Interval Computations
No 3(5), 1992

ON INTERVAL EXTENSIONS
OF COMPUTER ALGEBRA SYSTEMS

Nikolay M.Glazunov

In this paper a number of interval extensions of computer arithmetics
and computer algebra systems are considered. A short description of pecn-
liarities of implementations and applications are given.

OBb UHTEPBAJILHBIX PACOIMPEHNAX
CCTEM KOMIIBIOTEPHOMUM AJITEBPBI

H.M.T'na3zvaos

PaccMmoTpeH pAd MHTEPBANbHBIX PACIUMPEHUI KOMUbITEPHBLIX
apudpMeTUK U cucTeM KoMnbloTepHo# anredpnl (CKA), kpatko onu-
CaHBI OCOBGEHHOCTY HEKOTOPHIX PealJiM3alluil U yKasaubl NPUI0KCHUIL.

Introduction

We call the interval extension of computer algebra system (CAS) an
extension to interval data of definition. demains and ranges of expression
which can be represented in CAS as well as of operations over these

expressions.

The implementation of interval arithmetics or. more generally, of meth-
ods of interval computations [1--5] in computer algebra systems allows to
combine computer-algebraic transformations with the strict numerical
results obtained during or on completion of the process of computer-
algebraic transformations. At present a great number of interval arith-
metics and interval computational schemes are proposed. They represent

© N.M.Glazunov, 1992

both the
puter ar
tions are
ones apy
the deve
applicati
extended

In the
of interv;
extension
I more ¢
architect
of interva
of interva
shown.

Interv;

A great
lous aspec
fines varior
arithmetic:
Hansen, a
[1-5]. A gri
and methoc
and curreni

The follc
metics are
floating-poi.
the arrest q
bit of binar
batible com
Computer in
Various mod

Interval a3




etics
eCn-~

1blX
-
s,

AS) an
Tession
r these

f meth-
lows to
nerical
iputer-

arith-
wesent

Y

ON INTERVAL EXTENSIONS ... 81

both the features of implementations of interval computations on a com-
puter and the features of the object fields, for which interval computa-
tions are carried on. In turn, the known CAS are developed and the new
ones appear (see, for example, [6] and bibliography in it), that causes -
the development and change of the architecture of CAS. The sphere of
applications of interval and of computer-algebraic methods is continually
extended.

In the paper a short review of interval arithmetics (IA) and of methods
of interval computations is given, and IA used by the author for the
extension of CAS (various versions of the Reduce system) are described
in more detail, the description of the CAS architecture is adduced. The
architecture determines to a large extent directions in implementation
of interval extensions. Possible ways of integration of CAS and systems
of interval computations are also described and some applications are
shown.

Interval arithmetics and schemes of interval computations

A great number of interval arithmetics is proposed that reflects var-
ious aspects, theoretical and applied, of interval computations and de-
fines various algebraic structures of interval data domain. These are the
arithmetics of Moore, Kahan, Markov, Olwer, generalized arithmetic of
Hansen, a posteriori interval analysis of Matiyasevich, and many others
[1-5]. A great number of computer implementations for these arithmetics
and methods is proposed. The survey and the analysis of these interesting
and current works of different authors require a separate consideration.

The following modifications and extensions of Moore’s interval arith-
metics are implemented by the author: fixed-point interval arithmetic,
floating-point interval arithmetic with account of roundoff error either in
the arrest digit n of declared precision (n < 24) or in the least significant
bit of binary notation (implementation on the IBM 360/370 — com-
patible computers in Turbo-C), interval arithmetic for a vector-pipeline
computer in ASSEMBLER, rational arithmetic of infinite precision for
various modifications of the Reduce system.

Computer arithmetics

Interval arithmetics can be constructed on the basis of computer arith-




82 N.M.GLAZUNOV

metics. The latter in turn are subdivided into standard computer arith-
metics (s.c.a.) and arithmetics realizable on computers, but not stan-
dard. We understand the standard computer arithmetics as integral or
fixed-point arithmetics (that are not considered below) and floating-point
computer arithmetics satisfying, in particular, the JEEE-754 standard.
We refer to remaining computer arithmetics as nonstandard (see also [7]).

Let F(B,r,e1,e2) = {2 € R |z = z.dy...d,. - B}, = € {+1,-1,0},
d; €{0,1,...,8-1},i=1,...,r;d; #0,e1,es,e €Z, e; < e < e5 be
the model of a floating-point arithmetic, with 3 being the base. In the
implementation of nonstandard floating point arithmetics (see below) the
point before d; can be moved to the end of the mantissa d; ...d,. and
the mantissa and exponent themselves will be the numbers of indefinite
precision. In these cases sometimes the notation F(3,e) or simply F(:3)
is used.

For 80286 processor with 80287 coprocessor the numbers in the float-
ing-point computer arithmetic have the following formats:

(=1)%9"(1.d; .. .dag) - 287127
(=1)%97(1.d, ... d5q) - 2571023

—1)%9%(1.d; . . . dgq) - 27710383 extended precision)
1 )

(single precision)
)

(double precision

..... are the binary digits of
mantissa field, and E' is the value of order field.

Here sgn is the value of sign bit, d;,ds

In arithmetic operations, the following types of roundines are sup-
9 « O

ported: the rounding towards zero (truncation), the rounding to a nearest
computer number, the rounding to +oc, the rounding to —oc.

For computers of Crey type or Elektronika SS-Bis the floating-point
numbers are represented in the form

(=1)%9" - 2,

where 1/2 < m < 1 for normalized nunbers, and —8192 < ¢ < 8192.
Rounding towards zero and rounding to a nearest computer number are
supported by the program.

In the Reduce 3.1 system and in the later versions the arbitrary preci-
sion real arithmetic and the arbitrary precision rational arithmetic are re-
alized on the basis of Sasaki’s package. Thus, the arbitrarv precision real

number i
LISP S-s
and belo
QUOTE-
big-float
by the S
is the ine
denomin:

For ea
modificat
ations of
type (or -
the trunc
a process

(a,@) is
COIT 1is
u

& s

€ 1S

E
The aly

of the rest

Algol-like

ifaz>0t
ify>¢C

i1

else if
if y >«
else

if 4 >

if o

else



mputer arit},_
but not. stan.
as integral or
1oat1ng point
54 standar,
(see also [7]).
{+1,-1,0},
< e< ey be
base. In the
e below) the
1 .. .d,‘-, Eln(l
of nldeﬁmte
imply [ 3)

n the float-

precision)
precision)

pl"f‘('ision)

" digits of

are sup-
anearest

mg-point
< 8192.
1})(']]_" HLI‘(\

vV preci-
CAre re-
on req)

ON INTERVAL EXTENSIONS ... 83

sutnber is represented as the element of F(10) in the form of the following
LISP S-statement: (! : BF! :.(mn.e.)) (for the sake of visualability here
and below we use the simplified representation of the S-staternent without .
QUOTE-function). Here ! : -BF! : is an index, which distinguishes the
big-float data type from another ones. A rational number is represented
by the S-statement (! : RATNUM! : .(n.d)) where ! : RATNUM! :
is the index to a rational number and n,d are the numerator and the

denominator respectively.

Computer interval arithmetics

For each type of rounding in the F(3,r,e1,e2) arithmetic and in it’s
modifications one can define a machine interval arithmetic with the oper-
ations of addition, subtraction, multiplication and division, in which this
type (or combination of types) of rounding is realized. For example, if
the truncation of the results of arithmetic operations is implemented on
a processor, then let us introduce the following notation:

(a,@) is an interval with @ and @ bounds;
is the addition or subtraction, depending on sign before it, of the
unit to the less significant digit of mantissa of the result;

& 1is the conjunction symbol,
is the smallest number representable on computer, e.g. for the

Elektronika SS-Bis € = 0.5 - 1078192,
The algorithm for a multiplication, MLI, with account of truncation
of the results of arithmetic operations has the following representation in

COIT

€

Algol-like language:
if z > 0 then do;
if y> 0 then : =2 *y; else z =T Xy — corr;
T if7>0then T =T %7y + corr; else 7 = 2 * 7;
end; ‘
else if (xr < 0)&(7 > 0) then do;
if y > 0 then do; z = 2 % — corr;Z =T x§ + corr; end;
‘else if 7 < 0 then do; z =T * Y —corr;Z =z *x y + corr; end;
elsedo; [« y<0<y */
ifrxy>w *ythen::T*y—con elsez =1z

ifaoxy>7 xjthenZ =2z xy +corr; else T =T x Y + corr;
end: end:
else do: /x T<0 %/



84 N.M.GLAZUNOV

ify > 0 then z = z x § — corr; else z: =T x7;
if y > 0 then Z=Z*y; elSGE:_«’U_*y+corr; end;

For the schemes of interval operations see, for example, [9].

For Reduce 3.3 system if the big-float data type is chosen then the
interval number may be represented in the form of the S-statement

where ! : INTN A! : indicates the type, and left LB and right RB ends
of the interval are of big-float type.

In [10] the program package of interval arithmetic for the big-float
numbers in the Reduce system is described. The author learned about
this work after his own package in the Reduce 3.3 had already been
implemented. Though this package possesses less possibilities for interval
big-float numbers than the one described in [10]. it allows, on the other
hand, to process the interval rational numbers, which require no account
of the roundoff error in the computational process, except, may be, for the
last step, when the resulted interval rational number (r,7) is transformed
to the decimal floating-point notation.!

Interval computations may be organized also in the Reduce 3.3 lan-
guage without using of character mode, if we represent the interval ratio-
nal number as a list: JR := {LB, RB} and define the interval arithmetic
operations on such represented rational numbers. E.g. if we rename
Xl=z X2=7,YVl=y Y2= Y, Z1 =z, Z2 =7 removing the oper-
ation of correction corr we can define the begining of M LIRL procedure
of multiplication of intervals in the list representation hy the statements:

PROCEDURE MLIRL(L1, L2, R):
BEGIN SCALAR X1,X2,Y1,Y2, Z1, Z2:
X1:=FIRST(L1); X2:= SECOND(L1);
Y1:= FIRST(L2); Y2 := SECOND(L2):

Further, replacing the delimiters of compound operator (do; and end)
by the double opening << and closing >> brackets and taking into ac-
count the syntax of the conditional statement in Reduce 3.3 we insert
after these replacements the text of M LI into the MLIRL procedure.

1As J. Wolff von Gudenberg reported to author the subroutine library of interval
computations on the Reduce 3.X has been worked out also by J.Fitch.

L

The I

moduls: |

It must
metic in I

The dir
tent by the
Systems w
base progr.
type. Unde
the fixed s
vectors, ms
tations and
which is re.
system is a;
Oopen type »
ming langus
and are acc
an example
provides the
3.3 environr

The user

acter mode
mode and tc

If the user
hag access to
Inanage with
algebraic and
Derive and P.

\_‘-‘-‘-‘f‘—-—-—._‘_
2The author



1 then the
ment

RB ends

big-float
ted about
ady been
T interval
the other
) account
e, for the
1sformed

3.3 lan-
ral ratio-
ithmetic
renarme
he oper-
ocedure
ements:

d end)

nto ac-
insert

Ture.

interval

Y

ON INTERVAL EXTENSIONS ... 85

The IN AR library that contains the M LIRL modul also includes the
moduls: ADIRL, SBIRL, DVIRL, DGINR, and some others.

It must be simplest, but not efficient implementation of interval arith-
metic in Reduce 3.3.

Architecture and interval extensions
of computer algebra systems

The directions of interval extension of CAS are defined to a large ex-
tent by their architecture. By analogy with the classification of database
systems we will distinguish the CAS of closed type and the CAS with
base programming language referring the latter CAS as the CAS of open
type. Under the CAS of closed type we understand the systems thet have
the fixed set of acceptable data types (polynomials, rational functions,
vectors, matrices and others) and the fixed set of statements for compu-
tations and for algebraic transformations with these data type, access to
which is realized by a statement identifier or from a menu. The Derive
system 1s an example of the system of closed type. Under the systems of
open type we understand the systemns possessing one or more program-
ming langnages that allow the extensions on the level of language facilities
and are accessible for the user of the system. The Reduce 3.3 system is
an example of the system of open type. It is implemented in R-LISP and
provides the 3 interrelated program environments for the user: Reduce
3.3 environment, R-LISP environmnent and S-LISP environment.

The user is provided by the opportunity to work in two modes — char-
acter mode and algebraic mode, and by the opportunity to change the
mode and to connect the modes.

Integration of computer algebra and
of systems of interval computations

If the user is not hampered in memory resourses (e.g. on the IBM PC),
has access to CAS and to the system of scientific computations, and can
manage with these systeins, then the following organization of computer
algebraic and interval computations is possible with the use, e.g. of the
Derive and Pascal-XSC? systems.

2The author is grateful to A.Davidenkoff, who has sent the information on a number



86 N.M.GLAZUNOV

Notice, that the Pascal-XSC system [11] uses the Borland C++ and
together they occupy about 16 Mbyte of hard disk memory. Computer-
arithmetic transformations have been carried out in the Derive system
and the obtained result has been transformed to the Pascal-XSC file
(Derive has such opportunity). We edit this file according to the syn-
tax of Pascal-XSC, define the interval value of constants and variables
of the expression being computed, and transfer the formed program for
execution to the Pascal-XSC system.

Applications

The implementation of interval-analytical computations on the CAS
can be used for obtaining guaranteed results in the field of theoretical
mathematics, for research (analysis and synthesis) of robust dynamic
systems, for research of ill-conditioned problems and also for investigation
of a range of applied problems whose parameters and coefficients change
in the intervals.

References

1. Moore, R.E. Methods and applicetions of interval analysis. SIAM, Philadelphia,
1979.

2. Kalmykov, S.A., Shokin, Yu.l. and Yuldashev, 7.Kh. Methods of interval analysis.
Nauka, Novosibirsk, 1986 (in Russian).

3. Alefeld, G. and Herzberger, J. Introduction to interval computations. Academic
Press, New York, 1983.

4. Kulisch, U. and Stetter, H. (eds.) Scientific computation with automatic result
verification. Springer-Verlag, 1988.

5. Matiyasevich, Yu.l. Real numbers and cornputers. Kibernetika i vychisl. tekhnika,
2 (1989) pp. 104-133 (in Russian).

6. Wall, S.M. (ed.) ISSAC’91. ACM Press. New York, 1991.

7. Glazunov, N. M. Numerical-analytical computations and nonstardord arithinetics.
In: "Proc. International Workshop on Analytical Computations on Comput:rs
ekl

and Their Applications in Theoretical Physics, Dubna, Sept. 17-18, 19857, Joint
Institute for Nuclear Research, Dubna, 1985, pp. 143 148 (in Russiau).

of XSC-systems, and to D.Shiriaev, who has given to the anthor the demo-version of
the Pascal-XSC systewn.

)
8. Sasaki,
in Com

9. Glazun
kiberne

(in Rus
10. Bamber

11. Kulisch
Karlsru




| C+4 ang
Computer.
ve systery
al-XSC file
0 the syn.
d variableg
rograrh for

1 the CAS
sheoretical
> dynamic
restigation
1ts change

hiladelphia,
al analysis.

Academnic
watic result
. tekhnika,
“ithinetics.

.
SOPL Ty
857, Joutnt

version of

10.
11.

ON INTERVAL EXTENSIONS ... 87

Sasaki, T. An arbitrary precision real arithmetic package in Reduce. Lecture Notes
in Computer Sci. 72 (1979). pp. 358 -368.

. Glazunov, N. M. An interval arithmetic on vector-pipeline computer. In: "Voprosy

kibernetiki 145, Host software for a supercomputer”. Moscow, 1990, pp. 91-101
(in Russian}.

Bamberger, L. Error validation package for Reduce. In: "Esprit’ 88. Part 17, 1988.

Kulisch, U., Hammer, R. and Neaga, M. Pascal-XSC. Inst. of Applied Math.,
Karlsruhe, 1992.




