
method because of the inequalities in (3). On the other hand. boxes X
with LB(X) < f* will be inserted ecither in S or R. independently of the
search strategy. Therefore the two methods will treat exactly the same
boxes.

3. The parallel methods

The parallel methods are central methods where a master process com-
municates with a number of slave processes. There is no communication
between the slaves. The administration is done by the master which keeps

the cand
form alg
runs alg
commun
the num)]

The v:
is found
master.
to the mu

The p:
to the m:
kept for f
eliminate.
the amou
from the -

We onl
referred tc
system of
from 1 to .

- The twc

fl(ﬂf) =:
J
D = [2.0(

fi = —45

D =[-5,]

fo = =36.

Thgé resul
first methoc

“h‘&l(,l\t‘{illﬁ‘dg@
because the
| late in thé
ed here ay
‘ombine thl(l-g
find a locy)
value foungq

orithm are:
oved,

using (6).

amount of

R)
)

—
=~
~——

depth-first
1€ sarme in

X 5;. It is
. SInce we
method,
e set for
10d since
adth-first
boxes X
1v of the
‘he same

288 COmn-
nication
1 keeps

PARALLEL ALGORITHMS ... 93

the candidate set S, and send candidates S; to the slaves. Each slave per-
form algorithm (5), and return the result to the master. Thus the master
runs algorithm (4) except that reduce-and-subdivide is replaced by slave
communications. Initially D is subdivided into p — 1 subsets, p —1 being
the number of slaves. ‘

The value of fbound is known by every slave. If a better value of fbound
is found by a slave then this is communicated to the other slaves via the
master. Results which can be eliminated using fbound are not returned

to the master.

The parallel depth-first algorithm does net always send all results back
to the master: If a slave subdivides a box into two then one of them is
kept for further treatment by the slave (unless both new intervals can be
eliminated), while the other is sent to the master. This of course reduces
the amount of communication, since a slave only needs to receive work
from the master when it has eliminated or finished its current box.

4. Numerical results

We only present tesults for two typical test functions. The reader is
referred to [3] for further test results. The tests are performed on a Meico
system of T800 transputers, where the number of processors used ranges

from 1 to 32.

The two functions are
10 10

filw) =3 (n(z; —2)* + Y (n(10 - z;))* ~ ([2:)** = €R®

g=1 j=1 Jj=1
D = [2.001,9.999]"°
f = —45.7784697, attained in 1 point

5

3
fol2) = Y. Y isin((j+ Ve +j) z€R

t j=1

=1
D =[-5,5]"
fy = —36.0937483, attained in 1 point

The results are summarized in Tables 1'and 2. In both cases the depth-
first method has ideal conditions: f* is found by the local method. In

94

T.HENRIKSEN, K.MADSEN

both cases the local method (VA13CD of the Harwell Subroutine Library)
uses less than one second of computing time. In the tables p is the total
number of processors used. cap is the calculation time (i.e. essentially
the average time the slaves are doing the calculation (9)), and co, is
the communication time (i.e. (the total running time) - cap). We also
give the maximum number of elements in the candidate set, L,, and the
speed-up, S, = (total time for 1 processor)/(total time for p PIoCessors).

All times are measured in seconds.

Under ideal circumstances (i.e. no communication time) we could

expect S, = (p — 1), since (p — 1) slaves are sharing the work.

breadth-first method depth-first method
P cay cop L, Sy Clly co, Ly Sp
1 971.1 - 1645 = 948.0 - 31
143 313.3 11.2 1641 3.0 | 313.3 3.1 51 3.0
147 1343 77 1650 68 | 1342 19 91 7.0
1415 62.6 8.9 1661 13.6 | 62.5 1.9 132 14.7
1431 30.2 30.6 1648 16.0 | 30.2 3.7 209 23.0 |

Table 1. f1. p =1 corresponds to the sequential method

breadth-first method depth-first method
P cap coy, L, Sp cay cop L, Sp
i 289.3 - 3648 = 237.8 11 -
143 76.7 40.5 3646 2.5 | T6.5 3.4 27 2.9
- 147 32.9 59.3 3643 3.1 | 329 2.5 55 6.7
1415 15.4 69.6 3630 3.4 | 154 2.3 103 134
1431 7.4 87.9 3586 3.0 7.4 7.0 181 16.5

Table 2. f». p =1 corresponds to the sequential method

The two methods both parallel rather well on fi, and the performance
of the depth-first algorithm is almost ideal. For fa,
work per iteration is much smaller, 32 processor
efficiently. Further, it is seen from the tab

has several advantages.

First of all the storage needed is drastically smaller. This effect 19
independent of the fact that fhound = f* initially.

Secondly, as expected the comimunication time. is much smaller i1

where the amount of
s cannot be used quite s0

les that the depth-'ﬁrst metliod

) the

depth-f
munica
the bre
ever, th
a simile

NOti(
case. T
the tim

Howr
the loc:
that cas
be work

We ¢
storage
efficient.
method
the tota

1. Hanse

case.

2. Henri
NI-E-

3. Henri.
optim

4. Mads«
for Nu

5. Ratscl
Horwc

6. Skelb¢

5 Library)
; the tota]
sssentially
nd co, is
. We also
», and the
'0CesSors),

we could

;hod

i Sp
3.0
7.0

2 14.7

9 28.0

10d

hod

__ 5 |

2.9
6.7
13.4
16.5

hod

rformance
amount of
:d quite so
st metliod

s effect is

dler in the

PARALLEL ALGORITHMS ... 95

depth-first method. For fo which is rather "easy” to calculate, the com-
munication time is significant for p = 4 and dominating for p > 8 when
the breadth-first method is applied. For the depth-first method, how-
ever, the problems only occur for p = 32. When solving the first problem

a similar comment can be made.

Notice that the depth-first method is fastest, also in the sequential
case. This is because the time used to insert in § is smaller (and because
the time used by the initial local method is negligible).

first method may disappear if

However, these advantages of the depth-
he global minimum. In

the local minimum found initially differs from t
that case the depth-first method may have to do more work, since it may

be working on intervals with LB(X) > f*.

5. Conclusion

We conclude that the depth-first method normally requires much less
storage than the classical breadth-first method, and it parallels more
efficiently. However, the latter advantage may be vasted if the local
method applied initially fails to find the global minimum, in which case

the total amount of work may increase.

References

1. Hansen, E. R. Global optimization using interval analysis — the multidimensional

case. Numerische Mathematik 34 (1980), pp. 247-270.

9. Henriksen, T. Parallelle algoritmer til global optimering. Masters Thesis. Report

NI-E-92-02, Institute for Numerical Analysis, Lyngby, 1992.

nd Madsen, K. Use of a depth-first strategy in parallel global

3. Henriksen, T. &
92-10, Institute for Numerical Analysis, Lyngby, 1992.

optimization. Report NI-

4. Madsen, K. Parallel algorithms for global optimization. Report NI-91-07, Institute

for Numerical Analysis, Lyngby, 1991.

5 Ratschek, H. and Rokne, J. New computer methods for global optimization. Ellis

Horwood, 1988.

6. Skelboe, S. Computation of rational interval functions. BIT 14 (1974), pp. 87-95.

