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IDENTIFICATION OF NONLINEAR
DYNAMIC OBJECTS USING
INTERVAL EXPERIMENTAL DATA

Alexandr F. Bochkov and Nguen Viet Zung

For identification of nonlinear dynamic systems, the Hammerstein and
Wiener models have find wide application. Usually in this case determin-
istic systems or systems with random disturbances are considered. This
paper deals with the case where the disturbances acting on the object have
nonstatistical nature and are bounded in amplitude, that is, the case of
interval experimnental data is discussed.

NAEHTN®PNKAIINA HEJIMHENHBLIX ITUHAMUWUYECKUX
OB'LEKTOB I10 MHTEPBAJIbLHBIM
D2KCITEPUMEHTAJIBHBIM ITAHHBIM

A.®. Boukos, H.B. 3ynr

s naenTndrkaumm HesJIMHEHHBIX AMHAMMUUECKMX CHMCTEM LUMpPO-
Koe npuMeHenre Hauum modean Famvmepwreiina u Bunepa. Kak npa-
BMJIO, IPY TOM PACCMATPUBAIOTCSH N€TEPMUHNPOBAHHbIE CUCTEMbI UJIN
cucTeMbl €O cayuaiinbiMy Bo3MylleHMsamn. B naHuo#t cratbe usyua-
eTcsl cayyail, Koria Bo3MylleHUA, AeHiCTBYIOUIMEe Ha O6'beKT, HOCAT
HECTATUCTUYECKUN XapakTep ¥ orpaHnyeHbl M0 aMIJIMTY e, T.€. pac-
CMATPUBAETCSH CJly4all UHTePBAJbHBIX DKCIEPUMEHTANBHBIX JaHHBIX.

1. Formulation of the identification problem

Assume that the considered object has the Hammerstein structure
(fig. 1) or the Wiener structure (fig. 2) and the linear dynamic part is

© A.F. Bochkov, N.V. Zung, 1992
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stable. Measured input and output values are taken simultaneously at
times ¢t = 1, V.

z(t) z(t) y(1)

>
g](t)% ey(t)

Fig. 1. The Hammerstein model.

(t) z(t) y(t)
B

Fig. 2. The Wiener model.

Designations. F'is a static non-linearity, D is a linear dynamic part, z(t)
and y(t) are input and output variables of the system, Z(¢) and 7(t) are
measured input and output variables of the system, z(t) is a intermediate
non-measured value, e;(t) and e,(t) are input and output errors.

Suppose that input and output errors are bounded in amplitude

lex() IS Ax(t); | ey(t) [< Ay(t),

where A,(t), Ay(t) are known to the investigator.
Then as a result of an experiment, interval data can be obtained which
can be represented as a collection of N intervals:

1N,

z(t) € [3(t) — Aa(1),2(1) + Au(t)] = [&7 (1), 27 (¥)], "

]"N?

y(t) € [(t) = Dy(), 5(t) + Ay(0)] = [y~ (1), 54 (1)] , ¢ N

IDEN1

where 7 (¢),
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where 2z~ (1), 21 (t),y~(t),y* (¢) are respectively lower and upper bound-
aries of input and output intervals.

The description of the dynamic part is sought as the linear difference
equation and that of the static part -— as the polynomial of k-th degree.

For Hammerstein model, we write

A1) = F(a(t)) = 3 aa'(0), 3)

=1

y(t) = D_ay(t—i)+ 3 bjz(t—7~j), (4)

for Wiener model:

z(t) = Zaiz(t—i)+2bj:c(t— T —73), (5)
k

y(t) = F(2(t)) = ) _ ciz'(t), (6)
=1

where a;,bj,c; are unknown coefficients, 7 is a transport delay of the
dynamic element.

The identification problem consists in following: from interval experi-
mental data (1), (2), to estimate the type of the model, orders n, m and
k; to find the estimation of model parameters a;, b;,c; and the estimation
of the transport delay time 7.

2. Estimation of the transport delay
time and choice of the type of the model

The step signal is sent to the object, the input and output of the
model are measured. The estimation of the transport delay time is taken
to be the time over which the interval output of the ohject [y (t). y+( t)]
includes zero, that is. the hypothesis about the equality to zero of the
output object:

=T, T :Vte[0,T] [y~ (t).yT(t)] 30
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can be taken.

For estimation of the type of the model, two step signals with am-
plitudes A; and A, are sent to the object and response of the object is
fixed: [y7 (1), yF (1)), [v5 (t),y3 (t)],t = 1, N. Since when the signal passed
through the nonlinear element the form of the signal is not distorted, then
for Hammerstein model the following equation has to be held:

t=1,N. (7)

Under conditions of interval uncertainty of data, the relation (7) is
verified as the hypothesis about the existence of the model of the form
y1(t) = ays(t). When the appropriate set of admissible models is non-
empty, the Hammerstein model is proposed. Otherwise, in general it is
difficult to say, which model the object can admit (Wiener or a model of
more complex type).

We choose the estimates of values n,m and k as the minimal ones
at which the appropriate sets of admissible interval models (3) and (4)
for the Hammerstein model (or (5) and (6) for the Wiener model) are
simultaneously non-empty. In the sequel we shall assume that the values
n,m and k are known.

3. Finding interval static model

The step signal with k (or greater) different amplitudes is sent to
the object. The duration of every step T is required to be sufficiently
large for the output signal to be near to the steady value. W ithout loss
of generality we shall assume that the transfer coeflicient of the linear
dynamic part is equal to 1 (it is accounted in the non-linear element).
Then according to the premise about the stability of the linear part,
steady values of non-measured variable z(f) (at every step of the input
signal) lie in the interval:

for the Hammerstein model

2t) € [y (1) = Do, yH() + D) = [27(t), 31 (1)],
for the Wiener model

2(t) € [¢7 (1), ¥ ()] = [£7(1), 2¥(1)],
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where Ao is an amplitude of the error of the steady mode

| 9(t) = y(00) | Ao, t> T, T< T.. (8)

From data of input and output variables of the static element for the
Hammerstein model

[z7,2]] < —— - = - > [57,2F], i=T1k

(these points are taken at times of the end of every step, when condition
(8) is held), by the method of the interval data analysis the set Q. of

admissible static models is constructed. The set . is defined by the
system of the inequalities

k
Q.=4 C: min cha: <zJ, max Yc,x >ZJ,]—1’C
:vje[a:j_,a:;'] =1 .vje[;v T ] =1
(9)
Similarly in the case of the Wiener model form the data

[‘%j_ “;- ] e > [yu"_

~!>

a-

J=1

the set €1, is constructed.

4. Finding interval dynamic model

Assume that the set §). is non-empty. Experimental data of transient
modes are used for the estimation of the set of parameters Qup of the .
dynamic model. In this case we get a collection of interval data (1),
(2). It is necessary to find estimating intervals, which with a guarantee
contain true values of a non-measured variable z(¢). In the case of the
Hammerstein model, static model (3) is used for prediction:

k
27 (1) = min Z el (t) — AL(1)
C GQca
s(t)ele™(6) et (n)
k
2+(t) = max Z clm[(t) + A, (1),

C GQL s
z(t)E[z~(¢) ,r+(t)l



36 AF. BOCHKOV, N.V. ZUNG

A(t) = Ay(H) + Ao
For the Wiener model it is possible to use static model (6) with interval
coefficients:

where ¢ = (¢1,¢o,. .., Ck);

k

Z[cl_’ c?’]zl(t),

=1

y(t) = F(2(1)) = (10)

where ¢; = min Cy C, = Imaxc.
l ’ l
Q. Q.

Assume that function (6) is one-to-one function in the operating range

[2min» Zmax]- Let us search the interval [27(¢), £¥(¢)] and values inside it
are roots of the equation

[y~ (1), 9" ()] = [F~(2(8), S (z(1D)],
where f~(z(t)), fT(z(t)) are respectively lower and upper boundaries of
the interval function F(z(t)) defined by equation (10).

According to rules of the interval arithmetic [4] we obtain that if =1
and z2 are respectively roots of equations

(11)

=0,  fHE) -y (1) =0,

T(2(1) -yt ()

then estimations 27 (¢) and ¥ () are defined as

£7(t) = min(z1, 22); (¥ (t) = max(z1,:2), t=1.N.

Equations (11) have the form g(z) = 0 and can be solved by known
methods, such that the secant method,

g(z) — g(zli=1)
,3(1) -—g(.’—l) '

g(z'")
s(z(1)’

D = () where s(z(V) =

From the collection of interval input and output data of dynamic
model, for the Hammerstein model,
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the set g, of a

Qabz{‘(i’,_l?:

min
z()€[27 (1,21 (1));
y()Ely™ (1,57 (1))

max
z(t)€[z7 (1), (1));
y(Ely~(),yF (1))
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pe set Q). of admissible dynamic models is defined:
t
odel (6) with interval — 7
Qab = a ’ "
l (10) ; . L . N
, S ) > ay(t—i)+ ) bzt —7—35) | <yt(t)
gl (1,2 A =g i=0
zy((tt))e[[y'(i),y‘*'(i)] I
n m
n the operating range [Elg;(‘*'(t)] Zaiy(t —-1)+ Z bjz(t—1—3) ] > y~(1),t = 1,N}-
z x4 H i=1 J=0

g =
] and values inside it z;zt))ely'(t)’y+(‘)]

(12)

gimilarly we find the description of the dynamic part of the Wiener model.

N 5. Features of the interval model
1 upper boundaries of s we have seen, the identification problem is reduced to solving the
PP A g

10). system of inequalities (9) and (12). The sets of solutions {2, and 2,

| we obtain that if z1 ip general are not convex, but they are convex in every quadrant of a
coordinate system. The authors have developed an algorithm of finding
an exact description of these sets as a polygon. The algorithm permits

(11) to find all active vertices of the polygon and determine the No’s of active

/(=0 tests. In the identification procedure, all approaches of the interval anal-
ysis method are used: the check of the signification of model coefficients,
the check of the adequacy, the choice of optimal models, the evaluation
of point and interval estimations of coefficients, the prediction of output

:2), t=1.N. values and the estimation of the model efficiency [1], [2], [3].
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