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simplex-method, random search and others [1]. However under the im-
plementation of mentioned. algorithms on real plant, the trajectory of
the motion to the extremum as a result of action eirors, noise becomes
non-optimal, that is so-called “yaw” of the algorithm arises.

As a consequence of this, the problem of developing algorithms allow-
ing to find correctly the extremum in noisiness conditions is actual [2],
[31.

In general the work of zero-order algorithms can be represented in the
following form.

(1) The trial experiment at points z;,xs,...2, is carried out and
output values y;,¥s2,...y, are measured. Suppose that x €

R™, y is a scalar.
(2) The best (the worst) point ] () is defined as the solution of

the problem

T (1)
©yYn - (2)

(3) The direction of the motion is defined and the operation step is
performed.

x; = argmin{y, ..

+ _
z} = argmax{yi, ..

Steps 1, 2, 3 repeat,.

Suppose that for the noisy plant it is required to solve the problem
y(x) = min (3)

using the implementation of experimental optimization algorithms. Clas-
sical methods does not take into account that the measured output value
y'(z;) for plant will have the form

y'(z:) = y(z:) +e, (4)

where y(z) is a true output value; e is an error, applied additively to the
output.

Assume that an error e can take any values at the closed interval
[-A, +A] and the value A is known to the investigator. The variability of
an error can have in this case both random and undetermined character.
Such plant referred to as plant with the bounded in amplitude error or
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Jant With interval uncertainty. Note that the true output value y(z;)
with guarantee liesin the interval Z
y(xi) € [y(@:)] = [y'(z:) — A, y(2:) + A] (5)

With regard to the undeterminancy of the output, values of the experi-
ent can be represented as z; — [y(z1)], 22 — [y(z2)],. .., n — [y(z,))]
and pro-blemss (1) ?,nd (2) are the -optimization problems under interval
ancertainty conditions. A set of unimprovable solutions is taken as the

solution of such problems. For finding the set, relations of indifference
and preference are used [4].”

For the discrete collection of points z1, ..., z, the set of unimprovable
solutions for problem (1) is defined by the condition

QL+ {z |y < min{yf,...,u7}},

(6)

where y; , y;;" are respectively the lower and the upper boundaries of the
interval [y(z;)].

For problem (2) we have

Of, +{z | v > max{y],...,y:}}.

(7)

If the set £}y, (or th) contains a unique point, then in the point the
extremum 1s surely achieved and therefore we can pass to the following
step of the algorithm. Otherwise, it is impossible to distinguish the best
(the worst) point for a given undeterminancy level and it is reasonably to
provide correcting experiments at points which enter in the domain Q7
(or QF,) and pretend to the extremum. -

With regard to the first series of tests, we can write

z1 = [yi(z1)], [y2(z1)],
x2 — [y1(x2)]s [y2(22)],

e = [yi(ae)], [ye(ar)]

where k is the number of points, entering'in 027, (or Q7))
€ ) x/”
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Taking into account that y(z;) € [y1(:)]; y(z;) € [y2(zi)] we can write

21 — [y (@)] N ya(e)] = 1" (@),
............... (9)
2 — [y1 ()] O [y2(ak)] = [ (@e)],

that is, under performing parallel tests, the width of uncertainty intervals
decreases and therefore the set Q7 (or QF) contains a lesser number of
points. For points i = 1,k and appropriate intervals [y"(z;)], problems
(1) and (2) are solved and €2, (or Q) is constructed. The procedure
repeats until the sets (7, (or Q}'m) contain a unique point @ (or z).

Evidently, these points will completely coincide with extremum points
of problems (1) or (2) and therefore the algorithm trajectory will com-
pletely coincide with the trajectory of the motion to the extremum of the
appropriate optimization method in the absence of disturbances for any
amplitude of the error A.
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