A, A.L. SEMENOV

der) and the Powell th testing has shown ig linear systems of ical preprocessor is /stems of algebraicer consideration, inroblems, etc. These sub-definite paramval methods remain

ler the MS-DOS opary RAM size is 450 solved may range up illiseconds to several

ition and processing syst), pp. 3-28 (in Russian).

e problem-oriented S-provare", Novosibirsk, 1988,

tation. In: "Constructing 112-123 (in Russian).

e problems for systems of Calc system. In: "Proceegent problems in machine

A transactions on mathe-

using the nonzero value of cal software 4 (1988), pp.

ystems as numerical test **2** (1990), pp. 143–151.

Interval Computations No 3(5), 1992

INTERVAL INCLUSIONS FOR DAWSON'S INTEGRAL

Frithjof Blomquist

Dawson's integral $f(x) = e^{-x^2} \int_0^x e^{u^2} du$ can be used to calculate the error function for the argument $i \cdot x$; $i = \sqrt{-1}$. In four different intervals f(x) is approximated by different functions $g(x) \approx f(x)$: Padé approximation, Dawson's formula, truncated asymptotic expansion. The corresponding upper bounds $\varepsilon(app)$ of the relative approximation errors are calculated. Because of rounding errors the machine value $\widetilde{g}(x) = g(x)(1+\varepsilon_g)$ is different from the exact value g(x) and the relative error ε_g is estimated by $|\varepsilon_g| \leq \varepsilon(g)$ for each interval. Writing $\widetilde{f}(x) = f(x)(1+\varepsilon_f)$ the upper bound $\varepsilon(f)$ of the relative error ε_f is given by $|\varepsilon_f| \leq \varepsilon(app) + [1+\varepsilon(app)] \cdot \varepsilon(g) = \varepsilon(f)$. With the machine value $\widetilde{f}(x)$ and $\varepsilon(f)$ an inclusion of the exact function value f(x) can be calculated.

ВКЛЮЧАЮЩИЕ ИНТЕРВАЛЫ ДЛЯ ИНТЕГРАЛА ДОУСОНА

Ф.Бломквист

Интеграл Доусона $f(x)=e^{-x^2}\int_0^x e^{u^2}du$ может быть использован для вычисления функции ошибки для аргумента $i\cdot x;\ i=\sqrt{-1}$. На четырех различных интервалах f(x) аппроксимируется различными функциями $g(x)\approx f(x)$. Используются аппроксимация Паде, формула Доусона, усеченное асимптотическое расширение. Вычисляются соответствующие верхние границы $\varepsilon(app)$ для относительных ошибок аппроксимации. Из-за ошибок округления машинное значение $\widetilde{g}(x)=g(x)(1+\varepsilon_g)$ отличается от точного значения g(x), и относительная ошибка ε_g оценивается $|\varepsilon_g|\leq \varepsilon(g)$ для каждого интервала. Записав $\widetilde{f}(x)=f(x)(1+\varepsilon_f)$, получаем, что

[©] F.Blomquist, 1992

верхняя граница $\varepsilon(f)$ относительной ошибки ε_f задается выражением $|\varepsilon_f| \leq \varepsilon(app) + [1+\varepsilon(app)] \cdot \varepsilon(g) = \varepsilon(f)$. Имея машинное значение $\widetilde{f}(x)$ и $\varepsilon(f)$, можно вычислить включающий интервал для точного значения функции f(x).

1. Introduction

Dawson's integral is defined by: $f(x) = e^{-x^2} \int_0^x e^{u^2} du$, [1,2,3,6]. Because of $\overline{f(-x)} \equiv -f(x)$ we consider only $x \geq 0$. With

$$2\int_0^x e^{u^2} du = -i\sqrt{\pi} \cdot \text{erf}(i \cdot x); \qquad \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du \qquad (1)$$

it is possible to calculate the error function $\operatorname{erf}(z)$ for $z=i\cdot x$ by means of $f(x);\ i=\sqrt{-1}.$

The problem is to calculate an inclusion interval $y = [y_1, y_2]$ for a given argument-interval $[x_1, x_2]$ with the following conditions:

- (1) $f([x_1, x_2]) \subset y = [y_1, y_2];$
- (2) $y_2 y_1$ should be as small as possible.

To solve this problem we need the upper bound $\varepsilon(f)$ for the absolute value of the relative error $\varepsilon_f(x)$:

$$\varepsilon_f(x) := \frac{f(x) - \widetilde{g}(x)}{f(x)}; \qquad |\varepsilon_f(x)| \le \varepsilon(f) = ?$$

With the approximation function $g(x) \approx f(x)$, which should be easy to evaluate, we have the relative approximation error:

$$\varepsilon_{app}(x) := \frac{f(x) - g(x)}{f(x)}; \qquad |\varepsilon_{app}(x)| \le \varepsilon(app) = ?$$

 $\widetilde{g}(x)$ is the machine value of g(x) with the relative error:

$$\varepsilon_g(x) := \frac{g(x) - \widetilde{g}(x)}{g(x)}; \qquad |\varepsilon_g(x)| \le \varepsilon(g) = ?$$

Splitting the errors and using the triangle inequality we get the following expression for $\varepsilon(f)$:

$$\varepsilon(f) := \varepsilon(app) + [1 + \varepsilon(app)] \cdot \varepsilon(g) \tag{2}$$

The computer res $f(x) \ge 0$ we have

 y_1

where the express (PASCAL-XSC). bounds $\varepsilon(app)$, $\varepsilon(s)$

2.

With

$$E := 2\sum_{n=1}^{\infty} \epsilon$$

$$e^{u^2}(1+E)$$

Integration of (5) for with:

$$D(a, x, \infty) :=$$

$$|\varepsilon_{app}| = |E| \le$$

$$< 2\alpha \left[1 + \right]$$

Evaluating D(a, x, series in (6) with geometric series the value of the relative

цается выражеинное значение ал для точного

$$u^2 du$$
, [1,2,3,6]. Beh

$$\frac{2}{\overline{\pi}} \int_0^x e^{-u^2} du \qquad (1)$$

 $z = i \cdot x$ by means

=
$$[y_1, y_2]$$
 for a given ons:

f(f) for the absolute

$$(f) = ?$$

ch should be easy to

$$\varepsilon(app) = ?$$

error:

$$(g) = ?$$

, we get the following

$$g$$
) (2)

The computer result for f(x) is $\tilde{f}(x) \equiv \tilde{g}(x)$. To get an inclusion for $f(x) \geq 0$ we have to use the following inequalities:

$$y_1 := \frac{\widetilde{f}(x)}{1 + \varepsilon(f)} \le f(x) \le \frac{\widetilde{f}(x)}{1 - \varepsilon(f)} =: y_2,$$
 (3)

where the expressions for y_1 , y_2 must be evaluated by directed rounding (PASCAL-XSC). So from (2) the main job is to calculate the upper bounds $\varepsilon(app)$, $\varepsilon(g)$.

2. Dawson's approximation formula

With

$$E := 2 \sum_{n=1}^{\infty} e^{-\frac{n^2 \pi^2}{a^2}} \cdot \cos \frac{2n\pi u}{a}, \quad a \neq 0, \quad \text{we have from [6]:}$$
 (4)

$$e^{u^{2}}(1+E) = \frac{a}{\sqrt{\pi}} \left[1 + 2\sum_{n=1}^{\infty} e^{-a^{2}n^{2}} \cdot \cosh(2nau) \right].$$
 (5)

Integration of (5) from 0 to x with respect to u yields: $f(x) \approx D(a, x, \infty)$, with:

$$D(a, x, \infty) := \frac{a \cdot e^{-x^2}}{\sqrt{\pi}} \left[x + \frac{1}{a} \sum_{n=1}^{\infty} \frac{e^{-a^2 n^2}}{n} \sinh(2nax) \right] \quad \text{and:}$$

$$|\varepsilon_{app}| = |E| \le 2\alpha \left[1 + \alpha^3 + \alpha^8 + \cdots \right]; \qquad \alpha = e^{-\frac{\pi^2}{a^2}} < 1$$

$$< 2\alpha \left[1 + \alpha^1 + \alpha^2 + \cdots \right] = \frac{2}{e^{\frac{\pi^2}{a^2}} - 1} =: \varepsilon(a) \xrightarrow{a \to 0} 0.$$
(6)

Evaluating $D(a, x, \infty)$ with a computer we have to truncate the infinite series in (6) with n = N: $D(a, x, \infty) \approx D(a, x, N)$. Using again the geometric series the following upper bound $\varepsilon(a, N, x)$ for the absolute value of the relative approximation error

$$\varepsilon_{a,N}(x) = \frac{D(a,x,\infty) - D(a,x,N)}{D(a,x,N)}$$

is given by [7]:

$$\frac{e^{-a^{2}(N+1)^{2}+2(N+1)ax}}{2(N+1)\left[1-e^{-2(N+1)a^{2}+2ax}\right]\left[ax+\sum_{n=1}^{N}\frac{e^{-a^{2}n^{2}}}{n}\sinh(2nax)\right]}$$
(7)
=: $\varepsilon(a,N,x)$; $N+1>x/a$. (8)

 $\varepsilon(a, N, x)$ is useless for $x \to 0$; for $x \in [0, c]$ and c not too small $\varepsilon_{a,N}(x)$ is estimated by [7]:

$$|\varepsilon_{a,N}(x)| \le \frac{e^{-a^2(N+1)^2 + 2(N+1)ac}}{2ac(N+1)\left[1 - e^{-2(N+1)a^2 + 2ac}\right]} = \delta(a, N, c).$$
 (9)

We have two approximations: $f(x) \approx D(a, x, \infty) \approx D(a, x, N)$ and again by splitting the errors we find the following expression for the upper bound of the relative error $\varepsilon_{app} = [f(x) - D(a, x, N)]/f(x)$:

$$\begin{split} |\varepsilon_{app}| & \leq \varepsilon(a) + [1 + \varepsilon(a)] \cdot M = \varepsilon(app, D) \\ M & := \delta(a, N, c), \ x \in [0, c] \quad \text{and} \quad M := \varepsilon(a, N, x), \ x \geq c > 0. \end{split}$$
 (10)

For a large x we need a very large N to keep $\varepsilon(a, N, x)$ small; so we use DAWSON'S formula D(a, x, N) only for $x \in [1.5; 6.3]$.

3.
$$1.5 \le x \le 6.3$$

3.1. Approximation error

 $\varepsilon(0.5, 24, x)$ is increasing in x, so we have $\varepsilon(0.5, 24, x) \le \varepsilon(0.5, 24, 6.3) \le 2.843 \cdot 10^{-18}$ and with $\varepsilon(0.5) < 1.432 \cdot 10^{-17}$ we get:

$$|\varepsilon_{app}| < 1.432 \cdot 10^{-17} + 1.001 \cdot 2.843 \cdot 10^{-18} < 1.717 \cdot 10^{-17} = \varepsilon(app)$$

With e[n] = (

_

and the main values relative error with mands. Doing values $\tilde{u} = u(1)$ have to calculate $\tilde{S} := \tilde{u} \oplus \tilde{v} = S(1)$

 $\varepsilon(S)$

where $\varepsilon(+)$ is the addition \oplus . To a sion of expression a recursive program of the rounding

To avoid over interval parts as $4.14 \cdot 10^{-18}$ of the $5.639 \cdot 10^{-17}$ and

In this area w

3.2. Rounding error

With $e[n] = (e^{-n^2/4})/n$ the function D(0.5, x, 24) can be written as:

$$\begin{split} f(x) &\approx D(0.5, x, 24) = \frac{e^{-x^2}}{2\sqrt{\pi}} \left[x + \sum_{n=1}^{24} e[n] \left(e^{nx} - e^{-nx} \right) \right] \\ &= \frac{e^{-x^2}}{2\sqrt{\pi}} B(x) = g(x) \end{split}$$

and the main work now is to calculate an upper bound $\varepsilon(B)$ of the relative error with respect to B(x), containing defective machine summands. Doing this we have the following problem: For the machine values $\tilde{u} = u(1 + \varepsilon_u)$, $|\varepsilon_u| \leq \varepsilon(u)$ and $\tilde{v} = v(1 + \varepsilon_v)$, $|\varepsilon_v| \leq \varepsilon(v)$ we have to calculate the upper bound $\varepsilon(S)$ for the relative error of the sum: $\tilde{S} := \tilde{u} \oplus \tilde{v} = S(1 + \varepsilon_S)$, $|\varepsilon_S| \leq \varepsilon(S)$; $\varepsilon(S)$ is given by:

$$\varepsilon(S) = \varepsilon(+) + [1 + \varepsilon(+)] \cdot \frac{|u| \cdot \varepsilon(u) + |v| \cdot \varepsilon(v)}{|u + v|}$$
(11)

where $\varepsilon(+)$ is the upper bound of the relative error of the floating-point addition \oplus . To get an inclusion for $\varepsilon(S)$ we compute the interval extension of expression (11) in PASCAL-XSC. So we can calculate $\varepsilon(B)$ with a recursive program. In the same way we can evaluate the upper bound of the rounding errors in Horner's scheme [5].

To avoid overestimations we have to subdivide our interval into 100 000 interval parts and so we get $\varepsilon(B) = 5.199 \cdot 10^{-17}$. With the error bound $4.14 \cdot 10^{-18}$ of the exponential function we finally have the result $\varepsilon(g) = 5.639 \cdot 10^{-17}$ and (2) yields $\varepsilon(f) = 7.362 \cdot 10^{-17}$.

4.
$$6.3 \le x \le 13.5$$

4.1. Approximation function

In this area we use a Padé Approximation:

$$f(x) \approx R(x) = \frac{Z_8(x)}{N_9(x)} \equiv g(x)$$

$$\frac{\overline{n^2} \sinh(2nax)}{(8)}$$

ot too small $\varepsilon_{a,N}(x)$

$$= \delta(a, N, c). \tag{9}$$

D(a, x, N) and again ession for the upper]/f(x):

$$(10)$$

$$(x), x \ge c > 0.$$

(a, N, x) small; so we 5; 6.3].

,
$$x) \leq \varepsilon(0.5, 24, 6.3) <$$
t:

$$17 \cdot 10^{-17} = \varepsilon(app).$$

$$Z_8(x) = a_0 + a_1 x^1 + \dots + a_8 x^8; \quad N_9(x) = b_0 + b_1 x^1 + \dots + b_9 x^9.$$

The coefficients a_k, b_k are calculated with the DERIVE-package [4] using the expansion point $x_0 = 8$. For the internal representation of Dawson's integral f(x) in the DERIVE package we use the Taylor series of f(x), where the Taylor coefficients are evaluated by means of a recursion formula, which is easy to derive from the differential equation $f'(x) = -2x \cdot f(x) + 1$.

4.2. Truncation error

To calculate the approximation error we write:

$$f(x) \approx D(a, x, N) \approx R(x) \equiv g(x).$$
 (12)

Notice, that $g(x) \equiv R(x) = Z_8(x)/N_9(x)$ is the actual approximation function and that we use the first approximation $f(x) \approx D(a, x, N)$ only to be able to evaluate the approximation error. For the first approximation in (12) the upper bound of the approximation error can be calculated by (10) with a = 0.37, N = 90 and x = 13.5 because $\varepsilon(0.37, 90, x)$ is increasing in x:

$$\varepsilon(0.37) + 1.001 \cdot \varepsilon(0.37, 90, 13.5) < 9.801 \cdot 10^{-32} = \varepsilon(app, D).$$

For the second approximation $D(0.37, x, 90) \approx R(x)$ the relative error

$$\varepsilon_{D,R} = \frac{D(0.37, x, 90) - R(x)}{D(0.37, x, 90)}$$

can be evaluated with DERIVE, and the maximum of $|\varepsilon_{D,R}(x)|$ is given by:

$$|\varepsilon_{D,R}(13.5)| < 3.800 \cdot 10^{-17} = \varepsilon(D,R)$$

and for the approximation $f(x) \approx R(x)$ we have analogously to (2):

$$|\varepsilon_{app}| < 9.801 \cdot 10^{-32} + 1.001 \cdot 3.8 \cdot 10^{-17} < 3.804 \cdot 10^{-17} = \varepsilon(app).$$

With
$$R(x) =$$

$$\widetilde{R}(x)$$

$$|\varepsilon_{21}|$$

 $\varepsilon(21)$ is the upper sion \oslash . The upper be calculated with

$$\widetilde{Z}_8(x) = Z_8(x)$$

$$\widetilde{N}_9(x) = N_9(.$$

Now with (2) we

$$|\varepsilon_f| \le$$

In this area we

with the expansion efficients and the the area $6.3 \le x$:

$$\varepsilon(app) = 2.505 \cdot$$

$$x^1 + \cdots + b_9 x^9.$$

E-package [4] using esentation of Dawthe Taylor series by means of a reifferential equation

tual approximation) $\approx D(a, x, N)$ only the first approximaor can be calculated e $\varepsilon(0.37, 90, x)$ is in-

$$^{2} = \varepsilon(app, D).$$

the relative error

of
$$|\varepsilon_{D,R}(x)|$$
 is given

R

alogously to (2):

$$1 \cdot 10^{-17} = \varepsilon (app)_*$$

4.3. Rounding error

With $R(x) = Z_8(x)/N_9(x)$ the machine result $\widetilde{R}(x)$ is given by:

$$\begin{split} \widetilde{R}(x) &= [Z_8(x)(1+\varepsilon_Z)] \oslash [N_9(x)(1+\varepsilon_N)] = \\ &= R(x) \cdot \frac{(1+\varepsilon_Z)(1+\varepsilon_{21})}{1+\varepsilon_N} = R(x)(1+\varepsilon_R); \\ |\varepsilon_{21}| &\leq \varepsilon(21) = 0.5 \cdot 10^{-21}. \end{split}$$

 $\varepsilon(21)$ is the upper bound of the relative error for the floating-point division \emptyset . The upper bounds $\varepsilon(N)$, $\varepsilon(Z)$ of the relative errors ε_N , ε_Z can be calculated with the recursive program [5]:

$$\widetilde{Z}_8(x) = Z_8(x)(1 + \varepsilon_Z);$$
 $|\varepsilon_Z| \le 9.5648 \cdot 10^{-18} = \varepsilon(Z)$
 $\widetilde{N}_9(x) = N_9(x)(1 + \varepsilon_N);$ $|\varepsilon_N| \le 9.7223 \cdot 10^{-18} = \varepsilon(N)$

$$|\varepsilon_R| \le 1.930 \cdot 10^{-17} = \varepsilon(R) = \varepsilon(g).$$

Now with (2) we finally obtain:

$$|\varepsilon_f| \le \varepsilon(app) + 1.001 \cdot \varepsilon(g) \le 5.736 \cdot 10^{-17} = \varepsilon(f).$$

5.
$$0 \le x \le 1.5$$

In this area we again use a Padé Approximation:

$$f(x) \approx R(x) = \frac{x \cdot Z_9(x^2)}{N_{10}(x^2)} \equiv g(x)$$

with the expansion point $x_0 = 0$. The calculation of the polynomial coefficients and the upper bounds $\varepsilon(app)$, $\varepsilon(g)$ can be done analogously to the area $6.3 \le x \le 13.5$. Results:

$$\varepsilon(app) = 2.505 \cdot 10^{-18}; \quad \varepsilon(g) = 9.837 \cdot 10^{-19} \longrightarrow \varepsilon(f) = 3.490 \cdot 10^{-18}.$$

6. 13.5<x<∞

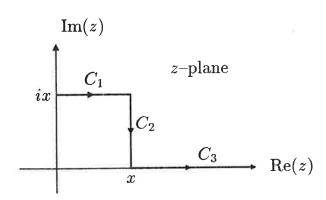
In this area the best approximation function is the truncated asymptotic expansion of f(x). Using the asymptotic of the error function erf(x) together with an analytic continuation we obtain:

$$f(x) = g_n(x) + r_n(x), \quad \text{with:}$$
 (13)

$$g_n(x) = \frac{1}{2x} \left[1 + \frac{1}{(2x^2)^1} + \frac{1 \cdot 3}{(2x^2)^2} + \dots + \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{(2x^2)^n} \right], \tag{14}$$

$$r_n(x) = i \cdot e^{-x^2} \left[(-1)^{n+1} \frac{1 \cdot 3 \cdots (2n+1)}{2^{n+1}} \int_{ix}^{\infty} \frac{e^{-z^2}}{z^{2n+2}} dz - \frac{\sqrt{\pi}}{2} \right]$$
 (15)

The path of integration is separated into the parts: C_1, C_2, C_3 :



Upper bounds for the modulus of $I(x) = \int_{ix}^{\infty} \frac{e^{-z^2}}{z^{2n+2}} dz$:

$$C_1: |I(x)| \le \frac{e^{x^2} \cdot \sqrt{\pi}}{2x^{2n+2}}; C_2: |I(x)| \le \frac{f(x)}{x^{2n+2}};$$

$$C_3: |I(x)| = \frac{\sqrt{\pi}}{2x^{2n+2}} [1 - \operatorname{erf}(x)] < \frac{\sqrt{\pi}}{2x^{2n+2}}.$$

With this results we find the following estimations [7]:

$$|r_n(x)| < \frac{\sqrt{\pi}}{2} \left[\frac{1 \cdot 3 \cdots (2n+1) \cdot 1.0002}{2^{n+1} \cdot x^{2n+2}} + e^{-x^2} \right], \quad x \ge 3;$$
 (16)

$$|r_n(x)| < 1.014 \frac{\sqrt{\pi}}{2} \cdot \frac{1 \cdot 3 \cdots (2n+1)}{2^{n+1} x^{2n+2}}; \qquad x \ge 3n.$$
 (17)

The first result c

So for f(x) there easy to proof that of the expression

Theorem. For than or equal to

With (16) an by:

$$|\varepsilon_{app}(x)| < \frac{\sqrt{2 \cdot f}}{2 \cdot f}$$

Now for $x \ge 13.5$ this is quite easy

So the sum of th negative, and wit

$$f(x) \ge \frac{1}{2x} \left[1 - \frac{1}{2x} \right]$$

$$|\varepsilon_{app}(x)|$$

The two summan we obtain:

$$|\varepsilon_{app}(x)|$$
 <

truncated asymptorized function erf(x)

$$\frac{\cdots (2n-1)}{(2x^2)^n} \bigg] \,, \tag{14}$$

$$\frac{-z^2}{2n+2}dz - \frac{\sqrt{\pi}}{2} \right] . \tag{15}$$

$$C_1,\,C_2,\,C_3$$
:

Re(z)

 $\frac{1}{2}dz$:

$$|(x)| \le \frac{f(x)}{x^{2n+2}};$$

$$\frac{\sqrt{\pi}}{2n+2}.$$

$$-x^2 \bigg] , \quad x \ge 3; \tag{16}$$

$$r > 3n. \tag{17}$$

The first result of (17) is:

$$\lim_{x \to \infty} x^{2n+1} |r_n(x)| = 0; \qquad n = 1, 2, \dots.$$

So for f(x) there really exists an asymptotic expansion! Secondly it is easy to proof that for $x \ge 3n$ the last summand in (14) is an upper bound of the expression in (17), so we get the

Theorem. For $x \ge 3n$ the absolute value of the remainder term is less than or equal to the last used summand of the asymptotic.

6.1. Approximation error

With (16) an estimation of the relative approximation error is given by:

$$|\varepsilon_{app}(x)| < \frac{\sqrt{\pi}}{2 \cdot f(x)} \left[\frac{1 \cdot 3 \cdot \dots \cdot (2n+1) \cdot 1.0002}{2^{n+1} \cdot x^{2n+2}} + e^{-x^2} \right], \qquad x \ge 3$$

Now for $x \ge 13.5$ we have to calculate a lower bound for $f(x) \ge ?$ And this is quite easy with our last theorem! Writing n = 4 we have the result:

$$|r_4(x)| \le \frac{1}{2x} \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7}{(2x^2)^4}$$
, if $x \ge 12$.

So the sum of the positive last summand of $g_4(x)$ and $r_4(x)$ cannot be negative, and with this result we have:

$$f(x) \ge \frac{1}{2x} \left[1 + \frac{1}{(2x^2)^1} + \frac{1 \cdot 3}{(2x^2)^2} + \frac{1 \cdot 3 \cdot 5}{(2x^2)^3} \right] > \frac{1}{2x}; \quad x \ge 12 \longrightarrow$$

$$|\varepsilon_{app}(x)| < \sqrt{\pi} \left[\frac{1 \cdot 3 \cdot \dots \cdot (2n+1) \cdot 1.0002}{2^{n+1} \cdot (x)^{2n+1}} + x \cdot e^{-x^2} \right]$$

$$\equiv K(n, x), \quad x \ge 13.5. \tag{18}$$

The two summands in (18) are decreasing in $x \ge 13.5$ and with n = 10 we obtain:

$$|\varepsilon_{app}(x)| < K(10, 13.5)$$

 $< 2.181 \cdot 10^{-17} = \varepsilon(app), \quad x \ge 13.5, \quad n = 10.$

6.2. Rounding error

With (14) and n = 10 the approximation function can be written as:

$$g(x) = \frac{1}{2x} \left[1 + \zeta + 3 \cdot \zeta^2 + 3 \cdot 5 \cdot \zeta^3 + \dots + 3 \cdot 5 \cdot \dots \cdot 19 \cdot \zeta^{10} \right] ;$$

$$= \frac{1}{2x} \cdot P_{10}(\zeta); \quad \zeta = \frac{1}{2x^2};$$

$$\widetilde{z}(x) \leftarrow [1 \odot (2 \odot x)] \odot \widetilde{P}_{10}(\zeta);$$

$$\widetilde{g}(x) := [1 \oslash (2 \odot x)] \odot \widetilde{P}_{10}(\widetilde{\zeta});$$

$$\widetilde{\zeta} := 0.5 \odot [(1 \oslash x) \odot (1 \oslash x)] = \zeta (1 + \varepsilon_{\zeta}).$$

With $\varepsilon(\zeta) = 2.001 \cdot 10^{-20}$ (BCD data format with 21 mantissa-digits) together with the recursive program for Horner's-scheme we find:

$$\tilde{P}_{10}(\tilde{\zeta}) = P_{10}(\zeta)(1 + \varepsilon_P); \quad \varepsilon(P) = 3.474 \cdot 10^{-17}.$$

Simple applications of the error calculus yield: $\varepsilon(g) = 3.476 \cdot 10^{-17}$;

$$|\varepsilon_f| \le \varepsilon(app) + 1.001 \cdot \varepsilon(g) < 5.661 \cdot 10^{-17}$$

The maximum of the $\varepsilon(f)$ -values in the four considered areas is the error bound in the whole area $x \geq 0$:

$$\varepsilon(f) = 7.362 \cdot 10^{-17}.$$

With this value an interval-function for f(x) will be realized in the BCD data format of PASCAL-XSC.

References

- 1. Rosser, J.B. Theorie and application of $\int_0^z e^{-x^2} dx$ and $\int_0^z e^{-p^2 y^2} dy \int_0^y e^{-x^2} dx$. Part I. Methods of computation, New York, 1948.
- 2. Salzer, H.E. Formulas for calculating the error function of a complex variable Math. tables and other aids to computation 5 (1951) pp. 67-70.
- 3. Fried, B.D. and Conte, S.D. The plasma dispersion function. Academic Press New York, London, 1961.
- 4. DERIVE 2.0. Soft Warehouse, Honolulu.
- 5. Kraemer, W. Inverse Standardfunktionen für realle und komplexe Intervallarg mente mit a priori Fehlerabschätzungen für beliebige Datenformate. Dissertatio Karlsruhe, 1987.
- 6. Titchmarsh, E.C. Introduction to the theory of Fourier integrals. Oxford. 1937 pp. 60-64.
- 7. Blomquist, F. Rechnerauswertung von DAWSONS-Integral mit garantierter Feh lerschranke. Institute for Applied Mathematics, University of Karlsruhe, 1992.

ZER(WI'

A.

This pape plant with in algorithm, al are proposed

АЛГОРИТМ НУЛІ С ПОМЕХ

> В статье зации объек Предлагают зволяющие у

When a series choice of optima solving optimizat

In the cases wh sufficient or the p its analytical desc tion methods amo

© A.F.Bochkov,