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INTERVAL INCLUSIONS
FOR DAWSON'’S INTEGRAL

Frithjof Blomquist

Dawson’s integral f(z) = e—% Iy e*’du can be used to calculate the er-
ror function for the argument i.2; i = v/=1. In four different intervals f(z)
is approximated by different functions g9(z) = f(z) : Padé approximation,
Dawson’s formula, truncated asymptotic expansion. The corresponding
upper bounds ¢(app) of the relative approximation errors are calculated.
Because of rounding errors the machine value 9(z) = g(x)(1 4+ &4) is differ-
ent from the exact value g(z) and the relative error €g is estimated by |eg| <
£(g) for each interval. Writing f(x) = f(z)(1 + €5) the upper bound e(f)
of the relative error ey is given by |ef| < e(app) + [1+ e(app)]- (g) = e(f).

With the machine value f(z) and e(f) an inclusion of the exact function
value f(z) can be calculated.

BRIIIOUARIIVE UHTEPBAJILI
AJISA MHTEI'PAJIA IOYCOHA

® .BromrBucT

Hurerpan Hoycona f(z) = e’ fox e*’du moxer 6LITE KCIOJIB30-
BaH J/1A BRIYNCIEHUA QYHKUMM OLIMGKU AJIA apryMeHTa i - z; i = /1.
Ha uerblpex pasnmuubix unTeppanax f(z) alnmpoKCUMUPYETCA pa3-
AUYHBIMU GyHKuMAMK g(z) & f(z). UcnmonesyoTca annpokcuMaums
[Tane, popmyna Hoycona, yceueHHOE acCMMTITOTHUYECKOE pacluMpeHume.
BerunciAoTea cooTBeTCTBYIOWME BepXHME IDaHUIILL e(app) ana ot-
HOCHTE/IBHEIX owMboK annpokcumaumu. M3-3a ommbok okpyrienus
MallMHHOe 3HaveHMe g(z) = g(z)(1 + £4) OTIMUAETCA OT TOYHOrO 3Ha-
UeHusA g(T), M OTHOCUTE/IbHAA OIMBKA £, OLEHWBAETCA legl < e(g) nna

KKJI0ro MHTepBaJa. 3amMcas f~(:v) = f(z)(1 + €f), noxyuaem, uro

© F.Blomquist, 1992
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BepxHAA rpanmnua (f) OTHOCUTEJILHOM OIMOKN £ 3a/laeTCA BbIpaXke-
uuem |es| < e(app)+[1+e(app)]-£(g) = e(f). ViMea MalmuHOe 3HAUCHMUE
f(z) 1 £(f), MO’KHO BBIYMCIIMTB BKJIIOUAIOLUMIA MHTEPBAJ ANA TOUHOTO
anauenusa pyuxumm f(r).

1. Introduction

Dawson’s integral is defined by: f(z) = e~ IN e¥’du, [1,2,3,6]. Be-
cause of f(—z) = —f(x) we consider only z > 0. With
2/4” eVdu = —i/T - exf(i- z); erf(z) = 2 ' e~ du (1)
0 VT Jo

it is possible to calculate the error function erf(z) for z =14 2 by means
of f(z); i=+v-L |
The problem is to calculate an inclusion interval y = [y1,y2] for a given
argument-interval [z1, 5] with the following conditions: ‘
(1) f([z1,22]) Cy = [,
(2) y2 — 1 should be as small as possible.

To solve this problem we need the upper bound &( f) for the absolute
value of the relative error £7():

f(z) - g(=z)
fle)

With the épproximation function g(z) = f(z), which should be easy to
evaluate, we have the relative approximation error: \

f(z) —g(z)
flz) 7

§(z) is the machine value of g(z) with the relative error:

ef(z) = les(2)] < e(f) =?

Eapp(T) = |eapp()| < lapp) =7

g(z) —glz) .
g(x) 7

Splitting the errors and using the triangle inequality we get the following
expression for &(f):

gg(z) = leg(2)] < e(g) =7

e(f) := elapp) + [1 + e(app)} - (g) (2)

i AN

INTERY
The computer res

f(z) > 0 we have

Y1

where the express:
(PASCAL-XSC).
bounds e(app), &(

2.
With
b= 2 Z ¢
n=1
e’ (1+ E)

Integration of (5) £
Wwith:

D(a, x, OO) =

Ieappl = |E| <
< 214
Evaluating D(a,z,

Series
geoms in (6] with
Metric series th

Vg
e .
€ of the relativi
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JaeTcA BhIpaXke- The computer result for f(z) is f(x) = g(z). To get an inclusion for
vHHOE 3HaueHue f(z) 2 0 we have to use the following inequalities: ‘
aJji /1A TOUHOIr o

f(z) f(z)
——— < f(z) £ —~2%— =199, 3
e SO STy T @)

Y1 =
where the expressions for y;, y2 must be evaluated by directed rounding

“du, [1,2,3,6]. Be- (PASCAL—XSC). So from (2) the main job is to calculate the upper

b bounds e(app), &(g).
2 * 2
o s 1
T ]B e™du (1) 2. Dawson’s approximation formula
r 2 = 71X by means Wlth
e 2",2
= [y1, y2] for a given E:=2 Z e~ " . cos 2nmu , a#0, wehave from [6]: (4)
)ns: el @

6u2 (1 + E) ] % |:1 + 2 Z e—a2n2 . COSh(2naU)J . (5)
7r -
() for the absolute n=1

Integration of (5) from 0 to z with respect to u yields: f(z) =~ D(a,z, o),

with:
(f) =7
a-e=® I e

4 should be easy to D(a,z,0) := 7 T+ - Zl - sinh(2naz) and:

"2

Eappl = |B| < 201+ + 0+ -] ; a=e 2 <1 (6)
PP
R _9 a—
(app) = <2a[1+a1+a2+'-']= ,22 =:6(a)—90.
ea? —1

Evaluating D(a, z,00) with a computer we have to truncate the infinite
P series in (6) with n = N: D(a,z,00) = D(a,z,N). Using again the
(g) = geometric series the following upper bound e(a, N, z) for the absolute
t the following value of the relative approximation error
7 We ge e 1ollo

can(z) = D(a,z,00) = D(a,z,N)

g) (2) D(a,:z:,N)




T T R RS e S SR, ) L T T U e, AT A P L e

20 F.BLOMQUIST

is given by [7]:
lea,n(2)] <
e—a“(N+1)2+2(N+1)ax

2(N + 1) [1 — e~2(N+1)a*+2as] [ax + N
=:¢(a, N, z); N+1>z/a. 1 (8)

e—uzn

— - sinh(2naa¢)] (7)

g(a, N, z) is useless for © — 0; for = € [0,c] and c not too small £, y(z)
is estimated by [7]:

e—az(N+1)2+2(N+l)ac

ISG’N(J:)I = 2ac(N + 1) [1 — e—2(N+1)a2+2a.c] = 5(av N, c)' (9)

We have two approximations: f(z) =~ D(a,z,00) = D(a,z,N) and again
by splitting the errors we find the following expression for the upper
bound of the relative error ,p, = [f(z) — D(a,z, N)}/f(z) :

leappl < e(a) + [+ e(a)] - M = e(app, D) (10)
M :=é(a,N,c), x €[0,c] and M :=¢(a,N,x), 2 >c>0.

For a large x we need a very large N to keep ¢(a, N, z) small; so we

use DAWSON’S formula D{a,z,N) only for z € [1.5; 6.3].
3. 1.5<x<6.3

3.1. Approximation error

(0.5, 24, z) is increasing in z, so we have (0.5, 24, z) < (0.5, 24, 6.3) <
2.843 - 1078 and with £(0.5) < 1.432- 1077 we get:

|€app| < 1.432-10717 4+ 1.001 -2.843-107'% < 1.717- 10" = e(app)-

INTE

With e[n] = (

and the main v
relative error w'
mands. Doing
values 4 = u(1
have to calculat

S=a@v=5(
(S

where £(4) is th
addition @. To
sion of expressio
4 recursive prog
of the rounding

_ To avoid over
Interval parts ar
414 . 10‘18 Of t]
5.639. 10-17 an

In thig area w



= sinh(Znam)] (7
(8)

st too small &4 N ()

= 6(a, N, c). (9)

D(a,z, N) and again
sssion for the upper

N/ f(z)

p, D) (10)
=l e 2l

‘a, N, z) small; so we
5; 6.3] .

,z) < £(0.5,24,6.3) <
t:

1710717 = g(app).
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3.2. Rounding error

With e[n] = (e="'/%)/n the function D(0.5,x,24) can be written as:

—? 24
f(z) ~ D(0.5,,24) = ;ﬁ o+ n; efn] (" — e-m)]
e‘ﬂc2

2ﬁB(l') = g(x)

and the main work now is to calculate an upper bound g(B) of the
relative error with respect to B(z), containing defective machine sum-
mands. Doing this we have the following problem: For the machine
values @ = u(l + &), |eu] € €(u) and ¥ = v(1 + €4), |eu] < £(v) we
nave to calculate the upper bound £(S) for the relative error of the sum:
S.=udv=5(1+4c¢s), les| <e(S); (S) is given by:

Jul-e(u) + o] - £(v)

e(S) = e(+) + [1 4 £(+)] [u+ v

(1)

where e(+) is the upper bound of the relative error of the floating-point
addition @. To get an inclusion for £(S) we compute the interval exten-
sion of expression (11) in PASCAL-XSC. So we can calculate e(B) with
a recursive program. In the same way we can evaluate the upper bound
of the rounding errors in Horner’s scheme [5].

To avoid overestimations we have to subdivide our interval into 100 000
interval parts and so we get ¢(B) = 5.199- 10~17. With the error bound
4.14 - 10~18 of the exponential function we finally have the result e(g) =
5.639 - 1017 and (2) yields £(f) = 7.362 - 10~'7.

4. 6.3<x<13.5

4.1. Approximation function

In this area we use a Padé Approximation:
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Zg(z) = ao +aizi+ - +asz®; No(z)=bo + biz! + -+ + bez®.

The coefficients ay, by, are calculated with the DERIVE-package [4] using
the expansion point zop = 8. For the internal representation of Daw-
son’s integral f(z) in the DERIVE package we use the Taylor series
of f(z), where the Taylor coefficients are evaluated by means of a re-
cursion formula, which is easy to derive from the differential equation

fi(z) = ~2a- fla)+1.
4.2. Truncation error

To calculate the approximation error we write:
f(z) = D(a,z,N) = R(z) = g(). (12)

Notice, that g(z) = R(z) = Zs(x)/Ng(z) is the actual approximation
function and that we use the first approximation f(z) =~ D(a,z, N) only
to be able to evaluate the approximation error. For the first approxima-
tion in (12) the upper bound of the approximation error can be calculated
by (10) with @ = 0.37, N =90 and 2 = 13.5 because £(0.37,90, z) is in-
creasing in z:

£(0.37) + 1.001 - £(0.37,90,13.5) < 9.801 - 1072 = ¢(app, D).
For the second approximation D(0.37,z,90) = R(x) the relative error

- _ D(037,2,90) - R(x)
b.E = "7D(0.37, z, 90)

can be evaluated with DERIVE, and the maximum of |ep ()| is given
by :
lep,r(13.5)] < 3.800- 107" = ¢(D, R)

and for the approximation f(z) = R(z) we have analogously to (2):

leapp| < 9.801-107%2 4+ 1.001-3.8 - 107" < 3.804- 107" = e(app).

INTE}

|e2|
£(21) is the uppe

sion ©. The upp
be calculated wit

28(1') = Zg(;‘
Ng(ﬂ?) = Ng(

Now with (2) we

lesl <

In this area we

With the expansic
efficients and the
the area 6.3 <z:

€(app) = 2.505 -




z' 4 -+ 4 bz’

E-package [4] using
ssentation of Daw-
y the Taylor series

by means of a re-
ifferential equation

(12)
tual approximation
) = D(a,z, N) only
the first approxima-
or can be calculated
e £(0.37,90, ) is in-
? = (app, D).

the relative error

of |ep,r(x)| is given

R)

alogously to (2):

1107 = e(app).
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4.3. Rounding error

With R(z) = Zs(x)/No(z) the machine result R(x) is given by:

R(z) = [Zs(2)(1 +£2)] @ [No(2)(1 + €n)] =

(1+ez)(1+en)
=R -
le21] < e(21) = 0.5 - 10721,

= R(z)-

£(21) is the upper bound of the relative error for the floating-point divi-
sion @. The upper bounds e(N), e(Z) of the relative errors ey, €z can
be calculated with the recursive program [5]:

Zs(z) = Za(x)(1+€2);  |ez] <9.5648 10718 = ¢(2Z)
No(z) = No(2)(1 +en);  |en]| £9.7223-107"8 = g(N) —

ler] € 1.930-107"7 = ¢(R) = &(g).

Now with (2) we finally obtain:

|es| < e(app) + 1.001 - £(g) < 5.736- 10717 = &(f).

5. 0<x<1.5

In this area we again use a Padé Approximation:

_x-Zy(2%) _
= Nl®) g(z)

with the expansion point xy = 0. The calculation of the polynomial co-
efficients and the upper bounds e(app), €(g) can be done analogously to
the area 6.3 < z < 13.5. Results:

e(app) = 2.505- 10718, £(g) = 9.837-107"° — £(f) = 3.490- 10715,
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6. 13.5<x<©
In this area the best approximation function is the truncated asymp-

totic expansion of f(z). Using the asymptotic of the error function erf(z)
together with an analytic continuation we obtain:

f(z) = ga(z) + ro(z), with: (13)
1 1 1-3 3...(2n—1)
onle) = 55 |1+ gy + @+ (ay | 14)
= 2
Iy n+11-3-~-(2n+1)/€—z _ﬁ
ro(z) =1-€ (-1) ST ' Z2n+2dz 5 |- -
The path of integratior is separated into the parts: C1, C3, C3 :
Im(z)
1;
c, z—plane
1T >
1C2
Cs
- » Re(z)
. ‘ g
Upper bounds for the modulus of I(z) = [ Zrgzdz :
2
e® . T (
Cy: (2 )|<7m\/;, Cy: [I(z)] < 2n+)2v
VT VT
Cs: |I( )|—22n+2[1—erf(x]<2xzn+2.
With this results we find the following estimations [7]:
VT1-8(2n+1)-1.0002 _.] ..
Irn(@)] < 2 9t . p2nt2 te T 235 (16)

\/_ 1-3---(2n+1)

2n+1x2n+2 ;

|rn(z)| < 1.014 x> 3n.

INTE]

The first result ¢

xz

So for f(z) ther
easy to proof tha
of the expression

Theorem. For .
than or equal to

With (16) an
by :

v

|eapp(z)| < 7.7

Now for z > 13.¢
this is quite easy

So the sum of th
legative, and wit

1
f(x)zig[l-

|€app ()|

The two summan

W, i
€ obtain:

|€app(z)] <




1e truncated asymp-
error function erf(x)

(13)

- (2n — 1)]

@) 1 (g
pe ﬁ

‘n42 2 (15)

Cl) C27 C'3
Re(z)
%dz :
flx)

( )l - 32n+2'

/7

2n+2"°

s [7):

‘“”2] , x> 3;

r > 3n.
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The first result of (17) is

lim z***!r,(z)| = 0;
I —+00

n=12,....

go for f(x) there really exists an asymptotic expansion! Secondly it is
casy to proof that for x > 3n the last summand in (14) is an upper bound
of the expression in (17), so we get the

Theorem. For x> 3n the absolute value of the remainder term is less
than or equal to the last used summand of the asymptotic.

6.1. Approximation error

With (16) an estimation of the relative approximation error is given
by :

.(2n +1) - 1.0002
on+1 . p2n+2 +

vr [1-3-
|5app(x)| < ) [

2 f(z
Now for z > 13.5 we have to calculate a lower bound for f(z) >?7 And
this is quite easy with our last theorem! Writing n = 4 we have the result:

1 1-3-5-7

[ra(=z)| < o7 W y

e""z] , x> 3.

if z2>12.

So the sum of the positive last summand of g4(z) and r4(z) cannot be
negative, and with this result we have:

1-3
227

1
[1+.+

1-3-5]_ 1.
(222)!

fle) 2 T (2z22)3 >3

1-3 -(2n 4+ 1) - 1.0002
Igapp(x)l < \/; l: 2n+1(, (:I,')Z"+1

= K(n,z), z > 13.5.

The two summands in (18) are decreasing in z > 13.5 and with n = 10
we obtain:

leapp(z)| < K(10,13.5)
< 2.181- 107" = ¢(app).,

z 2 13.5, n=10.
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6.2. Rounding error

With (14) and n = 10 the approximationfunction can be written as:

1 . )
g(z) = - M4+¢+3-C+35-C+--+3:5- - -19-¢" ,
1 1 ZER(
5n D10 (=55 S
9(2) =120 (20 )]0 Pu(();
{=050((102)0(10n)]=((1+s) A
With £(¢) = 2.001 - 107%° (BCD data format with 21 mantissa-digits)
together with the recursive program for Horner’s-scheme we find:
S - This pap«
Pio(¢) = Pio(Q)(1 +ep); e(P)=3.474-107"". plant with i
Simple applications of the error calculus yield: £(g) = 3.476-107'"; algorithm, al
_ are proposed
les] < e(app) +1.001 - £(g) < 5.661 - 1077,
The maximum of the £(f)-values in the four considered areas is the error AJITOPUTM
bound in the whole area « > 0: HYJII
- g C
e(f) = 7.362- 10717, IIOMEX
With this value an interval-function for f(x) will be realized in the BCD
data format of PASCAL-XSC.
B cra-
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