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INTERVAL METHODS BASED ON
A POSTERIORI ESTIMATES

Boris S.Dobronets

In this paper some methods based on a posteriori estimates are pre-
sented.

HNHTEPBAJIBHBIE METOIbl, OCHOBAHHBLIE
HA ATIOCTEPHMOPHBLBIX OIIEHKAX

b.C.do6ponen

IIpencraBiedsl MeTOABI, OCHOBaHHbIE Ha ANIOCTEPMOPHBLIX OlLIEHKAaX.
Jnsa nocTpoeHus MHTEPBAJBHOIO PELUEeHWA NpeJBapUTeNbHO pellaeT-
CH HECKOJIbKO BCIIOMOTaTelIbHbIX, B 00lleM cayuyae HeMHTepBalhHbIX
3anau.

Let R™ be a space of n-dimensional vectors. In what follows, we denote
interval numbers a = [a, @] with bold font: a,b,c,f. Similarily, R" is the
space of n-dimensional interval vectors, where wid(a) = a — @, mid(a) =

(a +a)/2.

By the example of an operator equation we explain the essence of our |

algorithm. Consider the operator equation
L(u, k) =0, (1)

where k is a vector of parameters, k € k. Denote by U the set of solutions
of the problem
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U={u|(Tke kﬁ), (L(w, k) = 0)}. (2)
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In general, the method is based on the reduction of problem (1) to
some sequence of non-interval problems

L,-(u,-,k,-) = 0, 1= 1,2, cen e (3)

golving numerically these problems we obtain solutions u;,7 = 1,2, ... .
Combining these solutions we can construct an interval solution u of
problem (1) so that u D U.

Consider this approach on the following examples.

Interval extension

Let f be a function in the special form [5]

f@) =) wiz;. (4)

i+j=0

To construct an interval extension, we a posteriori calculate a partial
derivative 8f /0z;. In certain cases, using information about this deriva-
tive we can construct an optimal interval extension.

Estimation of the minimum for a strongly convex function

Let U be a convex finite region in R", f be a strongly convex function,
f € CYU) and {e;} is an orthonormal basis in R®. Denote by z, the
minimal point of

f(@.) = min f(z)

and let z¢ be a point liying in the neighbourhood of z,. We may obtain
z¢ by some numerical minimization method.

Our goal is the construction of a parallelepiped P 3 z, [7]. At first we

(1) construct the plane [0; 3 2 ortohonal to e;. Further, we seek the point

r; and the plane [1; such that the point z, lies beetween the planes [0;

y U the set of solutions ., 4 1;. Hence we have region U; 3 x,.

N}

Then
2)
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Systems of nonlinear equations

Let us consider systems of nonlinear equations in the form [4]
z; = fi(z, k), i=1,2,..n, (5)

where
x € R" is a vector of variables:
k € R" is a vector of parameters, k € k.

We transform system (5) to the form

T =F'(z,%),
EzFZ(EaT)’ (6)
x = F(x). XU

Let 2° be a numerical solution of system (5) with k& € k, let X be the
set of solutions of (5). Then 2° is an approximation the exact solutions
and z° € X. We can solve the system (7) by the simple iteration method

x/t! = F(x/), j=0,1,... (8)

where x° D X. For the construction of x° we use a numerical solution of
system (6). We solve system (6) by a simple iteration method similarly
to the one used for non-interval systems in R?" with initial vector 2°.
Then \

x* = mid(x) + d[—1. 1]wid(x),

where d is a parameter.

Solution of ODEs
Consider ODEs of the form [3,6,7]:

x; = fi(t,o, k), i=1,.. nte (0,1), (9)
2(0) = . (10)

where z € R" is a vector of variables,
To € R" is an initial values vector, z¢ € x,,
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i € R" is a vector of parameters, k € k.

In order to comstruct an interval solution we first solve approximately

the form [4] the problem (9),(10) for some specific values of k and zg using for exam-
ple, the Runger-Kutta method. As a result, we obtain an approximate

(5) solution z". Using these values, we construct the Hermite cubic splines S.

\S

Later we shall use the next deviations
(t,z,k,S) = fit,S,k)=8" te (0,1). (11)

For the construction of an interval solution we use solutions of two addi-
tional linear ODE systems

(6) v, =Wu +w, te€ (0,1),v1(0) =0

and ,
(7) Uy = W’Ug, te (O,I), ’Ul(O) = Z2p,

W = {W;;} is a special matrix, the vector w has components
: € k, let X be the ~ where iJ P : P

L Eat fIE ¥ w; = 1, the vector z; = wid(x)/2. Then we solve the additional problem
as in solving problem (9),(10) and construct corresponding splines S .
S%. We will seek an interval solution of the form

1 the exact solutions
ple iteration method

8
(8) x =85 +[-1,1]5' + a5

qumerical solution of
lon method similarly

. . - . .0
ith initial vector z".

Let us consider the width of the interval solution

p(t) = widx(t).

Theorem 1. Let S, 5!, 5? be the Hermit cubic splines. Then

p(t) < Ch3”.’1:”Wg°[0,l]SI(t).

Partial differential equation
0,1), (9)

For example let us consider the model elliptic boundary value problem
(10)

Lu = f(z,u), x in Q, (12)
u(x) =0, 2 on O, (13)
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where © is a bounded open convex domain in R?, with the piecewise

smooth boundary o9, ' 1. Dobronets. B.S. A
a quasi-linear Poi.
(in Russian).

2
Lu = Zazu/ax,@xi.
2. Dobronets, B.S. A

itj
mekhaniki splosh.
Assume that 3. Dobronets, B.S. 7
of(z,u)/Ou 2> q(z) 20 of Comp. and Apg
and that positive constant K exists such that 4. Dobronets, B.S. I
Seminar on Interv
F@ml < K(+Inl), Vo € 2,¥n € fminu, maxa] 26-31 (in Russian

5. Dobronets, B.S. a

We solve problem (12),(13) by the finite element methods (FEM) on the functions. Interval

triangulation ;. We obtain the numerical solution u”" and construct a 6. Dobronets, B.S.

special spline § € W (Q). Then we can use the deviation differential equatic
#(z,5) = LS - f(=,5), z € Q. (14)| | vponsts, B
We solve numerically by FEM the additional problem
Liu; =1, zin Q, (15)
ui(z) = 0, z on 89, (16)

where L; = Lu — qu and we also construct the special spline S;. Then
the interval solution is of the form

u=S+aSI+ﬁa

where
@ = max(¢/L,51,0), « = min(¢/L,51,0),
) Q ‘

B = r%%x(—asl -5,0), 8 = rggl(—Qz_Sl - S,0).

Theorem 2. Let u € W& (Q), p(z) = widu(z), z € Q then
p(z) < Kh?,

where h is the size of mesh, K is a constant independent of h.
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2151, 0),

_Sl - Sa 0)

= Q then
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